h . m} . ' ¥ 7
| : "N | I (| -
I i B i
‘ : | :
' - ‘ 4 | g
; : 4 \ il |
* P } ‘ ¥
! ¥. | Al:n_
| ! - 1R ’ § :
! = 3 : H
! | o ’ ; ‘
EIR Y :
(s *’r | , !
i | . L | : Al’
p 4 . I‘i i 4 M

MATH 454 Parallei and ngh Performance Computlng
Lecture 4: MPI basics

Pablo Antolin
Slides of N. Richart, E. Lanti, V. Keller’s lecture notes
March 20 2025

m SCITAS

II_ - II,.II - ———— IJIIil.lI IIIE!

{ e G

- [

Message Passing Interface (

2
E
o
7]
n

MPI
L=y = L=
=P L

m |ntroduce distributed memory programming paradigm.
m Point-to-point communications.

m Collective communications.

W SCITAS P. Antolin 3 /30

- Reminder
b Shared memory

te Private Private te
Memory Memory Memory Memory
\ A

Shared Memory

W SCITAS P. Antolin 4 /30

Po P1 Pn
My My My

network or switch

W SCITAS P. Antolin 5/ 30

MPI
L= = =
LP' L Overview and goals of MPI

= SCITAS

MPI is a Message-Passing Interface specification.
There are many implementations (Intel MPI, OpenMPI, MPICH, MVAPICH, etc.)
Library interface, not a programming language.

It is standarized:

» Defined by the MPI forum
» Current version is MPI 4.1

As such, it is portable, flexible, and efficient.

Interface to C and Fortran in standard. C interface usable with C++. Also MPI
bindings for other languages (Python, Julia, MATLAB, etc.).

P. Antolin 6 /30

https://www.mpi-forum.org/

MPI
Ccpe
LP' L A simple hello world example

mpi/hello_mpi.cc

1 #2nclude <7ostream>

2 #include <mpi.h>

3

4 int main(int argc, char x*argv[]) {
MPI_Init(&argc, &argv);

int size, rank;
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

© o N9 O »

11 std::cout << "I am process " << rank << " out of " << size <<
< std::endl;

13 MPI_Finalize();

14 return O; :
= SCITAS P. Antolin 7 / 30

=P L
© ®
© @
® ®

MPI_COMM_WORLD

MPI code is bounded by a MPI_Init and a MPI_Finalize.

MPI starts N processes numbered 0,1,..., N — 1.
The number of every process is usually denoted as rank.

They are grouped in a communicator of size N.
After init, MPI provides a default communicator called MPI_COMM _WORLD.

W SCITAS P. Antolin 8/ 30

Types of communications in MPI

Point-to-Point (One-to-One).

Collectives (One-to-All, All-to-One, All-to-All).
One-sided/Shared memory (One-to ...).
Blocking and Non-Blocking of all types.

W SCITAS P. Antolin 9 /30

=PrL

Send/Receive

1 int MPI_Ssend(const void *buf, int count, MPI_Datatype datatype,

2

3 int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int

— int dest, int tag, MPI_Comm comm) ;

— source, int tag, MPI_Comm comm, MPI_Status *status);

= SCITAS

buf: pointer to the data to send/receive.

count: number of elements to send/receive.

datatype: datatype of the data to send/receive.

dest, source: the rank of the destination/source of the communication.
tag: a message tag to differentiate the communications.

comm: communicator in which the communication happens.

status: object containing information on the communication.
P. Antolin 10 / 30

=pEL Send/Receive
=it Details on the buffer

buf
HEEEEEEEEEN

count
= Buffer is a pointer to the first data (buf), a size (count), and a datatype.
m Datatypes (extract):

» MPI_INT

» MPI_UNSIGNED

» MPI_FLOAT

» MPI_DOUBLE
m For std: :vector<double> vect:

» buf = vect.data()

» count = vect.size()

» datatype = MPI_DOUBLE

W SCITAS P. Antolin 11/ 30

EPFL
Useful constants and status
Constants:
m MPI_STATUS_IGNORE: to state that the status is ignored.
m MPI_PROC_NULL: placeholder for the source or destination.
m MPI_ANY_SOURCE: is a wildcard for the source of a receive.
m MPI_ANY_TAG: is a wildcard for the tag of a receive.

MPI_Status:
m Structure containing tag and source

1 MPI_Status status;
2 std::cout << "Tag: " << status.tag << " - Source: " <<
— status.source << std::endl;

m Size of the received buffer can be asked using the status:

1 int MPI_Get_count(const MPI_Status *status, MPI_Datatype

— datatype, int *count)

= SCITAS ’P. Antolin 1 / 30

Send/Receive
L=y = L=
LP' L Example

mpi/send recv.cc

16 MPI_Init(NULL, NULL);
17 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
18 MPI_Comm_size (MPI_COMM_WORLD, &size);

20 assert(size == 2 && "Works only with 2 procs");
22 int tag = 0;

24 if (rank == 0) {

25 £fill_buffer(buf);

26 MPI_Ssend(buf.data(), buf.size(), MPI_INT, 1, tag, MPI_COMM_WORLD);

27 } else if (rank == 1) {

28 MPI_Recv(buf.data(), buf.size(), MPI_INT, O, tag, MPI_COMM_WORLD,
< MPI_STATUS_IGNORE);

29 }

= SCITAS P. Antolin 13 / 30

Send/Receive
L=y = L=
EPFL

Rank 0 Rank 1
send(1,0) — recv(0,0)
finalize() finalize()

W SCITAS P. Antolin 13 /30

Send/Receive
L=y = L=
EPFL

m MPI_Ssend: (S for Synchronous) function returns when other end posted matching
recv and the buffer can be safely reused.

m MPI_Bsend: (B for Buffer) function returns immediately, send buffer can be reused

immediately.

m MPI_Rsend: (R for Ready) can be used only when a receive is already listening
(waiting).

m MPI_Send: acts like MPI_Bsend on small arrays, and like MPI_Ssend on bigger
ones.

W SCITAS P. Antolin 14 / 30

Send/Receive
L=y = L=
EPFL

m MPI_Ssend: (S for Synchronous) function returns when other end posted matching
recv and the buffer can be safely reused.

m MPI_Bsend: (B for Buffer) function returns immediately, send buffer can be reused
immediately.

m MPI_Rsend: (R for Ready) can be used only when a receive is already listening
(waiting).

m MPI_Send: acts like MPI_Bsend on small arrays, and like MPI_Ssend on bigger
ones.

Be careful with deadlocks and race conditions!!

W SCITAS P. Antolin 14 / 30

Send/Receive
Ccpe
LPl L Deadlock example

mpi/send recv_deadlock.cc

25 assert(size == 2 && "Works only with 2 procs");
26 int tag = 0;

28 if (rank == 0)

20 {

30 £fill_buffer (buf) ;

31 MPI_Ssend(buf.data(), buf.size(), MPI_INT, 1, tag, MPI_COMM_WORLD);

32 MPI_Recv(buf.data(), buf.size(), MPI_INT, 1, tag, MPI_COMM_WORLD,
< MPI_STATUS_IGNORE) ;

33 }

34 else if (rank == 1)

35 {

36 MPI_Ssend(buf.data(), buf.size(), MPI_INT, O, tag, MPI_COMM_WORLD);

37 MPI_Recv(buf.data(), buf.size(), MPI_INT, O, tag, MPI_COMM_WORLD,
< MPI_STATUS_IGNORE) ;

= SCITAS P. Antolin 15 / 30
oo L

Send/Receive
Ccpe
EPFL

Rank 0 Rank 1
send(1,0) send(0,0)
barrier! barrier!

W SCITAS P. Antolin 15 / 30

Send/Receive

Ccpe
LP' L Deadlock example - 2

mpi/send recv_deadlock 2.cc

= SCITAS

16

MPI_Init(NULL, NULL);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

// Let's now assume that we may have 2 or more processes.
int tag = 0;

if (rank == 0) {
£fill_buffer (buf) ;
MPI_Ssend(buf.data(), buf.size(), MPI_INT, 1, tag, MPI_COMM_WORLD) ;
} else {
MPI_Recv(buf.data(), buf.size(), MPI_INT, O, tag, MPI_COMM_WORLD,
< MPI_STATUS_IGNORE) ;
}
MPI_Finalize();

P. Antolin

6 / 30

Send/Receive
L=y = L=
EPFL

With 2 processes:

Rank 0 Rank 1
send(1,0) — recv(0,0)
finalize() finalize()

W SCITAS P. Antolin 16 / 30

Send/Receive
L=y = L=
EPFL

With 3 processes:

Rank 0 Rank 1 Rank 2
send(1,0) — recv(0,0) recv(0,0)
finalize() finalize() barrier!

W SCITAS P. Antolin 16 / 30

=pEL Send/Receive
=i Combined send-receive

1 int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype
— sendtype, int dest, int sendtag, void *recvbuf, int recvcount,
— MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,
< MPI_Status *status);

m Combines a send and a receive, to help mitigate deadlocks.

m Has a in-place variant MPI_Sendrecv_replace.

W SCITAS P. Antolin 17 / 30

Non-blocking send/receive

1 int MPI_TIsend(const void *buf, int count, MPI_Datatype datatype,
— int dest, int tag, MPI_Comm comm, MPI_Request *request);

2

3 int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int
< source, int tag, MPI_Comm comm, MPI_Request *request);

| for immediate.

request in addition to parameters from blocking version.
It is an object attached to the communication.

Receive does not have a status.

The communication starts but is not completed.

S, B, and R variants are also defined.

W SCITAS P. Antolin 18 / 30

Non-blocking send/receive
L=y = L=
EPFL

1 int MPI_Wait(MPI_Request *request, MPI_Status *status);
2
3 int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status);

m For non-blocking communications, completion should be “manually” checked.
m MPI_Test or MPI_Wait.

Send completed means the buffer can be reused.

Receive completed means the buffer can be read.

status is set at completion.

flag is true if completed, false otherwise.

W SCITAS P. Antolin 19 / 30

ISend /Receive
L=y = L=
LP' L Example

mpi/isend recv.cc

22 MPI_Request request;

23 if (rank == 0) {

24 fill_buffer(buf);

25 MPI_Isend(buf.data(), buf.size(), MPI_INT, 1, O, MPI_COMM_WORLD,
< &request);

26 } else if (rank == 1) {

27 MPI_Recv(buf.data(), buf.size(), MPI_INT, O, O, MPI_COMM_WORLD,
< MPI_STATUS_IGNORE) ;

28)

30 // While MPI communtications are performed here I can do computations as
— long as buf is not modified in rank 0, or read/modified in rank 1.

32 MPI_Wait (&request, MPI_STATUS_IGNORE);
33 MPI_Finalize();

= SCITAS P. Antolin 20 / 30

Non-blocking send/receive
L=y = L=
EPFL

m MPI_Waitall, MPI_Testall waits or tests completion of all the pending requests.
m MPI_Waitany, MPI_Testany waits or tests completion of one out of many.

m MPI_Waitsome, MPI_Testsome waits or tests completion of all the specified
requests.

m For arrays of statuses can use MPI_STATUSES_IGNORE.

m MPI_Request_get_status equivalent to MPI_Test but does not free completed
requests.

W SCITAS P. Antolin 21 /30

Probing
=PrL

1 int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
<» MPI_Status *status);

2
3 int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status
— kstatus);

m Check incoming messages without receiving.
m Immediate variant returns true if matching message exists.

m Can be used in combination with a successive MPI_Get_count for
deducing the size of an incoming message before actually recieving it.
Thus, we can allocate a buffer for holding the message.

W SCITAS P. Antolin 22 /30

- P.: L Collect_lve_ communications
LI Synchronization

1 int MPI_Barrier (MPI_Comm comm) ;

m Collective communications must be called by all processes in the communicator.
m Barrier is hard synchronization.

m Avoid as much as possible.

W SCITAS P. Antolin 23 / 30

—pr- Collective communications

1 int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int
<> sender, MPI_Comm comm);

m The sender process sends data to every other process.

P, I
Py
P
P

W SCITAS P. Antolin 24 / 30

—pr- Collective communications

1 int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int
<> sender, MPI_Comm comm);

m The sender process sends data to every other process.

py [
r O
r, EEE
P, I

W SCITAS P. Antolin 24 / 30

EP

- L Collective communications
I Scatter

= SCITAS

1 int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype
— sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
— int sender, MPI_Comm comm);

m The sender process sends a piece of the data to all processes.

m The sendbuf, sendcount, and sendtype are only relevant on the sender.

P. Antolin

P [ITTEERTTTTT]

Py

P,
P3

25 / 30

—pr- Collective communications

1 int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype
— sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
— int sender, MPI_Comm comm);

m The sender process sends a piece of the data to all processes.

m The sendbuf, sendcount, and sendtype are only relevant on the sender.

P, [N
p NN
r,
Py [T

W SCITAS P. Antolin 25 / 30

—pr- Collective communications

1 int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype
— sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
— int receiver, MPI_Comm comm) ;

m Every process sends its data to the receiver process.
m The recvbuf, recvcount, and recvtype are only relevant on the receiver.
m recvcount is the size per process, not the total size.

Py [T

p NN

r,

p; O

W SCITAS P. Antolin 26 / 30

EP

- L Collective communications
! Gather

= SCITAS

1 int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype
— sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
— int receiver, MPI_Comm comm) ;

m Every process sends its data to the receiver process.

m The recvbuf, recvcount, and recvtype are only relevant on the receiver.

m recvcount is the size per process, not the total size.

P. Antolin

P [ITTEERTTTTT]

Py

P,
P3

26 / 30

—pr- Collective communications
LP' L Gather to all

1 int MPI_Allgather(const void *sendbuf, int sendcount, MPI_Datatype
— sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
< MPI_Comm comm) ;

m Every process sends its data to all the other processes.

r, N
r NN
pr, O
p; [

W SCITAS P. Antolin 27 / 30

—pr- Collective communications
LP' L Gather to all

1 int MPI_Allgather(const void *sendbuf, int sendcount, MPI_Datatype
— sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
< MPI_Comm comm) ;

m Every process sends its data to all the other processes.

P ITEEECTTT 1]
P OOTEEETTITIT]
P (IR TTTIT]
Py [TT TR TTTIT]

W SCITAS P. Antolin 27 / 30

.=P.=L Collective communications
LI All to all gather/scatter

1 int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype
— sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
< MPI_Comm comm) ;

m Every process sends a piece of its data to all the other processes.

B LTI
A [ITTTTTITTTT]
P I TTTTTITITT]
By [T TTTTTTTTT]

W SCITAS P. Antolin 28 / 30

.=P.=L Collective communications
LI All to all gather/scatter

1 int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype
— sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
< MPI_Comm comm) ;

m Every process sends a piece of its data to all the other processes.

A TEEETTTI1]
P TR TTTIT]
P (IR TTTIT]
Py (TR TTTIT]

W SCITAS P. Antolin 28 / 30

.=P.=L Collective communications
LI Reduction

1 int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
< MPI_Datatype datatype, MPI_Op op, int receiver, MPI_Comm comm) ;

Data from all processes are reduced on the receiver process.
m Common operations being MPI_SUM, MPI_MAX, MPI_MIN, MPI_PROD.

A MPI_Allreduce variant exists where all processes get the results.

=
m MPI_IN_PLACE can be passed to sendbuf of receiver, for reduce, and of all
processes, for allreduce. P, I
. OEE
P, [N
P, I

W SCITAS P. Antolin 29 / 30

.=P.=L Collective communications
LI Reduction

1 int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
< MPI_Datatype datatype, MPI_Op op, int receiver, MPI_Comm comm) ;

Data from all processes are reduced on the receiver process.
m Common operations being MPI_SUM, MPI_MAX, MPI_MIN, MPI_PROD.
A MPI_Allreduce variant exists where all processes get the results.

MPI_IN_PLACE can be passed to sendbuf of receiver, for reduce, and of all
processes, for allreduce. P, I

A [OFE
p, [N
p; [

W SCITAS P. Antolin

29 / 30

.=P.=L Collective communications
LI Reduction

1 int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
< MPI_Datatype datatype, MPI_Op op, int receiver, MPI_Comm comm) ;

Data from all processes are reduced on the receiver process.
m Common operations being MPI_SUM, MPI_MAX, MPI_MIN, MPI_PROD.
A MPI_Allreduce variant exists where all processes get the results.

MPI_IN_PLACE can be passed to sendbuf of receiver, for reduce, and of all
processes, for allreduce. P, I
P,

Py
P3

W SCITAS P. Antolin 29 / 30

EPFL Collective communications
Partial reductions

1 int MPI_Scan(const void *sendbuf, void *recvbuf, int count,
— MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);

2

3 int MPI_Exscan(const void *sendbuf, void *recvbuf, int count,
<~ MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);

Performs the prefix reduction on data.

MPI_Scan: on process i contains the reduction of values from processes [0, /]

MPI_Exscan: on process i contains the reduction of values from processes [0, i[.

m MPI_IN_PLACE can be passed to sendbuf.

W SCITAS P. Antolin 30 / 30

	Message Passing Interface (MPI)
	Introduction
	MPI environment
	Terminology
	Blocking point-to-point communications
	Non-blocking point-to-point communications
	Collective communications

