
MATH-454 Parallel and High Performance Computing
Lecture 4: MPI basics

Pablo Antolin
Slides of N. Richart, E. Lanti, V. Keller’s lecture notes

March 20 2025



Message Passing Interface (MPI)



MPI
Goals of this section

Introduce distributed memory programming paradigm.
Point-to-point communications.
Collective communications.

P. Antolin 3 / 30



Reminder
Shared memory

P. Antolin 4 / 30



Reminder
Distributed memory

P0

M0

P1

M1

. . .
PN

MN

network or switch

P. Antolin 5 / 30



MPI
Overview and goals of MPI

MPI is a Message-Passing Interface specification.
There are many implementations (Intel MPI, OpenMPI, MPICH, MVAPICH, etc.)
Library interface, not a programming language.
It is standarized:
▶ Defined by the MPI forum
▶ Current version is MPI 4.1

As such, it is portable, flexible, and efficient.
Interface to C and Fortran in standard. C interface usable with C++. Also MPI
bindings for other languages (Python, Julia, MATLAB, etc.).

P. Antolin 6 / 30

https://www.mpi-forum.org/


MPI
A simple hello world example

mpi/hello_mpi.cc

1 # include <iostream>
2 # include <mpi.h>
3

4 int main(int argc, char *argv[]) {
5 MPI_Init(&argc, &argv);
6

7 int size, rank;
8 MPI_Comm_size(MPI_COMM_WORLD, &size);
9 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

10

11 std::cout << "I am process " << rank << " out of " << size <<
std::endl;↪→

12

13 MPI_Finalize();
14 return 0;
15 }

P. Antolin 7 / 30



Environment

MPI code is bounded by a MPI_Init and a MPI_Finalize.
MPI starts N processes numbered 0, 1, . . . ,N − 1.
The number of every process is usually denoted as rank.
They are grouped in a communicator of size N.
After init, MPI provides a default communicator called MPI_COMM_WORLD.

0 1

2

3

4

5

MPI_COMM_WORLD

P. Antolin 8 / 30



Types of communications in MPI

Point-to-Point (One-to-One).
Collectives (One-to-All, All-to-One, All-to-All).
One-sided/Shared memory (One-to . . . ).
Blocking and Non-Blocking of all types.

P. Antolin 9 / 30



Send/Receive

Syntax

1 int MPI_Ssend(const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm);↪→

2

3 int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status);↪→

buf: pointer to the data to send/receive.
count: number of elements to send/receive.
datatype: datatype of the data to send/receive.
dest, source: the rank of the destination/source of the communication.
tag: a message tag to differentiate the communications.
comm: communicator in which the communication happens.
status: object containing information on the communication.

P. Antolin 10 / 30



Send/Receive
Details on the buffer

Buffer is a pointer to the first data (buf), a size (count), and a datatype.
Datatypes (extract):
▶ MPI_INT
▶ MPI_UNSIGNED
▶ MPI_FLOAT
▶ MPI_DOUBLE

For std::vector<double> vect:
▶ buf = vect.data()
▶ count = vect.size()
▶ datatype = MPI_DOUBLE

P. Antolin 11 / 30



Send/Receive
Useful constants and status

Constants:
MPI_STATUS_IGNORE: to state that the status is ignored.
MPI_PROC_NULL: placeholder for the source or destination.
MPI_ANY_SOURCE: is a wildcard for the source of a receive.
MPI_ANY_TAG: is a wildcard for the tag of a receive.

MPI_Status:
Structure containing tag and source

1 MPI_Status status;
2 std::cout << "Tag: " << status.tag << " - Source: " <<

status.source << std::endl;↪→

Size of the received buffer can be asked using the status:

1 int MPI_Get_count(const MPI_Status *status, MPI_Datatype
datatype, int *count);↪→ P. Antolin 12 / 30



Send/Receive
Example

mpi/send_recv.cc

16 MPI_Init(NULL, NULL);
17 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
18 MPI_Comm_size(MPI_COMM_WORLD, &size);
19

20 assert(size == 2 && "Works only with 2 procs");
21

22 int tag = 0;
23

24 if (rank == 0) {
25 fill_buffer(buf);
26 MPI_Ssend(buf.data(), buf.size(), MPI_INT, 1, tag, MPI_COMM_WORLD);
27 } else if (rank == 1) {
28 MPI_Recv(buf.data(), buf.size(), MPI_INT, 0, tag, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);↪→

29 }
30

31 MPI_Finalize();

Rank 0 Rank 1

send(1,0) −→ recv(0,0)

finalize() finalize()

P. Antolin 13 / 30



Send/Receive
Example

Rank 0 Rank 1

send(1,0) −→ recv(0,0)

finalize() finalize()

P. Antolin 13 / 30



Send/Receive
Send variants

MPI_Ssend: (S for Synchronous) function returns when other end posted matching
recv and the buffer can be safely reused.
MPI_Bsend: (B for Buffer) function returns immediately, send buffer can be reused
immediately.
MPI_Rsend: (R for Ready) can be used only when a receive is already listening
(waiting).
MPI_Send: acts like MPI_Bsend on small arrays, and like MPI_Ssend on bigger
ones.

Be careful with deadlocks and race conditions!!

P. Antolin 14 / 30



Send/Receive
Send variants

MPI_Ssend: (S for Synchronous) function returns when other end posted matching
recv and the buffer can be safely reused.
MPI_Bsend: (B for Buffer) function returns immediately, send buffer can be reused
immediately.
MPI_Rsend: (R for Ready) can be used only when a receive is already listening
(waiting).
MPI_Send: acts like MPI_Bsend on small arrays, and like MPI_Ssend on bigger
ones.

Be careful with deadlocks and race conditions!!

P. Antolin 14 / 30



Send/Receive
Deadlock example

mpi/send_recv_deadlock.cc

25 assert(size == 2 && "Works only with 2 procs");
26 int tag = 0;
27

28 if (rank == 0)
29 {
30 fill_buffer(buf);
31 MPI_Ssend(buf.data(), buf.size(), MPI_INT, 1, tag, MPI_COMM_WORLD);
32 MPI_Recv(buf.data(), buf.size(), MPI_INT, 1, tag, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);↪→

33 }
34 else if (rank == 1)
35 {
36 MPI_Ssend(buf.data(), buf.size(), MPI_INT, 0, tag, MPI_COMM_WORLD);
37 MPI_Recv(buf.data(), buf.size(), MPI_INT, 0, tag, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);↪→

38 }
39

P. Antolin 15 / 30



Send/Receive
Deadlock example

Rank 0 Rank 1

send(1,0) send(0,0)

barrier! barrier!

P. Antolin 15 / 30



Send/Receive
Deadlock example - 2

mpi/send_recv_deadlock_2.cc

16 MPI_Init(NULL, NULL);
17 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
18 MPI_Comm_size(MPI_COMM_WORLD, &size);
19

20 // Let's now assume that we may have 2 or more processes.
21 int tag = 0;
22

23 if (rank == 0) {
24 fill_buffer(buf);
25 MPI_Ssend(buf.data(), buf.size(), MPI_INT, 1, tag, MPI_COMM_WORLD);
26 } else {
27 MPI_Recv(buf.data(), buf.size(), MPI_INT, 0, tag, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);↪→

28 }
29 MPI_Finalize();

P. Antolin 16 / 30



Send/Receive
Deadlock example - 2

With 2 processes:
Rank 0 Rank 1

send(1,0) −→ recv(0,0)

finalize() finalize()

P. Antolin 16 / 30



Send/Receive
Deadlock example - 2

With 3 processes:
Rank 0 Rank 1 Rank 2

send(1,0) −→ recv(0,0) recv(0,0)

finalize() finalize() barrier!

P. Antolin 16 / 30



Send/Receive
Combined send-receive

Syntax

1 int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, int dest, int sendtag, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,
MPI_Status *status);

↪→

↪→

↪→

Combines a send and a receive, to help mitigate deadlocks.
Has a in-place variant MPI_Sendrecv_replace.

P. Antolin 17 / 30



Non-blocking send/receive

Syntax

1 int MPI_Isend(const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request);↪→

2

3 int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request);↪→

I for immediate.
request in addition to parameters from blocking version.
It is an object attached to the communication.
Receive does not have a status.
The communication starts but is not completed.
S, B, and R variants are also defined.

P. Antolin 18 / 30



Non-blocking send/receive
Completion

Syntax

1 int MPI_Wait(MPI_Request *request, MPI_Status *status);
2

3 int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status);

For non-blocking communications, completion should be “manually” checked.
MPI_Test or MPI_Wait.
Send completed means the buffer can be reused.
Receive completed means the buffer can be read.
status is set at completion.
flag is true if completed, false otherwise.

P. Antolin 19 / 30



ISend/Receive
Example

mpi/isend_recv.cc

22 MPI_Request request;
23 if (rank == 0) {
24 fill_buffer(buf);
25 MPI_Isend(buf.data(), buf.size(), MPI_INT, 1, 0, MPI_COMM_WORLD,

&request);↪→

26 } else if (rank == 1) {
27 MPI_Recv(buf.data(), buf.size(), MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);↪→

28 }
29

30 // While MPI communications are performed here I can do computations as
long as buf is not modified in rank 0, or read/modified in rank 1.↪→

31

32 MPI_Wait(&request, MPI_STATUS_IGNORE);
33 MPI_Finalize();

P. Antolin 20 / 30



Non-blocking send/receive
Multiple completions

MPI_Waitall, MPI_Testall waits or tests completion of all the pending requests.
MPI_Waitany, MPI_Testany waits or tests completion of one out of many.
MPI_Waitsome, MPI_Testsome waits or tests completion of all the specified
requests.
For arrays of statuses can use MPI_STATUSES_IGNORE.
MPI_Request_get_status equivalent to MPI_Test but does not free completed
requests.

P. Antolin 21 / 30



Probing

Syntax

1 int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
MPI_Status *status);↪→

2

3 int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status
*status);↪→

Check incoming messages without receiving.
Immediate variant returns true if matching message exists.
Can be used in combination with a successive MPI_Get_count for
deducing the size of an incoming message before actually recieving it.
Thus, we can allocate a buffer for holding the message.

P. Antolin 22 / 30



Collective communications
Synchronization

Syntax

1 int MPI_Barrier(MPI_Comm comm);

Collective communications must be called by all processes in the communicator.
Barrier is hard synchronization.
Avoid as much as possible.

P. Antolin 23 / 30



Collective communications
Broadcast

Syntax

1 int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int
sender, MPI_Comm comm);↪→

The sender process sends data to every other process.

P. Antolin 24 / 30



Collective communications
Broadcast

Syntax

1 int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int
sender, MPI_Comm comm);↪→

The sender process sends data to every other process.

P. Antolin 24 / 30



Collective communications
Scatter

Syntax

1 int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
int sender, MPI_Comm comm);

↪→

↪→

The sender process sends a piece of the data to all processes.
The sendbuf, sendcount, and sendtype are only relevant on the sender.

P. Antolin 25 / 30



Collective communications
Scatter

Syntax

1 int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
int sender, MPI_Comm comm);

↪→

↪→

The sender process sends a piece of the data to all processes.
The sendbuf, sendcount, and sendtype are only relevant on the sender.

P. Antolin 25 / 30



Collective communications
Gather

Syntax

1 int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
int receiver, MPI_Comm comm);

↪→

↪→

Every process sends its data to the receiver process.
The recvbuf, recvcount, and recvtype are only relevant on the receiver.
recvcount is the size per process, not the total size.

P. Antolin 26 / 30



Collective communications
Gather

Syntax

1 int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
int receiver, MPI_Comm comm);

↪→

↪→

Every process sends its data to the receiver process.
The recvbuf, recvcount, and recvtype are only relevant on the receiver.
recvcount is the size per process, not the total size.

P. Antolin 26 / 30



Collective communications
Gather to all

Syntax

1 int MPI_Allgather(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm);

↪→

↪→

Every process sends its data to all the other processes.

P. Antolin 27 / 30



Collective communications
Gather to all

Syntax

1 int MPI_Allgather(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm);

↪→

↪→

Every process sends its data to all the other processes.

P. Antolin 27 / 30



Collective communications
All to all gather/scatter

Syntax

1 int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm);

↪→

↪→

Every process sends a piece of its data to all the other processes.

P. Antolin 28 / 30



Collective communications
All to all gather/scatter

Syntax

1 int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm);

↪→

↪→

Every process sends a piece of its data to all the other processes.

P. Antolin 28 / 30



Collective communications
Reduction

Syntax

1 int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int receiver, MPI_Comm comm);↪→

Data from all processes are reduced on the receiver process.
Common operations being MPI_SUM, MPI_MAX, MPI_MIN, MPI_PROD.
A MPI_Allreduce variant exists where all processes get the results.
MPI_IN_PLACE can be passed to sendbuf of receiver, for reduce, and of all
processes, for allreduce.

P. Antolin 29 / 30



Collective communications
Reduction

Syntax

1 int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int receiver, MPI_Comm comm);↪→

Data from all processes are reduced on the receiver process.
Common operations being MPI_SUM, MPI_MAX, MPI_MIN, MPI_PROD.
A MPI_Allreduce variant exists where all processes get the results.
MPI_IN_PLACE can be passed to sendbuf of receiver, for reduce, and of all
processes, for allreduce.

P. Antolin 29 / 30



Collective communications
Reduction

Syntax

1 int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int receiver, MPI_Comm comm);↪→

Data from all processes are reduced on the receiver process.
Common operations being MPI_SUM, MPI_MAX, MPI_MIN, MPI_PROD.
A MPI_Allreduce variant exists where all processes get the results.
MPI_IN_PLACE can be passed to sendbuf of receiver, for reduce, and of all
processes, for allreduce.

P. Antolin 29 / 30



Collective communications
Partial reductions

Syntax

1 int MPI_Scan(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);↪→

2

3 int MPI_Exscan(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);↪→

Performs the prefix reduction on data.
MPI_Scan: on process i contains the reduction of values from processes [0, i ]
MPI_Exscan: on process i contains the reduction of values from processes [0, i [.
MPI_IN_PLACE can be passed to sendbuf.

P. Antolin 30 / 30


	Message Passing Interface (MPI)
	Introduction
	MPI environment
	Terminology
	Blocking point-to-point communications
	Non-blocking point-to-point communications
	Collective communications


