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Message Passing Interface (MPI)



MPI
Goals of this section

Introduce distributed memory programming paradigm.
Point-to-point communications.
Collective communications.
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Reminder
Shared memory
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Reminder
Distributed memory

P0

M0

P1

M1

. . .
PN

MN

network or switch

P. Antolin 5 / 30



MPI
Overview and goals of MPI

MPI is a Message-Passing Interface specification.
There are many implementations (Intel MPI, OpenMPI, MPICH, MVAPICH, etc.)
Library interface, not a programming language.
It is standarized:
▶ Defined by the MPI forum
▶ Current version is MPI 4.1

As such, it is portable, flexible, and efficient.
Interface to C and Fortran in standard. C interface usable with C++. Also MPI
bindings for other languages (Python, Julia, MATLAB, etc.).
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MPI
A simple hello world example

mpi/hello_mpi.cc

1 # include <iostream>
2 # include <mpi.h>
3

4 int main(int argc, char *argv[]) {
5 MPI_Init(&argc, &argv);
6

7 int size, rank;
8 MPI_Comm_size(MPI_COMM_WORLD, &size);
9 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

10

11 std::cout << "I am process " << rank << " out of " << size <<
std::endl;↪→

12

13 MPI_Finalize();
14 return 0;
15 }
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Environment

MPI code is bounded by a MPI_Init and a MPI_Finalize.
MPI starts N processes numbered 0, 1, . . . ,N − 1.
The number of every process is usually denoted as rank.
They are grouped in a communicator of size N.
After init, MPI provides a default communicator called MPI_COMM_WORLD.
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MPI_COMM_WORLD
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Types of communications in MPI

Point-to-Point (One-to-One).
Collectives (One-to-All, All-to-One, All-to-All).
One-sided/Shared memory (One-to . . . ).
Blocking and Non-Blocking of all types.
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Send/Receive

Syntax

1 int MPI_Ssend(const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm);↪→

2

3 int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status);↪→

buf: pointer to the data to send/receive.
count: number of elements to send/receive.
datatype: datatype of the data to send/receive.
dest, source: the rank of the destination/source of the communication.
tag: a message tag to differentiate the communications.
comm: communicator in which the communication happens.
status: object containing information on the communication.
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Send/Receive
Details on the buffer

Buffer is a pointer to the first data (buf), a size (count), and a datatype.
Datatypes (extract):
▶ MPI_INT
▶ MPI_UNSIGNED
▶ MPI_FLOAT
▶ MPI_DOUBLE

For std::vector<double> vect:
▶ buf = vect.data()
▶ count = vect.size()
▶ datatype = MPI_DOUBLE
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Send/Receive
Useful constants and status

Constants:
MPI_STATUS_IGNORE: to state that the status is ignored.
MPI_PROC_NULL: placeholder for the source or destination.
MPI_ANY_SOURCE: is a wildcard for the source of a receive.
MPI_ANY_TAG: is a wildcard for the tag of a receive.

MPI_Status:
Structure containing tag and source

1 MPI_Status status;
2 std::cout << "Tag: " << status.tag << " - Source: " <<

status.source << std::endl;↪→

Size of the received buffer can be asked using the status:

1 int MPI_Get_count(const MPI_Status *status, MPI_Datatype
datatype, int *count);↪→ P. Antolin 12 / 30



Send/Receive
Example

mpi/send_recv.cc

16 MPI_Init(NULL, NULL);
17 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
18 MPI_Comm_size(MPI_COMM_WORLD, &size);
19

20 assert(size == 2 && "Works only with 2 procs");
21

22 int tag = 0;
23

24 if (rank == 0) {
25 fill_buffer(buf);
26 MPI_Ssend(buf.data(), buf.size(), MPI_INT, 1, tag, MPI_COMM_WORLD);
27 } else if (rank == 1) {
28 MPI_Recv(buf.data(), buf.size(), MPI_INT, 0, tag, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);↪→

29 }
30

31 MPI_Finalize();

Rank 0 Rank 1

send(1,0) −→ recv(0,0)

finalize() finalize()
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Send/Receive
Example

Rank 0 Rank 1

send(1,0) −→ recv(0,0)

finalize() finalize()
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Send/Receive
Send variants

MPI_Ssend: (S for Synchronous) function returns when other end posted matching
recv and the buffer can be safely reused.
MPI_Bsend: (B for Buffer) function returns immediately, send buffer can be reused
immediately.
MPI_Rsend: (R for Ready) can be used only when a receive is already listening
(waiting).
MPI_Send: acts like MPI_Bsend on small arrays, and like MPI_Ssend on bigger
ones.

Be careful with deadlocks and race conditions!!
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Send/Receive
Deadlock example

mpi/send_recv_deadlock.cc

25 assert(size == 2 && "Works only with 2 procs");
26 int tag = 0;
27

28 if (rank == 0)
29 {
30 fill_buffer(buf);
31 MPI_Ssend(buf.data(), buf.size(), MPI_INT, 1, tag, MPI_COMM_WORLD);
32 MPI_Recv(buf.data(), buf.size(), MPI_INT, 1, tag, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);↪→

33 }
34 else if (rank == 1)
35 {
36 MPI_Ssend(buf.data(), buf.size(), MPI_INT, 0, tag, MPI_COMM_WORLD);
37 MPI_Recv(buf.data(), buf.size(), MPI_INT, 0, tag, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);↪→

38 }
39
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Send/Receive
Deadlock example

Rank 0 Rank 1

send(1,0) send(0,0)

barrier! barrier!
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Send/Receive
Deadlock example - 2

mpi/send_recv_deadlock_2.cc

16 MPI_Init(NULL, NULL);
17 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
18 MPI_Comm_size(MPI_COMM_WORLD, &size);
19

20 // Let's now assume that we may have 2 or more processes.
21 int tag = 0;
22

23 if (rank == 0) {
24 fill_buffer(buf);
25 MPI_Ssend(buf.data(), buf.size(), MPI_INT, 1, tag, MPI_COMM_WORLD);
26 } else {
27 MPI_Recv(buf.data(), buf.size(), MPI_INT, 0, tag, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);↪→

28 }
29 MPI_Finalize();
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Send/Receive
Deadlock example - 2

With 2 processes:
Rank 0 Rank 1

send(1,0) −→ recv(0,0)

finalize() finalize()
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Send/Receive
Deadlock example - 2

With 3 processes:
Rank 0 Rank 1 Rank 2

send(1,0) −→ recv(0,0) recv(0,0)

finalize() finalize() barrier!
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Send/Receive
Combined send-receive

Syntax

1 int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, int dest, int sendtag, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,
MPI_Status *status);

↪→

↪→

↪→

Combines a send and a receive, to help mitigate deadlocks.
Has a in-place variant MPI_Sendrecv_replace.
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Non-blocking send/receive

Syntax

1 int MPI_Isend(const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request);↪→

2

3 int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Request *request);↪→

I for immediate.
request in addition to parameters from blocking version.
It is an object attached to the communication.
Receive does not have a status.
The communication starts but is not completed.
S, B, and R variants are also defined.
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Non-blocking send/receive
Completion

Syntax

1 int MPI_Wait(MPI_Request *request, MPI_Status *status);
2

3 int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status);

For non-blocking communications, completion should be “manually” checked.
MPI_Test or MPI_Wait.
Send completed means the buffer can be reused.
Receive completed means the buffer can be read.
status is set at completion.
flag is true if completed, false otherwise.
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ISend/Receive
Example

mpi/isend_recv.cc

22 MPI_Request request;
23 if (rank == 0) {
24 fill_buffer(buf);
25 MPI_Isend(buf.data(), buf.size(), MPI_INT, 1, 0, MPI_COMM_WORLD,

&request);↪→

26 } else if (rank == 1) {
27 MPI_Recv(buf.data(), buf.size(), MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);↪→

28 }
29

30 // While MPI communications are performed here I can do computations as
long as buf is not modified in rank 0, or read/modified in rank 1.↪→

31

32 MPI_Wait(&request, MPI_STATUS_IGNORE);
33 MPI_Finalize();
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Non-blocking send/receive
Multiple completions

MPI_Waitall, MPI_Testall waits or tests completion of all the pending requests.
MPI_Waitany, MPI_Testany waits or tests completion of one out of many.
MPI_Waitsome, MPI_Testsome waits or tests completion of all the specified
requests.
For arrays of statuses can use MPI_STATUSES_IGNORE.
MPI_Request_get_status equivalent to MPI_Test but does not free completed
requests.
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Probing

Syntax

1 int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
MPI_Status *status);↪→

2

3 int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status
*status);↪→

Check incoming messages without receiving.
Immediate variant returns true if matching message exists.
Can be used in combination with a successive MPI_Get_count for
deducing the size of an incoming message before actually recieving it.
Thus, we can allocate a buffer for holding the message.
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Collective communications
Synchronization

Syntax

1 int MPI_Barrier(MPI_Comm comm);

Collective communications must be called by all processes in the communicator.
Barrier is hard synchronization.
Avoid as much as possible.
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Collective communications
Broadcast

Syntax

1 int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int
sender, MPI_Comm comm);↪→

The sender process sends data to every other process.
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Collective communications
Scatter

Syntax

1 int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
int sender, MPI_Comm comm);

↪→

↪→

The sender process sends a piece of the data to all processes.
The sendbuf, sendcount, and sendtype are only relevant on the sender.
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Collective communications
Gather

Syntax

1 int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
int receiver, MPI_Comm comm);

↪→

↪→

Every process sends its data to the receiver process.
The recvbuf, recvcount, and recvtype are only relevant on the receiver.
recvcount is the size per process, not the total size.
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Collective communications
Gather to all

Syntax

1 int MPI_Allgather(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm);

↪→

↪→

Every process sends its data to all the other processes.
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Collective communications
All to all gather/scatter

Syntax

1 int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm);

↪→

↪→

Every process sends a piece of its data to all the other processes.
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Collective communications
Reduction

Syntax

1 int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int receiver, MPI_Comm comm);↪→

Data from all processes are reduced on the receiver process.
Common operations being MPI_SUM, MPI_MAX, MPI_MIN, MPI_PROD.
A MPI_Allreduce variant exists where all processes get the results.
MPI_IN_PLACE can be passed to sendbuf of receiver, for reduce, and of all
processes, for allreduce.
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Collective communications
Partial reductions

Syntax

1 int MPI_Scan(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);↪→

2

3 int MPI_Exscan(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);↪→

Performs the prefix reduction on data.
MPI_Scan: on process i contains the reduction of values from processes [0, i ]
MPI_Exscan: on process i contains the reduction of values from processes [0, i [.
MPI_IN_PLACE can be passed to sendbuf.
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