h . ’4 } . ¥ 7
| : * |1‘ ’ i 4
I i B i
: ‘ . I ;
' - ‘ 4 | g
| d ‘ |3
* 3 } ‘ L
! *‘. | [s
’ [1 B R :
[} . : : i
! { o ’ ; ‘
EIR Y :
([*’r | , !
| | . L | - L]

} 2 (N | I | N
MATH 454 ParaIIeI and ngh Performance Computing

Lecture 1: Execution in an HPC environment

Pablo Antolin
Slides of N. Richart, E. Lanti, V. Keller’s lecture notes
February 27 2025

m SCITAS

Today exercise session
m What is a cluster.
= How to connect to a cluster (any remote machine).

m How to compile codes and use libraries.

How to submit job on a cluster.
How to use GIT

W SCITAS P. Antolin 2 /52

Getting your accounts

groups.epfl.ch
If you are not in the group hpc-math454 let me know

W SCITAS P. Antolin 3 /52

What is a cluster?

User

W SCITAS P. Antolin 4 /52

What is a cluster?

Compute nodes (back-end)

T _| ——\
= = =
T R I
= = =
T R I
- /

W SCITAS P. Antolin 4 /52

What is a cluster?

Scheduler

{m—ct)

J' Compute nodes (back-end)
N

User

/

W SCITAS P. Antolin 4 /52

What is a cluster?

Scheduler

Login nodes (font-end)

’ Compute nodes (back-end)

\ lu~u“luuu“lun\nu\u“

o /

W SCITAS P. Antolin 4 /52

What is a cluster?

Scheduler

HPC - cluster

Login nodes (font-end)

\ ‘“mmm-mm..nmm.

Cluster filesystem: El El
ratch
/scratc —

User

- J

W SCITAS P. Antolin 4 /52

What is a cluster?
=PFL

Shared filesystems: Scheduler
/home
fwork HPC - cluster
Login nodes (font-end)
Cluster filesystem: El El
/scratch
[—]a 1) (m—c

User

- J

W SCITAS P. Antolin 4 /52

EPFL EPFL clusters

Login Hosts Cores RAM Network
hostname # #xGHz GB Gbit/s

helvetios.hpc.epfl.ch 287 36x2.3 192 100 (IB)

jed.hpc.epfl.ch 375 72x2.4 512 Ethernet
42 T72x2.4 1024 Ethernet
2 T2x2.4 2048 Ethernet

W SCITAS P. Antolin 5 /52

EPFL EPFL clusters

Login Hosts Cores RAM Network
hostname # #xGHz GB Gbit/s

izar.hpc.epfl.ch 35 40x2.1 192 2x100 (IB)
+ 2x NVidia V100 7TFlops
35 40x2.1 384 100 (IB)
+ 4x NVidia V100 7.8TFlops
2 40x2.1 768 100 (IB)
+ 4x NVidia V100 7.8TFlops

W SCITAS P. Antolin 5 /52

EP

= SCITAS

EPFL clusters

Login

hostname

Hosts Cores RAM Network

#xGHz GB Gbit/s

kuma.hpc.epfl.ch

84 32x27 384 2x200 (IB)
+ 4x NVidia H100 94 GB

20 32x27 384 2x200 (IB)
+ 8x NVidia L40S 48 GB

2 32x27 384 2x200 (IB)

P. Antolin

5/ 52

EPFL clusters storage

m The simulation data is written on the storage systems. At SCITAS:

» /home: store source files, input data, small files
» /work: collaboration space for a group
» /scratch: temporary huge result files

m Please, note that only /home and /work have backups!

m /scratch data can be erased at any moment!

W SCITAS P. Antolin 6 /52

Connecting to remote machines

First step

m Connect to a remote cluster to get a shell
m SSH: Secure SHell

How to use

$ ssh -1 <username> <hostname>
$ ssh <username>@<hostname>

W SCITAS P. Antolin 7 /52

Connecting to remote machines

First step

m Connect to a remote cluster to get a shell
m SSH: Secure SHell

How to use

$ ssh -1 <username> <hostname>
$ ssh <username>@<hostname>

For windows users
Just install git, and use git bash

W SCITAS P. Antolin 7 /52

Getting a remote shell

ssh connection
— El8
<username> m

T [\

W SCITAS P. Antolin 8 /52

Getting a remote shell

<password> ?

o8

P. Antolin 8 /52

Getting a remote shell

<password>

o8

P. Antolin 8 /52

Getting a remote shell

Shell
e |
1111

T [\

P. Antolin 8 /52

Exercise 1: Simple connection

To connect to the front node of a cluster |

$ ssh -1 jdoe helvetios.hpc.epfl.ch
$ ssh jdoe@helvetios.hpc.epfl.ch

Front nodes |

= helvetios [CPU (OpenMP/MPI)]
m izar [GPU (CUDA)]

m Connect to helvetios’ front node
m Check the different folders /home /scratch

W SCITAS P. Antolin 9 /52

Transferring files: using scp

scp works fine for Linux/MacOS, it is often pre-installed
On windows use GIT Bash or pscp.exe from Putty

W SCITAS P. Antolin 10 / 52

Exercise 2: Using scp

How to use scp/pscp.exe |

Send data to remote machine:

‘$ scp [-r] <local_path> <username>@<remote>:<remote_path> ’

Retrieve data from remote machine:

‘$ scp [-r] <username>@<remote>:<remote_path> <local_path> ’

Note: It is always easier to “send to” and “receive from” the clusters since they have a
fix ip/name

m Copy a file from your machine to the cluster.

= Modify the file (e.g., using vim or nano) and retrieve it from the cluster onto your

machine

W SCITAS P. Antolin 11 / 52

Getting a remote shell using keys

ssh connection
— 02
<username> m

W SCITAS P. Antolin 12 / 52

Getting a remote shell using keys

random message

108

—
— LY

W SCITAS P. Antolin 12 / 52

Getting a remote shell using keys

cypher message

o8

—————— [T\

Private
Key (0

W SCITAS P. Antolin 12 / 52

Getting a remote shell using keys

— 108

—————— LT

P. Antolin 12 / 52

Exercise 3: Connection using keys

m Generate a pair of public/private key using ssh-keygen.
m Copy the generated public key
m Try to connect (it should not ask your password)

m Same ssh key should be already working for helvetios, jed, and izar

Example

$ ssh-keygen -b 4096 -t rsa
[Follow instructions]
$ ssh-copy-id jdoe@helvetios.hpc.epfl.ch

W SCITAS P. Antolin 13 / 52

Transferring data using a GUI

sftp tones of GUIs, for example: Filezilla nttps://filezilla-project.org (“all”
OSes)
Cyberduck nttps://cyberduck.io/ (Windows and Mac)
Tunnelier https://bitvise.com/tunnelier (Windows)
TUIs also exists like Iftp

= SCITAS

14 / 52

https://filezilla-project.org
https://cyberduck.io/
https://bitvise.com/tunnelier

Connecting to a Remote Linux Machine with VS Code

It is common practice to use VS Code to edit code on remote machines just as if it was
your local machine.
Steps:
1. Install the "Remote - SSH" Extension
» Open VS Code
» Go to Extensions (Ctrl+Shift+X on Windows/Linux, Cmd+Shift+X on Mac)
» Search for "Remote - SSH" and install it
2. Open the Command Palette (Ctr1+Shift+P on Windows/Linux, Cmd+Shift+P on
Mac)
3. Select: Remote-SSH: Connect to Host...
4. Enter your remote machine details:
» Example: ssh username@helvetios.hpc.epfl.ch
5. Authenticate
» Enter your password or use an SSH key as shown before
6. Start coding!

W SCITAS P. Antolin 15 / 52

Using modules

What are modules
m A way to dynamically modify the environment

m The contain configurations to use an application/a library

How to use them
m module avail list all possible modules
= module load <module> load a module
= module unload <module> unload a module
= module purge unload all the modules
m module list list all loaded modules

m module spider <module> info about a module

W SCITAS P. Antolin 16 / 52

Exercise 4: Module command

m List all available modules
m Try g++4 --version

m | oad the module gcc

m Try again g++ --version
= Try icpc --version

m |oad the intel module
m Try again icpc --version

m List the currently loaded modules

W SCITAS P. Antolin 17 / 52

Exercise 5: Compilation

GCC:

‘$ g++ -o <executable> <sources> ’

Intel:

‘$ icpc -o <executable> <sources> ’

Compilation all-in-one |

If the compiler is given source code only it will do all the stages at once

m Load a compiler module

m Compile the code hello.cc

W SCITAS P. Antolin 18 / 52

Separated compilation

m Generate object files: compile

$ g++ -c file2.cc

$ g++ -c filel.cc |

Transform code file file?.cc in object file file?.0

m Generate the executable: linking

‘$ g++ -o hello filel.o file2.o ’

Transforms object file file?.0 in executable hello

W SCITAS P. Antolin 19 / 52

=pEL Compilation stages
i1 The four compilation steps

m Translation is made by a compiler in 4 steps
Preprocessing Format source code to make it ready for compilation (remove
comments, execute preprocessing directives such as #include, etc.)
Compiling Translate the source code (C, C++, Fortran, etc) into assembly, a
very basic CPU-dependent language
Assembly Translate the assembly into machine code and store it in object files
Linking Link all the object files into one executable

m |n practice, the first three steps are combined together and simply called
“compiling”

W SCITAS P. Antolin 20 / 52

Compilation stages
=PrL

The four compilation steps (visually)

Preprocessor
gcc -E file.c -o file.i

#include <stdio.h>
// This is my main function

int main(void) {
_ ~N // I declare i to be equal to 2
Compiler int i = 2;
gcc -S file.i -o file.s b
J
Assembler

External Library

gcc -c file.s -o file.o libexample.so

Linker

gcc file.o -lexample -o file

W SCITAS P. Antolin 21 / 52

Compilation stages
=PrL

The four compilation steps (visually)

Preprocessor
gcc -E file.c -o file.i)

[...]
extern int __uflow (FILE *);
extern int _ overflow (FILE *, int);

A N int main(void) {
Compiler int i=2:
gcc -S file.i -o file.s ¥
J
Assembler External Library
gcc -c file.s -o file.o libexample.so
Linker

gcc file.o -lexample -o file

W SCITAS P. Antolin 21 / 52

Compilation stages
=PrL

The four compilation steps (visually)

Preprocessor
gcc -E file.c -o file.i
J main:
.LFBO:
pushq %rbp
N movq %rsp, %rbp
A movl $2, -4(%rbp)
Compiler movl $0, %eax
gcc -S file.i -o file.%) popq %rbp
Assembler External Library
gcc -c file.s -o file.o libexample.so
Linker

gcc file.o -lexample -o file

W SCITAS P. Antolin 21 / 52

Compilation stages
=PrL

The four compilation steps (visually)

Preprocessor
gcc -E file.c -o file.i/
0000000000000000 <main>:
0: 55
1: 48 89 e5
R N 4: ¢7 45 fc 02 00 00 00
Compiler b: b8 00 00 00 00
gcc -S file.i -o file.s 10: 5d
J
Assembler External Library
gcc -c file.s -o file.o libexample.so

Linker
gcc file.o -lexample -o file

W SCITAS P. Antolin 21 / 52

Compilation stages
=PrL

The four compilation steps (visually)

<
Preprocessor m Note that in reality, everything is done
gcc -E file.c -o file.i
) transparently

$> gcc -c file_1.c

Compiler h $> gcc -c file_2.c
gCC-SfiR~i-0‘ﬁ1&§/ $> gcc file_1.0 file_2.0
— -lexample -0 exec

Assembler External Library
gcc -c file.s -o file.o libexample.so

Linker ,“/
gcc file.o -lexample -o file

W SCITAS P. Antolin 21 / 52

Exercise 6: Separated compilation

m Clone the repository
https://gitlab.epfl.ch/math454-phpc/exercises-2025
(you have to use your gaspar credentials)

— https://gitlab.epfl.ch/math454-phpc/exercises-2025.git

$ git clone |

You can clone it either in your local machine or in helvetios.

» If you clone it in your local machine, you have to copy the folders to
helvetios using scp.

m From helvetios, enter the folder hello-separated-files
m Generate hello.o and greetings.o

m Generate hello from hello.o greetings.o

W SCITAS P. Antolin 22 / 52

https://gitlab.epfl.ch/math454-phpc/exercises-2025

EPFL Makefiles

What is makefile |
m |t is a build automation system
m |t is a set of rules on how to produce an executable:

» what and how to compile?
» what and how to link?

= Rule for compiling

.cc.o:
$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c $<

= Rule for linking

$(EXE) : $(0BJS)
$(LD) -o $@ $(LDFLAGS) $(0BJS)

= SCIT/ P. Antolin 23}/ 52

m |llcace: make

Exercise 7: Makefiles

Enter the folder hello-makefile

Read the Makefile

Add the -Wall -Werror option to the compilation options
Compile the code

Modify the file greetings.cc as:

1 #2nclude <iostream>
2 #include "greetings.hh"

4 void greetings() {
5 int dummy;
6 std::cout << "Hello world !" << std::endl;

}

-

=somas m Compile the code P. Antolin 24 / 52

Generate a library

Two types of libraries static or shared

» static: archive of object file
» shared: library loaded dynamically at execution

Generate a shared library
Object files have to be compiled with -fPIC option

$ gt++ -o libgreetings.so -shared -fPIC greetings.o

m Link

$ gt++ -L<1lib path> -lgreetings -o <exec> <obj_1> ... <obj_n>

m Execute

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<1ib path> <exec>

= SCITAS PARTOlT 25 / 52

Build system

Real life project

For project a bit more consequent with multiple dependencies to external libraries,
usage of a build automation system

m CMake
m Autotools: configure
m SCons

W SCITAS P. Antolin 26 / 52

SLURM

fut

W SCITAS P. Antolin 27 / 52

1)

Sl

workload.manager

EPFL SChEdUIQI’

Shared filesystems:
/home
/work

Scheduler

HPC - cluster

Login nodes (font-end)

’ Compute nodes (back-end)

\ u-u“uu-mmummm

Cluster filesystem:
/scratch

User

£
- J

W SCITAS: P. Antolin 28 / 52

EPFL SChEdUIQI’

Shared filesystems:

Scheduler

/home
/work HPC - cluster
Su_bmlt Login nodes (font-end)
job

’ Compute nodes (back-end)

\ u-u“uu-mmummm

Cluster filesystem:
/scratch

User

£
- J

W SCITAS: P. Antolin 28 / 52

EPFL Scheduler

Shared filesystems:
/home
/work

Scheduler

HPC - cluster

Login nodes (font-end)

Schedule
job
J' Compute nodes (back-end) .
Cluster filesystem:
/scratch
User
£
N /)
W SCITAS: P. Antolin 28 / 52

EPFL SChEdUIQI’

Shared filesystems:
/home
/work

Scheduler

HPC - cluster

Login nodes (font-end)

’ Compute nodes (back-end)

Cluster filesystem:
/scratch

User

Run

W SCITAS: P. Antolin 28 / 52

SLURM

What is SLURM
m Simple Linux Utility for Resource Management
= Job scheduler

m Soda in Futurama

Basic commands
m sbatch submit a job to the queue
m salloc allocates resources

m squeue visualize the state of the queue

W SCITAS P. Antolin 29 / 52

SLURM: common options
=P L

SLURM options |

m -q / --qos=<QOS> sets the quality of service (affects the scheduling priority).
During the course set it to --qos=math-454

m -t / --time=<HH:MM:SS> set a limit on the total run time of the job
m -N / --nodes=<N> request that a minimum of N nodes be allocated to the job

m -n / --tasks=<n> advises SLURM that this job will launch a maximum of n, in
the MPI sense

m -c / --cpus-per-task=<ncpus> advises SLURM that job will require ncpus per
task

m --ntasks-per-node=<ntasks> number of tasks per node

= --mem=<size[units]> defines the quantity of memory per node requested

Need more help? Have a look at https://scitas-doc.epfl.ch and
= semashttps://slurm. schedmd. com/sbatchphtml, 30 /52

https://scitas-doc.epfl.ch
https://slurm.schedmd.com/sbatch.html

SLURM: common options
=PrL

Or you can put everything in a file, e.g.

mysimulation.job

#!/bin/bash -1

#SBATCH --qos=math-454
#SBATCH --time=01:10:00
#SBATCH --nodes=2
#SBATCH --ntasks=72

./myprogram

and submit the job

$ sbatch mysimulation. job

W SCITAS P. Antolin 31 /52

Exercise 8: SLURM: first commands

To list all your running jobs |

‘$ squeue -u <username> ’

To cancel a simulation |

‘$ scancel <jobid> ’

The <jobid> can be found using squeue

To allocate a node |

‘$ salloc --qos=math-454 --account=math-454 ’

W SCITAS P. Antolin 32 /52

Exercise 9: SLURM: first commands

m Check the queue state

m Allocate one node with QOS math-454

m Try srun hostname, we will see this command more in detail in later exercise
sessions

m Exit the allocation to not block resources: exit or Ctrl-d (IMPORTANT !!)

W SCITAS P. Antolin 33 /52

Exercise 10: SLURM: command sbatch

m Write a script that runs the hello world code

myscript.job

#!/bin/bash -1
./hello

m Try your script.
note: in general you should not try your codes on the front node

$ sh myscript.job

W SCITAS P. Antolin 34 / 52

Exercise 11: SLURM: command sbatch

m Submit your script with sbatch and adding the QOS

‘$ sbatch --qos=math-454 myscript.job ’

m Try

‘$ squeue -u <username> ’

= A file named slurm-<jobid>.out should have been created, check its content

W SCITAS P. Antolin 35 /52

Exercise 12: SLURM: command sbatch

m Add the QOS as an option directly in the script

myscript.job

#!/bin/bash -1
#SBATCH --gos=math-454
./hello

= Submit it again

$ sbatch myscript. job

W SCITAS P. Antolin 36 / 52

EPF

W SCITAS P. Antolin 37 / 52

“Versioning’: with Git

Git: the stupid content tracker
m Distributed revision control
m Originally developed by Linus Torvald
m Named after the egotistical bastard Linus

File versions DB
Version 3
+
Version 2
+

Version 1

T~

File
$
File versions DB File versions DB
—
Version 3 Version 3
+ '
Version 2 Version 2
+

+
Version 1 Version 1

W SCITAS P. Antolin

38 / 52

2025-02-27

MATH-454 Parallel and High Performance ComputingLecture

1: Execution in an HPC environment

| Basics on GIT :
I—”Versioning": with Git 1

Git means “unpleasant person”, “I'm an egotistical bastard, and | name all my projects after

myself. First 'Linux’, now 'git"."” — Linus

git clone
=PrL

REMOTE SERVER

[s Fus Nual

‘$ git clone <uri repo.git>

LOCAL SERVER
GIT DIRECTORY
STAGING AREA

WORKING DIRECTORY

W SCITAS P. Antolin 39 / 52

git clone

REMOTE SERVER

$ git clone <uri repo.git>

Cloning into '<repo>'...

remote: Counting objects: 6940, done.
remote: Total 6940 (delta 0), reused ...
Receiving objects: 100% (6940/6940),
Resolving deltas: 1007 (3286/3286), done.

CLONE

LOCAL SERVER
GIT DIRECTORY
STAGING AREA

WORKING DIRECTORY

W SCITAS P. Antolin 39 / 52

git clone

REMOTE SERVER

$ git clone <uri repo.git>

Cloning into '<repo>'...

remote: Counting objects: 6940, done.
remote: Total 6940 (delta 0), reused ...
Receiving objects: 100% (6940/6940),
Resolving deltas: 1007 (3286/3286), done.

CLONE

LOCAL SERVER
GIT DIRECTORY
STAGING AREA

WORKING DIRECTORY

W SCITAS P. Antolin 39 / 52

git status is your friend

$ git status

W SCITAS P. Antolin 40 / 52

git status is your friend

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.

nothing to commit, working tree clean

W SCITAS P. Antolin 40 / 52

Lets add a file: staging/commit

=N
o]

REMOTE SERVER

g
g
i
g

i
<

LOCAL SERVER
GIT DIRECTORY
STAGING AREA

WORKING DIRECTORY @

W SCITAS P. Antolin 41 / 52

D e

-~

Lets add a file: staging/commit

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.

Untracked files:
(use "git add <file>..." to include in what will be committed)

my_code.py

nothing added to commit but untracked files present

W SCITAS P. Antolin 41 / 52

Lets add a file: staging/commit

=G
REMOTE SERVER [T = [[IL|
i
i

ADD

$ git add <filename>

LOCAL SERVER
GIT DIRECTORY
STAGING AREA

~, [
e ‘o &

1_

WORKING DIRECTORY

W SCITAS P. Antolin 41 / 52

Lets add a file: staging/commit

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

new file: my_code.py

W SCITAS P. Antolin 41 / 52

Lets add a file: staging/commit

=N
o]

REMOTE SERVER

g
g
i
i

comit

‘$ git commit -m <message>

LOCAL SERVER
GIT DIRECTORY
STAGING AREA

~, [
! e!e ‘o &

WORKING DIRECTORY

W SCITAS P. Antolin 41 / 52

Lets add a file: staging/commit

$ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.
(use "git push" to publish your local commits)

nothing to commit, working tree clean

W SCITAS P. Antolin 41 / 52

Synchronizing with the remote server

REMOTE SERVER

CLONE

$ git clone <uri>

LOCAL SERVER
GIT DIRECTORY
STAGING AREA

WORKING DIRECTORY

W SCITAS P. Antolin 42 / 52

Synchronizing with the remote server

REMOTE SERVER

fanloaloalnsl

PUSH

$ git push

LOCAL SERVER
GIT DIRECTORY
STAGING AREA

WORKING DIRECTORY

W SCITAS P. Antolin 42 / 52

Synchronizing with the remote server

REMOTE SERVER

POLL

$ git pull

LOCAL SERVER
GIT DIRECTORY
STAGING AREA

WORKING DIRECTORY

W SCITAS P. Antolin 42 / 52

Exercise 13: First step with Git

If you do not have git installed, get it from https://git-scm.com/downloads or
from your package manager

Go on https://gitlab.epfl.ch/ and login with your EPFL account.

Once connected go on your user settings page (circle icon top left corner)

In the Preferences > SSH Keys > Add new key menu set your public ssh key.
This key will be used to connect to the git server through ssh.

W SCITAS P. Antolin 43 / 52

https://git-scm.com/downloads
https://gitlab.epfl.ch/

Exercise 14: First step with Git

git clone <repo url> [local name] | Clone a remote repository
git add <files...> | Stage modified/new files
git commit -m "comment" | Commit staged files

git pull | Pull and merge remote modifica-
tions

git push | Push the local modifications to the
remote server

git status | Check the local state

m Now you should be able to clone a repository
Either create a repository or clongit@gitlab.epfl.ch:math454-phpc/test-repo.git
m Create a file, use a filename that will not clash with the others
=scmas m Check the state of your working copyAntolin 44 /52

Collaborative work with potential problems

REMOTE SERVER

LOCAL SERVER
GIT DIRECTORY - 0 \ - 0 \

STAGING AREA

WORKING DIRECTORY @ \ E \

W SCITAS P. Antolin 45 / 52

Collaborative work with potential problems

REMOTE SERVER

ADD
comit

PUSH

$ git add <filename>
$ git commit -m <message>

LOCAL SERVER $ git push
GIT DIRECTORY - 0 \ ~— 0 \

STAGING AREA

WORKING DIRECTORY @ \ E \

W SCITAS P. Antolin 45 / 52

Collaborative work with potential problems

REMOTE SERVER

e
]

com
- -
posi &

LOCAL SERVER
SIT DIRECTORY (g
STAGING ARERA

WORKING DIRECTORY @

= SCITAS

\

!

P. Antolin

$ git add <filename>
$ git commit -m <message>
$ git push

45 / 52

Collaborative work with potential problems

$ git push

To <repo>

! [rejected] master -> master (fetch first)
error: failed to push some refs to '<repo>'

hint:

W SCITAS P. Antolin 45 / 52

Collaborative work with potential problems

REMOTE SERVER

POLL

$ git pull

LOCAL SERVER
GIT DIRECTORY
STAGING AREA

- Q)

WORKING DIRECTORY @ \ \

W SCITAS P. Antolin 45 / 52

Collaborative work with potential problems

$ git pull

remote: Counting objects: 3, done.

remote: Total 3 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

From <repo>

fe22d81..0bcfb99 master -> origin/master

Auto-merging my_code.py

CONFLICT (content): Merge conflict in my_code.py

Automatic merge failed; fix conflicts and then commit the result.

W SCITAS P. Antolin 45 / 52

Collaborative work with potential problems

$ git status

On branch master

Your branch and 'origin/master' have diverged,

and have 1 and 1 different commits each, respectively.
(use "git pull" to merge the remote branch into yours)

You have unmerged paths.
(fix conflicts and run "git commit")
(use "git merge --abort" to abort the merge)

Unmerged paths:

. . P. Antoli . 45 / 52
S (e Ted s odd @299 a0 e o Glig _n g) /

Collaborative work with potential problems

REMOTE SERVER

Correct the conflict:

= ¢

Rs,}i <<<LLLLLLL<L

One version
LOCAL SERVER ==========
GIT DIRECTORY T q
C Other version
STRAGING ARER © @\l SS>>>>55>>
WORKING DIRECTORY @ y @ y

W SCITAS P. Antolin 45 / 52

\

Collaborative work with potential problems

REMOTE SERVER

COMIT
PUSH

One version

LOCAL SERVER
GIT DIRECTORY
STAGING AREA

WORKING DIRECTORY @

W SCITAS P. Antolin 45 / 52

- ¢ ® $ g}t commit -a
$ git push

o

Exercise 15: Generate and solve conflicts

m Modify the file created in the previous exercise in both clones
m Commit this both modifications

m Pull and push in one of the clone

m Pull in the second clone, You should get a conflict

<LLLLKLKLKLKLKL
One version

Other version
SS>S>>>>>>

m Check the local status
m Correct the conflict and commit using git commit -a

m Push the modifications

W SCITAS P. Antolin 46 / 52

Introduction to branches

FsTERlNO)

$ git clone <uri repo.git>

W SCITAS P. Antolin 47 / 52

Introduction to branches

TR

$ git checkout -b feature

W SCITAS P. Antolin 47 / 52

$ git commit -m <message>

W SCITAS P. Antolin 47 / 52

$ git commit -m <message>

W SCITAS P. Antolin 47 / 52

$ git commit -m <message>

W SCITAS P. Antolin 47 / 52

FrTeRED

$ git checkout master

W SCITAS P. Antolin 47 / 52

$ git commit -m <message>

W SCITAS P. Antolin 47 / 52

G

$ git commit -m <message>

W SCITAS P. Antolin 47 / 52

Introduction to branches

$ git commit -m <message>

[EE5

W SCITAS P. Antolin 47 / 52

Introduction to branches

$ git merge feature

FrsTeRED

W SCITAS P. Antolin 47 / 52

Introduction to branches

$ git commit -m <message>

EBE3=

W SCITAS P. Antolin 47 / 52

EPFL Workflow: feature branch

Feature branch

W SCITAS P. Antolin 48 / 52

Workflow: gitflow

Gitflow
[=4]

. n
O O :
T

o

W SCITAS P. Antolin 49 / 52

© O«<

Workflow: gitflow

M o -

4 J 4
o O o
\eo O O O
™ SCITAS P. Antolin

49 / 52

Workflow: gitflow

Master

=
o

v
O O O

~O0—O ©

W SCITAS P. Antolin 49 / 52

Workflow: gitflow

Master Release

W SCITAS P. Antolin 49 / 52

Workflow: gitflow
EPFL :

tgfci\

W SCITAS P. Antolin 49 / 52

Exercise 16: Branches/merges

git branch <name> | Create a new branch from the current HEAD
git checkout <name> | Switch to the specified branch
git merge <name> | Merge the branch specified in the current one
git branch -d | Delete a branch
git branch -a | List all branches

git log | List the different commits of the current
branch

git log —graph —all | Show also the branches

W SCITAS P. Antolin 50 / 52

Exercise 17: Branches/merges

m Create a branch with the name of your choice

m Modify a file and commit the changes

m Checkout the master branch

m Modify a file and commit the changes

m Merge the branch previously created in the master branch
m List all branches

m Print the logs of the different modifications

W SCITAS P. Antolin 51 / 52

Sources and extra infos

Sources
Wikipedia
http://git-scm.com

Manpages: rsync, git

https://www.atlassian.com/git/

http://nvie.com/posts/a-successful-git-branching-model/

Learn more
= Git with a game: http://learngitbranching.js.org/

W SCITAS P. Antolin 52 / 52

http://git-scm.com
https://www.atlassian.com/git/
http://nvie.com/posts/a-successful-git-branching-model/
http://learngitbranching.js.org/

	Clusters
	Remote access and file transfer
	Compiling code on clusters
	Submitting a job
	Basics on GIT

