
MATH-454 Parallel and High Performance Computing
Lecture 1: Execution in an HPC environment

Pablo Antolin
Slides of N. Richart, E. Lanti, V. Keller’s lecture notes

February 27 2025

Outline

Today exercise session
What is a cluster.
How to connect to a cluster (any remote machine).
How to compile codes and use libraries.
How to submit job on a cluster.
How to use GIT

P. Antolin 2 / 52

Getting your accounts

groups.epfl.ch
If you are not in the group hpc-math454 let me know

P. Antolin 3 / 52

What is a cluster?

P. Antolin 4 / 52

What is a cluster?

P. Antolin 4 / 52

What is a cluster?

P. Antolin 4 / 52

What is a cluster?

P. Antolin 4 / 52

What is a cluster?

P. Antolin 4 / 52

What is a cluster?

P. Antolin 4 / 52

EPFL clusters

Login Hosts Cores RAM Network

hostname # # x GHz GB Gbit/s

helvetios.hpc.epfl.ch 287 36x2.3 192 100 (IB)

jed.hpc.epfl.ch 375 72x2.4 512 Ethernet

42 72x2.4 1024 Ethernet

2 72x2.4 2048 Ethernet

P. Antolin 5 / 52

EPFL clusters

Login Hosts Cores RAM Network

hostname # # x GHz GB Gbit/s

izar.hpc.epfl.ch 35 40x2.1 192 2x100 (IB)

+ 2x NVidia V100 7TFlops

35 40x2.1 384 100 (IB)

+ 4x NVidia V100 7.8TFlops

2 40x2.1 768 100 (IB)

+ 4x NVidia V100 7.8TFlops

P. Antolin 5 / 52

EPFL clusters

Login Hosts Cores RAM Network

hostname # # x GHz GB Gbit/s

kuma.hpc.epfl.ch 84 32x2.7 384 2x200 (IB)

+ 4x NVidia H100 94 GB

20 32x2.7 384 2x200 (IB)

+ 8x NVidia L40S 48 GB

2 32x2.7 384 2x200 (IB)

P. Antolin 5 / 52

EPFL clusters storage

The simulation data is written on the storage systems. At SCITAS:
▶ /home: store source files, input data, small files
▶ /work: collaboration space for a group
▶ /scratch: temporary huge result files

Please, note that only /home and /work have backups!
/scratch data can be erased at any moment!

P. Antolin 6 / 52

Connecting to remote machines

First step
Connect to a remote cluster to get a shell
SSH: Secure SHell

How to use

$ ssh -l <username> <hostname>
$ ssh <username>@<hostname>

For windows users
Just install git, and use git bash

P. Antolin 7 / 52

Connecting to remote machines

First step
Connect to a remote cluster to get a shell
SSH: Secure SHell

How to use

$ ssh -l <username> <hostname>
$ ssh <username>@<hostname>

For windows users
Just install git, and use git bash

P. Antolin 7 / 52

Getting a remote shell

ssh connection

<username>

P. Antolin 8 / 52

Getting a remote shell

<password> ?

P. Antolin 8 / 52

Getting a remote shell

<password>

P. Antolin 8 / 52

Getting a remote shell

Shell

P. Antolin 8 / 52

Exercise 1: Simple connection

To connect to the front node of a cluster

$ ssh -l jdoe helvetios.hpc.epfl.ch
$ ssh jdoe@helvetios.hpc.epfl.ch

Front nodes
helvetios [CPU (OpenMP/MPI)]
izar [GPU (CUDA)]

Connect to helvetios’ front node
Check the different folders /home /scratch

P. Antolin 9 / 52

Transferring files: using scp

scp works fine for Linux/MacOS, it is often pre-installed
On windows use GIT Bash or pscp.exe from Putty

P. Antolin 10 / 52

Exercise 2: Using scp

How to use scp/pscp.exe
Send data to remote machine:

$ scp [-r] <local_path> <username>@<remote>:<remote_path>

Retrieve data from remote machine:

$ scp [-r] <username>@<remote>:<remote_path> <local_path>

Note: It is always easier to “send to” and “receive from” the clusters since they have a
fix ip/name

Copy a file from your machine to the cluster.
Modify the file (e.g., using vim or nano) and retrieve it from the cluster onto your
machine

P. Antolin 11 / 52

Getting a remote shell using keys

ssh connection

<username>

P. Antolin 12 / 52

Getting a remote shell using keys

random message

P. Antolin 12 / 52

Getting a remote shell using keys

cypher message

Private
Key

P. Antolin 12 / 52

Getting a remote shell using keys

Shell

Public
Key

P. Antolin 12 / 52

Exercise 3: Connection using keys

Generate a pair of public/private key using ssh-keygen.
Copy the generated public key
Try to connect (it should not ask your password)
Same ssh key should be already working for helvetios, jed, and izar

Example

$ ssh-keygen -b 4096 -t rsa
[Follow instructions]

$ ssh-copy-id jdoe@helvetios.hpc.epfl.ch

P. Antolin 13 / 52

Transferring data using a GUI

sftp tones of GUIs, for example: Filezilla https://filezilla-project.org (“all”
OSes)
Cyberduck https://cyberduck.io/ (Windows and Mac)
Tunnelier https://bitvise.com/tunnelier (Windows)
TUIs also exists like lftp

P. Antolin 14 / 52

https://filezilla-project.org
https://cyberduck.io/
https://bitvise.com/tunnelier

Connecting to a Remote Linux Machine with VS Code

It is common practice to use VS Code to edit code on remote machines just as if it was
your local machine.
Steps:

1. Install the "Remote - SSH" Extension
▶ Open VS Code
▶ Go to Extensions (Ctrl+Shift+X on Windows/Linux, Cmd+Shift+X on Mac)
▶ Search for "Remote - SSH" and install it

2. Open the Command Palette (Ctrl+Shift+P on Windows/Linux, Cmd+Shift+P on
Mac)

3. Select: Remote-SSH: Connect to Host...
4. Enter your remote machine details:

▶ Example: ssh username@helvetios.hpc.epfl.ch
5. Authenticate

▶ Enter your password or use an SSH key as shown before
6. Start coding!

P. Antolin 15 / 52

Using modules

What are modules
A way to dynamically modify the environment
The contain configurations to use an application/a library

How to use them
module avail list all possible modules
module load <module> load a module
module unload <module> unload a module
module purge unload all the modules
module list list all loaded modules
module spider <module> info about a module

P. Antolin 16 / 52

Exercise 4: Module command

List all available modules
Try g++ --version
Load the module gcc

Try again g++ --version
Try icpc --version
Load the intel module
Try again icpc --version
List the currently loaded modules

P. Antolin 17 / 52

Exercise 5: Compilation

GCC:

$ g++ -o <executable> <sources>

Intel:

$ icpc -o <executable> <sources>

Compilation all-in-one
If the compiler is given source code only it will do all the stages at once

Load a compiler module
Compile the code hello.cc

P. Antolin 18 / 52

Separated compilation

Generate object files: compile

$ g++ -c file1.cc
$ g++ -c file2.cc

Transform code file file?.cc in object file file?.o
Generate the executable: linking

$ g++ -o hello file1.o file2.o

Transforms object file file?.o in executable hello

P. Antolin 19 / 52

Compilation stages
The four compilation steps

Translation is made by a compiler in 4 steps
Preprocessing Format source code to make it ready for compilation (remove

comments, execute preprocessing directives such as #include, etc.)
Compiling Translate the source code (C, C++, Fortran, etc) into assembly, a

very basic CPU-dependent language
Assembly Translate the assembly into machine code and store it in object files

Linking Link all the object files into one executable
In practice, the first three steps are combined together and simply called
“compiling”

P. Antolin 20 / 52

Compilation stages
The four compilation steps (visually)

Note that in reality, everything is done
transparently

$> gcc -c file_1.c
$> gcc -c file_2.c
$> gcc file_1.o file_2.o

-lexample -o exec↪→

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

#include <stdio.h>
// This is my main function
int main(void) {
 // I declare i to be equal to 2
 int i = 2;
}

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

[...]
extern int __uflow (FILE *);
extern int __overflow (FILE *, int);

int main(void) {
 int i = 2;
}

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

main:
.LFB0:
pushq %rbp
movq %rsp, %rbp
movl $2, -4(%rbp)
movl $0, %eax
popq %rbp

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

0000000000000000 <main>:
 0: 55
 1: 48 89 e5
 4: c7 45 fc 02 00 00 00
 b: b8 00 00 00 00
 10: 5d

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

P. Antolin 21 / 52

Compilation stages
The four compilation steps (visually)

Note that in reality, everything is done
transparently

$> gcc -c file_1.c
$> gcc -c file_2.c
$> gcc file_1.o file_2.o

-lexample -o exec↪→

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

#include <stdio.h>
// This is my main function
int main(void) {
 // I declare i to be equal to 2
 int i = 2;
}

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

[...]
extern int __uflow (FILE *);
extern int __overflow (FILE *, int);

int main(void) {
 int i = 2;
}

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

main:
.LFB0:
pushq %rbp
movq %rsp, %rbp
movl $2, -4(%rbp)
movl $0, %eax
popq %rbp

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

0000000000000000 <main>:
 0: 55
 1: 48 89 e5
 4: c7 45 fc 02 00 00 00
 b: b8 00 00 00 00
 10: 5d

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

P. Antolin 21 / 52

Compilation stages
The four compilation steps (visually)

Note that in reality, everything is done
transparently

$> gcc -c file_1.c
$> gcc -c file_2.c
$> gcc file_1.o file_2.o

-lexample -o exec↪→

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

#include <stdio.h>
// This is my main function
int main(void) {
 // I declare i to be equal to 2
 int i = 2;
}

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

[...]
extern int __uflow (FILE *);
extern int __overflow (FILE *, int);

int main(void) {
 int i = 2;
}

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

main:
.LFB0:
pushq %rbp
movq %rsp, %rbp
movl $2, -4(%rbp)
movl $0, %eax
popq %rbp

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

0000000000000000 <main>:
 0: 55
 1: 48 89 e5
 4: c7 45 fc 02 00 00 00
 b: b8 00 00 00 00
 10: 5d

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

P. Antolin 21 / 52

Compilation stages
The four compilation steps (visually)

Note that in reality, everything is done
transparently

$> gcc -c file_1.c
$> gcc -c file_2.c
$> gcc file_1.o file_2.o

-lexample -o exec↪→

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

#include <stdio.h>
// This is my main function
int main(void) {
 // I declare i to be equal to 2
 int i = 2;
}

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

[...]
extern int __uflow (FILE *);
extern int __overflow (FILE *, int);

int main(void) {
 int i = 2;
}

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

main:
.LFB0:
pushq %rbp
movq %rsp, %rbp
movl $2, -4(%rbp)
movl $0, %eax
popq %rbp

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

0000000000000000 <main>:
 0: 55
 1: 48 89 e5
 4: c7 45 fc 02 00 00 00
 b: b8 00 00 00 00
 10: 5d

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

P. Antolin 21 / 52

Compilation stages
The four compilation steps (visually)

Note that in reality, everything is done
transparently

$> gcc -c file_1.c
$> gcc -c file_2.c
$> gcc file_1.o file_2.o

-lexample -o exec↪→

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

#include <stdio.h>
// This is my main function
int main(void) {
 // I declare i to be equal to 2
 int i = 2;
}

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

[...]
extern int __uflow (FILE *);
extern int __overflow (FILE *, int);

int main(void) {
 int i = 2;
}

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

main:
.LFB0:
pushq %rbp
movq %rsp, %rbp
movl $2, -4(%rbp)
movl $0, %eax
popq %rbp

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

0000000000000000 <main>:
 0: 55
 1: 48 89 e5
 4: c7 45 fc 02 00 00 00
 b: b8 00 00 00 00
 10: 5d

Preprocessor

gcc -E file.c -o file.i

Linker

gcc file.o -lexample -o file

Assembler

gcc -c file.s -o file.o

Compiler

gcc -S file.i -o file.s

External Library

libexample.so

P. Antolin 21 / 52

Exercise 6: Separated compilation

Clone the repository
https://gitlab.epfl.ch/math454-phpc/exercises-2025
(you have to use your gaspar credentials)

$ git clone
https://gitlab.epfl.ch/math454-phpc/exercises-2025.git↪→

You can clone it either in your local machine or in helvetios.
▶ If you clone it in your local machine, you have to copy the folders to

helvetios using scp.
From helvetios, enter the folder hello-separated-files
Generate hello.o and greetings.o

Generate hello from hello.o greetings.o

P. Antolin 22 / 52

https://gitlab.epfl.ch/math454-phpc/exercises-2025

Makefiles

What is makefile
It is a build automation system
It is a set of rules on how to produce an executable:
▶ what and how to compile?
▶ what and how to link?

Rule for compiling

.cc.o:
$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c $<

Rule for linking

$(EXE): $(OBJS)
$(LD) -o $@ $(LDFLAGS) $(OBJS)

Usage: make P. Antolin 23 / 52

Exercise 7: Makefiles

Enter the folder hello-makefile
Read the Makefile
Add the -Wall -Werror option to the compilation options
Compile the code
Modify the file greetings.cc as:

greetings.cc

1 # include <iostream>
2 # include "greetings.hh"
3

4 void greetings() {
5 int dummy;
6 std::cout << "Hello world !" << std::endl;
7 }

Compile the code P. Antolin 24 / 52

Generate a library

Two types of libraries static or shared
▶ static: archive of object file
▶ shared: library loaded dynamically at execution

Generate a shared library
Object files have to be compiled with -fPIC option

$ g++ -o libgreetings.so -shared -fPIC greetings.o

Link

$ g++ -L<lib path> -lgreetings -o <exec> <obj_1> ... <obj_n>

Execute

$ LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<lib path> <exec>
P. Antolin 25 / 52

Build system

Real life project
For project a bit more consequent with multiple dependencies to external libraries,
usage of a build automation system

CMake
Autotools: configure
SCons

P. Antolin 26 / 52

SLURM

P. Antolin 27 / 52

SLURM

P. Antolin 27 / 52

Scheduler

P. Antolin 28 / 52

Scheduler

Submit
job

P. Antolin 28 / 52

Scheduler

Schedule
job

P. Antolin 28 / 52

Scheduler

Run

P. Antolin 28 / 52

SLURM

What is SLURM
Simple Linux Utility for Resource Management
Job scheduler
Soda in Futurama

Basic commands
sbatch submit a job to the queue
salloc allocates resources
squeue visualize the state of the queue

P. Antolin 29 / 52

SLURM: common options

SLURM options
-q / --qos=<QOS> sets the quality of service (affects the scheduling priority).
During the course set it to --qos=math-454
-t / --time=<HH:MM:SS> set a limit on the total run time of the job
-N / --nodes=<N> request that a minimum of N nodes be allocated to the job
-n / --tasks=<n> advises SLURM that this job will launch a maximum of n, in
the MPI sense
-c / --cpus-per-task=<ncpus> advises SLURM that job will require ncpus per
task
--ntasks-per-node=<ntasks> number of tasks per node
--mem=<size[units]> defines the quantity of memory per node requested

Need more help? Have a look at https://scitas-doc.epfl.ch and
https://slurm.schedmd.com/sbatch.htmlP. Antolin 30 / 52

https://scitas-doc.epfl.ch
https://slurm.schedmd.com/sbatch.html

SLURM: common options

Or you can put everything in a file, e.g.

mysimulation.job

#!/bin/bash -l
#SBATCH --qos=math-454
#SBATCH --time=01:10:00
#SBATCH --nodes=2
#SBATCH --ntasks=72

./myprogram

and submit the job

$ sbatch mysimulation.job

P. Antolin 31 / 52

Exercise 8: SLURM: first commands

To list all your running jobs

$ squeue -u <username>

To cancel a simulation

$ scancel <jobid>

The <jobid> can be found using squeue

To allocate a node

$ salloc --qos=math-454 --account=math-454

P. Antolin 32 / 52

Exercise 9: SLURM: first commands

Check the queue state
Allocate one node with QOS math-454

Try srun hostname, we will see this command more in detail in later exercise
sessions
Exit the allocation to not block resources: exit or Ctrl-d (IMPORTANT !!)

P. Antolin 33 / 52

Exercise 10: SLURM: command sbatch

Write a script that runs the hello world code

myscript.job

#!/bin/bash -l
./hello

Try your script.
note: in general you should not try your codes on the front node

$ sh myscript.job

P. Antolin 34 / 52

Exercise 11: SLURM: command sbatch

Submit your script with sbatch and adding the QOS

$ sbatch --qos=math-454 myscript.job

Try

$ squeue -u <username>

A file named slurm-<jobid>.out should have been created, check its content

P. Antolin 35 / 52

Exercise 12: SLURM: command sbatch

Add the QOS as an option directly in the script

myscript.job

#!/bin/bash -l
#SBATCH --qos=math-454
./hello

Submit it again

$ sbatch myscript.job

P. Antolin 36 / 52

GIT

P. Antolin 37 / 52

“Versioning”: with Git

Git: the stupid content tracker
Distributed revision control
Originally developed by Linus Torvald
Named after the egotistical bastard Linus

Remote server

File versions DB

Version 3

Version 2

Version 1

Computer 1

File

File versions DB

Version 3

Version 2

Version 1

Computer 2

File

File versions DB

Version 3

Version 2

Version 1

P. Antolin 38 / 52

“Versioning”: with Git

Git: the stupid content tracker
Distributed revision control
Originally developed by Linus Torvald
Named after the egotistical bastard Linus

Remote server

File versions DB

Version 3

Version 2

Version 1

Computer 1

File

File versions DB

Version 3

Version 2

Version 1

Computer 2

File

File versions DB

Version 3

Version 2

Version 1

20
25

-0
2-

27
MATH-454 Parallel and High Performance ComputingLecture
1: Execution in an HPC environment

Basics on GIT

“Versioning”: with Git

Git means “unpleasant person”, “I’m an egotistical bastard, and I name all my projects after
myself. First ’Linux’, now ’git’.” – Linus

git clone

Remote Server

Local Server

Working Directory

.git directory

Staging Area

$ git clone <uri repo.git>

P. Antolin 39 / 52

git clone

Remote Server

Local Server

Working Directory

.git directory

Staging Area

Clone

$ git clone <uri repo.git>
Cloning into '<repo>'...
remote: Counting objects: 6940, done.
remote: Total 6940 (delta 0), reused ...
Receiving objects: 100% (6940/6940), ...
Resolving deltas: 100% (3286/3286), done.

P. Antolin 39 / 52

git clone

Remote Server

Local Server

Working Directory

.git directory

Staging Area

Clone

$ git clone <uri repo.git>
Cloning into '<repo>'...
remote: Counting objects: 6940, done.
remote: Total 6940 (delta 0), reused ...
Receiving objects: 100% (6940/6940), ...
Resolving deltas: 100% (3286/3286), done.

P. Antolin 39 / 52

git status is your friend

$ git status

P. Antolin 40 / 52

git status is your friend

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.

nothing to commit, working tree clean

P. Antolin 40 / 52

Lets add a file: staging/commit

Remote Server

Local Server

Working Directory

.git directory

Staging Area

P. Antolin 41 / 52

Lets add a file: staging/commit

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.

Untracked files:
(use "git add <file>..." to include in what will be committed)

my_code.py

nothing added to commit but untracked files present

P. Antolin 41 / 52

Lets add a file: staging/commit

Remote Server

Local Server

Working Directory

.git directory

Staging Area

ADD

$ git add <filename>

P. Antolin 41 / 52

Lets add a file: staging/commit

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: my_code.py

P. Antolin 41 / 52

Lets add a file: staging/commit

Remote Server

Local Server

Working Directory

.git directory

Staging Area

Commit

$ git commit -m <message>

P. Antolin 41 / 52

Lets add a file: staging/commit

$ git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
(use "git push" to publish your local commits)

nothing to commit, working tree clean

P. Antolin 41 / 52

Synchronizing with the remote server

Remote Server

Local Server

Working Directory

.git directory

Staging Area

Clone

$ git clone <uri>

P. Antolin 42 / 52

Synchronizing with the remote server

Remote Server

Local Server

Working Directory

.git directory

Staging Area

PUSH

$ git push

P. Antolin 42 / 52

Synchronizing with the remote server

Remote Server

Local Server

Working Directory

.git directory

Staging Area

Pull

$ git pull

P. Antolin 42 / 52

Exercise 13: First step with Git

If you do not have git installed, get it from https://git-scm.com/downloads or
from your package manager
Go on https://gitlab.epfl.ch/ and login with your EPFL account.
Once connected go on your user settings page (circle icon top left corner)
In the Preferences > SSH Keys > Add new key menu set your public ssh key.
This key will be used to connect to the git server through ssh.

P. Antolin 43 / 52

https://git-scm.com/downloads
https://gitlab.epfl.ch/

Exercise 14: First step with Git

git clone <repo url> [local name] Clone a remote repository

git add <files...> Stage modified/new files

git commit -m "comment" Commit staged files

git pull Pull and merge remote modifica-
tions

git push Push the local modifications to the
remote server

git status Check the local state

Now you should be able to clone a repository
Either create a repository or clonegit@gitlab.epfl.ch:math454-phpc/test-repo.git
Create a file, use a filename that will not clash with the others
Check the state of your working copy
Add the file to the repository
Commit your modifications
Clone the same repository in a different folder
Pull the potential modifications from the server
Push your changes to the server

P. Antolin 44 / 52

Collaborative work with potential problems

Remote Server

Local Server

Working Directory

.git directory

Staging Area

P. Antolin 45 / 52

Collaborative work with potential problems

Remote Server

Local Server

Working Directory

.git directory

Staging Area

Add
Commit
Push $ git add <filename>

$ git commit -m <message>
$ git push

P. Antolin 45 / 52

Collaborative work with potential problems

Add
Commit
Push

Remote Server

Local Server

Working Directory

.git directory

Staging Area

$ git add <filename>
$ git commit -m <message>
$ git push

P. Antolin 45 / 52

Collaborative work with potential problems

$ git push
To <repo>
! [rejected] master -> master (fetch first)
error: failed to push some refs to '<repo>'
hint: ...

P. Antolin 45 / 52

Collaborative work with potential problems

Remote Server

Local Server

Working Directory

.git directory

Staging Area

PuLL

$ git pull

P. Antolin 45 / 52

Collaborative work with potential problems

$ git pull
remote: Counting objects: 3, done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From <repo>
fe22d81..0bcfb99 master -> origin/master
Auto-merging my_code.py
CONFLICT (content): Merge conflict in my_code.py
Automatic merge failed; fix conflicts and then commit the result.

P. Antolin 45 / 52

Collaborative work with potential problems

$ git status
On branch master
Your branch and 'origin/master' have diverged,
and have 1 and 1 different commits each, respectively.
(use "git pull" to merge the remote branch into yours)

You have unmerged paths.
(fix conflicts and run "git commit")
(use "git merge --abort" to abort the merge)

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: my_code.py

P. Antolin 45 / 52

Collaborative work with potential problems

Remote Server

Local Server

Working Directory

.git directory

Staging Area

Correct the conflict:

my_file.py

<<<<<<<<<<
One version
==========
Other version
>>>>>>>>>>

P. Antolin 45 / 52

Collaborative work with potential problems

Commit
Push

Remote Server

Local Server

Working Directory

.git directory

Staging Area

my_file.py

One version

$ git commit -a
$ git push

P. Antolin 45 / 52

Exercise 15: Generate and solve conflicts

Modify the file created in the previous exercise in both clones
Commit this both modifications
Pull and push in one of the clone
Pull in the second clone, You should get a conflict
<<<<<<<<<<
One version
==========
Other version
>>>>>>>>>>

Check the local status
Correct the conflict and commit using git commit -a
Push the modifications

P. Antolin 46 / 52

Introduction to branches

c1master

$ git clone <uri repo.git>

P. Antolin 47 / 52

Introduction to branches

c1 featuremaster

$ git checkout -b feature

P. Antolin 47 / 52

Introduction to branches

c1

c2 feature

master

$ git commit -m <message>

P. Antolin 47 / 52

Introduction to branches

c1

c2

c3 feature

master

$ git commit -m <message>

P. Antolin 47 / 52

Introduction to branches

c1

c2

c4

c3

feature

master

$ git commit -m <message>

P. Antolin 47 / 52

Introduction to branches

c1

c2

c4

c3

feature

master

$ git checkout master

P. Antolin 47 / 52

Introduction to branches

c1

c2c6

c4

c3

feature

master

$ git commit -m <message>

P. Antolin 47 / 52

Introduction to branches

c1

c2c6

c4

c3

feature

c7master

$ git commit -m <message>

P. Antolin 47 / 52

Introduction to branches

c1

c2c6

c4c8

c3

feature

c7

master

$ git commit -m <message>

P. Antolin 47 / 52

Introduction to branches

c1

c2c6

c4c8

c5

c3

feature

c7

master

$ git merge feature

P. Antolin 47 / 52

Introduction to branches

c1

c2c6

c4

c9

c8

c5

c3

feature

c7

master

$ git commit -m <message>

P. Antolin 47 / 52

Workflow: feature branch

Feature branch

P. Antolin 48 / 52

Workflow: gitflow

Gitflow

P. Antolin 49 / 52

Workflow: gitflow

Gitflow

P. Antolin 49 / 52

Workflow: gitflow

Gitflow

P. Antolin 49 / 52

Workflow: gitflow

Gitflow

P. Antolin 49 / 52

Workflow: gitflow

Gitflow

P. Antolin 49 / 52

Exercise 16: Branches/merges

git branch <name> Create a new branch from the current HEAD

git checkout <name> Switch to the specified branch

git merge <name> Merge the branch specified in the current one

git branch -d Delete a branch

git branch -a List all branches

git log List the different commits of the current
branch

git log –graph –all Show also the branches

P. Antolin 50 / 52

Exercise 17: Branches/merges

Create a branch with the name of your choice
Modify a file and commit the changes
Checkout the master branch
Modify a file and commit the changes
Merge the branch previously created in the master branch
List all branches
Print the logs of the different modifications

P. Antolin 51 / 52

Sources and extra infos

Sources
Wikipedia
http://git-scm.com

Manpages: rsync, git
https://www.atlassian.com/git/

http://nvie.com/posts/a-successful-git-branching-model/

Learn more
Git with a game: http://learngitbranching.js.org/

P. Antolin 52 / 52

http://git-scm.com
https://www.atlassian.com/git/
http://nvie.com/posts/a-successful-git-branching-model/
http://learngitbranching.js.org/

	Clusters
	Remote access and file transfer
	Compiling code on clusters
	Submitting a job
	Basics on GIT

