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MATH 454 Parallei and ngh Performance Computlng
Lecture 0: Course Introduction
Pablo Antolin

Slides of N. Richart, E. Lanti, V. Keller’s lecture notes
February 20 2025
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Pablo Antolin Philipp Weder
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Today's program

Today
m Course organization and description
m Some definitions and basic concepts

m Parallelism
m The Top500

W SCITAS P. Antolin 3/ 60



Moodle page

https://moodle.epfl.ch/course/view.php?id=13817
Slides, exercises, and solutions

Calendar

Please, join the ED Discussion Forum (link on Moodle)

Instructions for accessing the computing facilities

W SCITAS P. Antolin 4/ 60


https://moodle.epfl.ch/course/view.php?id=13817

GIT repositories

First, register in https://gitlab.epfl.ch with your epfl account!

m Example codes from the course

» https://gitlab.epfl.ch/math454-phpc/course-examples-2025.git
m Course exercises

> https://gitlab.epfl.ch/math454-phpc/exercises-2025.git

W SCITAS P. Antolin 5/ 60


https://gitlab.epfl.ch
https://gitlab.epfl.ch/math454-phpc/course-examples-2025.git
https://gitlab.epfl.ch/math454-phpc/exercises-2025.git

Course organization

m Theory on Thursdays, 13h15, in room DIA 003
m Exercises on Thursdays, 15h15 in room DIA 003

m Theory lectures will be recorded and posted on https://mediaspace.epfl.ch
(for EUROfusion: Fusion Education and Learning Hub)
= Evaluation will be:

» Two graded assignments: 25% + 25%
» Course's project: 25%
» Oral exam: 25%

m The oral exam will be a presentation of your project + questions about the project
and the course (545 minutes)

= You will be given access to several computing facilities during this course. Follow
the instructions on Moodle. Please respect the usage policies

m Visit to EPFL supercomputers (to be precised)

W SCITAS P. Antolin 6 / 60


https://mediaspace.epfl.ch

Week 0: today = course introduction + Theory homework

Weeks 1-8: (Feb. 27 — Apr. 17 2025) = ex cathedra lectures + exercise sessions
Weeks 9-13: (May. 1 — May. 22 2025) = work on project

Final project proposal: To be discussed on April 10 2025

Final project submission: Deadline June 8 2025
Oral exam = June/July = to be set by SAC

W SCITAS P. Antolin 7 / 60



What this course is about

m To be able to:

> sustain a conversation about general HPC topics

» understand the concepts behind data and instruction parallelism

» learn how to use shared memory, distributed memory, and accelerators
paradigm efficiently

get a feeling of what algorithms are suited for parallelism

choose a target architecture based on the needs of a (real) application
learn to use common HPC machines

get your hands dirty with the most common programming techniques

= You will learn OpenMP, MPI, and CUDA using C++ (and some Python)

vvyyvyy
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What this course is about

Bleeding-edge programming languages as Julia, Rust, Go, or alike
PGAS languages as UPC, CAF, Fortress, HPF, or alike

High-level parallel programming concepts or tools as SYCL or similar

Auto parallelization tools or flags as yucca, par4all, intel -parallel, or alike

W SCITAS P. Antolin 9/ 60



=prL

0. Introduction
1. Hands-on on servers 7. Intro to CUDA
2. Performance measurement 8. Advanced CUDA (graded exercise)
3. OpenMP 9. Work on project | (7)
4. Intro to MPI 10. Work on project Il
5. Advanced MPI (graded exercise) 11. Work on project Il
6. Hybrid MPI/OpenMP and MPI with 12. Work on project IV
Python

W SCITAS P. Antolin 10 / 60



What we expect from you

m Follow the lectures. Do not hesitate to interrupt the lecturer if you may have a
question that could interest your mates

m The exercises are key! Without getting your hands dirty you'll make no progress.
TA is there to answer your questions

m Exercises are exercises. Project is project. You will have at least 3 times 4 hours to
ask questions about the project plus the possibility of posting questions on Ed
Forum

W SCITAS P. Antolin 11 / 60



Prerequisites

= Moderate C++ (and Python) knowledge
m Basic git

m Basic bash and linux knowledge

W SCITAS P. Antolin 12 / 60



For the practical lessons

For the practical lessons we will use EPFL's supercomputers.

m Please, check that you're registered in (link on Moodle)
https://groups.epfl.ch/#/home/330353

For accessing them you have to use your laptop.
m Linux or macOS: just use a terminal + ssh
= Windows:

» Likely the easiest alternative is to use Git Bash from
https://git-scm.com/
» Windows Subsystem for Linux (WSL2)

m From any OS: connect to the VDI and select virtual machine
SB-MATH-LINUX-2023

W SCITAS P. Antolin 13 / 60


https://groups.epfl.ch/#/home/S30353
https://git-scm.com/

Get to know each other

Name

Background: bachelor, EPFL?
Master? PhD? Which program?
Programming experience

» C/C++7
» Parallel programming?

> =

5. Is this course directly related to your work?

W SCITAS P. Antolin 14 / 60



Basic computing Thesaurus

Parallel computing
m form of computation in which calculations are carried out simultaneously
Distributed (or throughput) computing |
m Distributed computing is the method of making multiple computers work together
to solve a common problem. It makes a computer network appear as a powerful
single computer that provides large-scale resources to deal with complex challenges

m Grid computing (e.g., SETI@home)

Embarassingly parallel workload
m Problem where little or no effort is needed to split the problem into a number of
parallel tasks. This is due to minimal or no dependency upon communication
between the parallel tasks, or for results between them.

m Example: parameter sweeps. Oppositg;, inherently sequential 15} 60
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Basic computing Thesaurus

Supercomputing
m Use of the fastest biggest machines to solve large problems

m Solving problems on the Top500 machines

High Performance Computing
m Mostly a buzzword

m Supercomputing + large data + post-processing

Other cool topics around HPC
= Cloud Computing (e.g., AWS, Microsoft Azure, Google Cloud)

W SCITAS P. Antolin 16 / 60



Von Neumann architecture (stored program computer)

Central Processing Unit

Input Arithmetic/Logic Unit Output
Device Device

Memory Unit

. ALU: Arithmetic and Logical Unit
. Control Unit

. Memory

. Input/Output

A W N =

W SCITAS P. Antolin 17 / 60



System bus

[

System bus

v
[ Control bus

[ 1
[ Address bus
A4 A

[ Data bus

m Address bus: instructions on where to find the data
m Data bus: instructions on what to find

m Control bus: instructions on what to do with (e.g., read, write, fetch,
etc...)

W SCITAS P. Antolin 18 / 60



EPFL

= SCITAS

Memory pyramid

Performance
Endurance
Cost per bit |

Latency,
|Persistence

Main memory
DRAM

Secondary memory (storage)
magnetic or flash media

Volume

P. Antolin
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How does it look like in reality?

al

W SCITAS P. Antolin 20 / 60



Some important values

CPU performance measured in FLOPS (Floating Point Operations Per Second)

= Memory bandwidth in Bytes per second

= Memory latency in seconds

=
&

usual to give the peak values (never reachable) defined as:

Peak CPU performance CPU Frequency x Number of operations per clock cycle
x size of the largest vector x number of cores

Memory bandwidth RAM Frequency x Number of transfers per clock cycle x
Bus width x number of interfaces

Memory latency depends on the size of the data. Usually given by the constructor

W SCITAS P. Antolin 21 / 60



Benchmarks to measure the values

= CPU performance: HPL (LINPACK)
= Memory bandwidth: STREAM or PMBW

= Memory latency Intel Memory Latency Checker

W SCITAS P. Antolin 22 / 60
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FL HPL results on one Fidis node

WR11C2R4 81792 192 4 4 622.086 5.864e+02
HPL_pdgesv() start time Thu Oct 18 16:32:50 2018

HPL_pdgesv() end time Thu Oct 18 16:43:12 2018

==VVV--VVV--VVV--VVV--VVV--VVV=-VVV--VVV--VVV--VVV--VVV--VUV--VVV--VVV--VVV-

Max aggregated wall time rfact . . . : 2,51
+ Max aggregated wall time pfact . . : 0.64
+ Max aggregated wall time mxswp . . : 0.27
Max aggregated wall time update . . : 619.19
+ Max aggregated wall time laswp . . : 27.47
Max aggregated wall time up tr sv . : 0.24
| 1Ax-b| | _oo/ (eps* (| |A]| | _oo*| |x| | _oco+||bl|_oo)*N)= 0.0017884 ...... PASSED
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bandwidth example

scitaspc3 - One Thread Memory Bandwidth

200 T T T T ’ T T T
ScanWrite256PtrSimpleLoop ——
B N S ScanWrite256PtrUnrollLoop
180 - ScanRead256PtrSimpleLoop —s=— |

ScanRead256PtrUnrollLoop
ScanWritel 268PtrSimpleLoop
| ScanWrite1l28PtrUnrollLoop
160 | ScanReadl28PtrSimpleLoop —e— -
ScanPRead128PtrUnrollLoop
ScanWrite64PtrSimpleLoop
140 - ScanWrite64PtrUnrollLoop
ScanRead64PtrSimpleLoop
| ScanReadé4PtrUnrollLoop
| ScanWrite64/ndexSimpleLoop
120 ScanW rite64IndexUnrollLoop
ScanRead64/ndexSimpleLoop
ScanReadG4IndexUnrollLoop —s=—
ScanWrite32PtrSimpleLoop
ScanWrite32PtrUnrollLoop — =
ScanRead32PtrSimpleLoop —=
ScanRead32PtrUnrollLoop =
PermPead64SimpleLoop —— ~
PermRead64UnroliLoop

4444

Banawidth [GIB/s]

25 26 27 28 29 30 31 32

® SCITAS P ArayiSitenlogs [B] o 0.6.2 24 / 60
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Intel Memory Latency Checker

Intel(R) Memory Latency Checker - v3.5
Measuring idle latencies (in ns)...
Numa node
Numa node 0 1

0 76.2 122.9

1 123.3 75.7

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios

ALL Reads : 101136.4

3:1 Reads-Writes : 93459.2

2:1 Reads-Writes : 93216.4

1:1 Reads-Writes : 90454.1

Stream-triad like: 81659.8

Measuring Memory Bandwidths between nodes within system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
= SCITAS Usin,g Read-only traffic type P. Antolin 25 / 60



Intel Memory Latency Checker

Measuring Loaded Latencies for the system

Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Inject Latency Bandwidth

Delay (ms) MB/sec

00000 170.22 102119.
00002 172.92 1020890.
00008 176.54 101964.
00015 199.00 100029.
00050 174.13  94163.
00100 135.42 60156.
00200 119.19  37658.
00300 132.01  27635.
00400 122.57  21903.
00500 100.41  18037.
00700 95.57  13667.
01000 93.79 9701.
01300 90.08 7806.
01700 94.09 6234.

= SCITAS

02500 90.04 4575

0O OB NGO WO O
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= SCITAS

Intel Memory Latency Checker

Measuring cache-to-cache transfer latency (in ns)...
Local Socket L2->L2 HIT latency 30.8
Local Socket L2->L2 HITM latency 35.5
Remote Socket L2->L2 HITM latency (data address homed in writer socket)
Reader Numa Node
Writer Numa Node 0 1
0 - 86.4
1 86.3 -
Remote Socket L2->L2 HITM latency (data address homed in reader socket)
Reader Numa Node
Writer Numa Node 0 1
0 - 86.1
1 86.4 -

P. Antolin
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Introductory tale
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Next Friday afternoon it's Charlotte's 10t birthday party! She decides to invite 20
friends.
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Introductory tale

... Mrs. Smith — her mother — will not cook anything special, just some sandwiches for
Charlotte's friends.
Daddy Smith and Charlotte’s brother — Mike — will help too. ..

W SCITAS P. Antolin 26 / 60



Introductory tale

. Mrs. Smith knows well how to make a sandwich. Four steps of approximately the
same duration (1 unit of time) are required:

cut the bread in two halves
spread the butter on the bread

add a piece of ham/cheese, a few pickles, and some mustard

=

close the sandwich carefully and put it on a tray
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Introductory tale

... how the family could proceed to produce 20 sandwiches in the more efficient
manner. . .

W SCITAS P. Antolin 26 / 60



= Pros:
» Mrs. Smith does it well without having to explain to others
= Cons:

» We are in the 21st century ...
» What happens if Charlotte decides to invite the whole school to her birthday?

Time to make 20 sandwiches = 80 units of time

W SCITAS P. Antolin 26 / 60



Introductory tale

...1923 Ford T mode? Mrs. Smith cuts the bread,
then Mr. Smith spread the butter while Mrs. Smith
cuts a new bread, Charlotte adds ham and pickles
while Mrs. Smiths cut bread and finally Mike closes
the sandwiwch and put it in a tray

" m Pros:
» 4x more sandwiches produced when the pipeline is full
» specialized tasks, very few communications

= Cons:
» each step must have the same duration
» No place for Shirley (Charlotte's best friend). Only 4 persons are required to
produce 8x more sandwiches
= soimas Time to make 20 sandwijches = 23 units of time 26 / 60



... totally distributed? Mrs. & Mr. Smith, Charlotte,
and Mike produce 5 sandwiches each. ..

= Pros:
» Most efficient solution: number of sandwiches to produce / number of people
m Cons:

> resources problem: need for 4 knives, 4 packets of butter, 4 portions of ham,
etc. ..
» deadlocks: if only 1 knife is available, one person works when other waits

Time to make 20 sandwiches = 20 units of time

W SCITAS P. Antolin 26 / 60



Performance analysis

Before starting parallelization: insight of the application
m |s the algorithm/application a good candidate for parallelization?
m Which parallelization strategy should | choose?

m How should | partition the problem?

Helps understanding and improving existing implementations
m Do the benchmark match the performance predictions?
m Which factors have most influence on the performance?

m Which hardware fits most to the application needs?

W SCITAS P. Antolin 27 / 60



Speedup and efficiency

where
m T;: Execution time using 1 process
m T,: Execution time using p processes
m S(p): Speedup of p processes
m E(p): Parallel Efficiency

Example:
p Walltime [s] S(p) E(p) sposdup
1 245 1.0 1.0
2 13.4 1.8 0.9 : bdierc
4 6.8 3.6 0.9

= SCITAS 8 40 6.1 0.75 P. Antolin . . : | 28 / 60




Complexity analysis

Observation:
The speedup S(p) is determined by the computation time and the communication
time, function of the problem size N

Communication time:
It is an overhead to the parallel execution time. It can be partially hidden by
computation.

Complexity:

Computing the complexity O(N, p) provides and insight into the parallelization
potential.

W SCITAS P. Antolin 29 / 60



Complexity analysis: example c = Ab

Full N x N matrix vector multiplication with the naive method O(N?)

struct timeval t;
const double tl = gettimeoftheday(&t,0);
for (i=0;i<N;i++){

for (j=0;j<N;j++){

cli] = c[i] + A[i1[j1*b[j1;

}
}
const double t2 = gettimeoftheday(&t,0);
const double mflops = 2.*(double)N*(double)N / (t2-t1) / 1.0E6;

W SCITAS P. Antolin 30 / 60



Complexity analysis: example c = Ab

Sequential algorithm:
= Time complexity: O(N?)
= Size complexity: O(N?)

W SCITAS P. Antolin 31/ 60



Complexity analysis: example c = Ab

Parallel version

t1 = MPI_Wtime();
MPI_Bcast(b, ndiag, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Scatter (A, (nn_loc*ndiag) ,MPI_FLOAT,A_loc, (nn_loc*ndiag) ,MPI_FLOAT,O0,
MPI_COMM_WORLD) ;

t2 = MPI_Wtime();
for (j=0;j<ndiag;j++){

for (i=0;i<nn_loc;i++){

cli] = c[i] + A_loc[i+j*nn_locl#*b[i];

}
}
t3 = MPI_Wtime();
MPI_Gather(c,nn_loc,MPI_FLOAT,b,nn_loc,MPI_FLOAT,0,MPI_COMM_WORLD) ;
t4 = MPI_Wtime();

W SCITAS P. Antolin 32 / 60



Complexity analysis: example c = Ab

Parallel algorithm over p processes:
= Computational complexity: (’)(N?z)
= Communication complexity: O(logp + N)
Overall complexity: (’)(N?2 + logp+ N)
for reasonably large N, latency is negligible compared to bandwidth

The algorithm is not scalable (as the overall complexity scales with the problem
size N independently of the number of processes p)

W SCITAS P. Antolin 33 / 60



On the importance of algorithmic analysis

Full N x N matrix matrix multiplication with the naive method O(N3)

struct timeval t;
const double tl = gettimeoftheday(&t,0);
for (i=0;i<N;i++){
for (j=0;j<N;j++){
for (k=0;k<N;k++){
Cli1[31=C[i1 (3] + A[il [x]=*B[k][j];

}
const double t2 = gettimeoftheday(&t,0);
const double mflops = 2.0*pow(N,3) / (t2-t1) / 1.0E6 ;
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Flynn's taxonomy

Classic model, simple, gives a good first approximation

Single Instruction | Multiple Instruction
Single Data SISD MISD
Multiple Data SIMD MIMD

most modern machines are hybrids of these categories
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Flynn's taxonomy

Classic model, simple, gives a good first approximation

Single Instruction | Multiple Instruction
Single Data SISD MISD
Multiple Data SIMD MIMD

most modern machines are hybrids of these categories
m SISD: entirely sequential program
m SIMD: same operation is done over a large data set
m MISD: rare. Only used for fault tolerance purpose

m MIMD: several processors that function asynchronously and independently
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Flynn's taxonomy: notable examples

Single Instruction Multiple Instruction

Single
Data

Multiple
Data
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Flynn's taxonomy: notable examples

Single Instruction Multiple Instruction
i = Any sequential
Single code
Data
Multiple
Data
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Flynn's taxonomy: notable examples

Single Instruction Multiple Instruction
_ = Any sequential
Single code
Data
= |ntel SSE
(Streaming SIMD
) extensions, 4 float
Multiple operations per
Data cycle)
= GPUs
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Flynn's taxonomy: notable examples

Single Instruction Multiple Instruction
i = Any sequential
Single code
Data
= |ntel SSE m A cluster
(Streaming SIMD (distributed
) extensions, 4 float memory
|E)/|U|tlp|e operations per architecture)
ata
cycle) = A multicore
= GPUs processor
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Types of parallelism

m Bit-level parallelism: SIMD in the register (like SSE)
m Task parallelism or pipelining (Instruction-level parallelism)

m Data parallelism (loop parallelism)

W SCITAS P. Antolin 38 / 60



Bit-level parallelism

m Parallelism based on the size of the data the processor can process at once
= SIMD within a register (SWAR)

W SCITAS P. Antolin 39 / 60
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= SCITAS

Task parallelism

m often called pipelining

m think of it as an assembly chain

>
| 2
>

v

a task is divided into a sequence of smaller tasks

each task is executed on a specialized piece of hardware

each piece of hardware operates concurrently with the other stages of the
pipeline

each of the step is performed during a clock period of the machine

filling the pipeline takes several clock cycles (latency)

once the pipeline is filled, a result appears every clock cycle
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Data parallelism

m often called loop-level parallelism
m data is distributed across different computing units or

m resides on a global memory address space

. more on that on the next lectures

W SCITAS P. Antolin 41 / 60



OpenMP OpenMP

Thread 1 Thread 2 Thread 3

4 x SIMD 4 x SIMD 4 x SIMD
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Levels of parallelism

OpenMP OpenMP NVLink
Thread 2 Thread 3 GPU 1 T GPU 2

Thread 1

4 x SIMD 4 x SIMD 4 x SIMD
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Bit-level parallelism

m SIMD parallel processing is applied across sections of a CPU register
m ‘“vector’ computing

m on x86 processors, this is achieved with the following instructions sets:

» MMX, 3DNow!
» SSE, SSE2, SSSE3, SSE4
> AVX, AVX2, AVX512

m SSE up to the currently latest version 4.2 can process four single precision (32-bit)
floating point numbers or two double precision (64-bit) floating point numbers in
vectorized manner.

m AVX512 can process eight double precision floating point numbers or sixteen in
single precision.
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Processor instructions extensions

grep -ml flags /proc/cpuinfo
flags : fpu vme de pse tsc msr
pae mce cx8 apic sep mtrr pge mca cmov pat pse36
clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe
syscall nx pdpelgb rdtscp 1m constant_tsc art
arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64
monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16
xtpr pdcm pcid dca ssed4_1 sse4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx fl6c rdrand lahf_lm
abm 3dnowprefetch cpuid_fault epb cat_13 cdp_13
invpcid_single pti intel_ppin ssbd mba ibrs ibpb
stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase
tsc_adjust bmil hle avx2 smep bmi2 erms invpcid rtm
cgm mpx rdt_a avxb512f avx512dq rdseed adx smap clflushopt
clwb intel_pt avx512cd avxb512bw avx512v]l xsaveopt xsavec
xgetbvl xsaves cgm_llc cgm_occup_llc cqm_mbm_total

= SciTas cogm_mbm_local dtherm ida arat plA"B¥s pku ospke md clear flush 11d 44 / 60



Taking advantage of vectorization

= hope that Matlab/Python/Octave is smart and does it by itself (?7)
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Taking advantage of vectorization

= hope that Matlab/Python/Octave is smart and does it by itself (?7)
m count on the compiler (what most people do)

m help the compiler by manually unrolling loops and adding vectors (that's what
most people do when the previous fails)

m use intrinsics within your code: manual vectorization with processor instructions
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m write assembly code and link it with nasm (you don't want to do this)

W SCITAS P. Antolin 45 / 60



Taking advantage of vectorization

= hope that Matlab/Python/Octave is smart and does it by itself (?7)
m count on the compiler (what most people do)

m help the compiler by manually unrolling loops and adding vectors (that's what
most people do when the previous fails)

m use intrinsics within your code: manual vectorization with processor instructions
(painful but works)

m write assembly code and link it with nasm (you don't want to do this)

m use efficient vectorized implementations (MKL, OpenBLAS,...) of BLAS,
LAPACK, etc.
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Exploiting bit parallelism

Bit-level parallelism can be automatically exlploited by the compiler
exl.c

7 for (i=0; i<256; ++i){
8 alil=i; bl[il=i;

9 }

10 for (i=0; i<256; ++i)
11 c[i] = ali]l + b[il;

gcc
gcc -03 -msse2 -ftree-vectorizer-verbose=2 exl.c

exl.c:10: note: LOOP VECTORIZED.
exl.c:7: note: LOOP VECTORIZED.
exl.c:6: note: vectorized 2 loops in function.

icc

icc -03 -vec-report exl.c
exl.c(7): (col. 2) remark: LOOP WAS VECTORIZED.
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Distributed versus shared memory machines

Distributed memory | Shared memory

P, Py Py Po P - Py

/\/]0 /\/]1 s /\/]N \_,N\/

Nﬁg interconnect

network or switch
memory
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The Top500

http://www.top500.org/

500

P. Antolin 48 / 60




Measuring computers speed

Kiloo k thousand 103
Mega M  million 10°
Giga G billion 10°
Tera T trillion 1012
Peta P quadrillion 10%°
Exa E quintillion 108
Zetta Z  sextillion 1021
Yotta Y septillion  10%

Today's units:

Processor speed GHz
RAM GB
Hard disk B

w somasHZ = 1/s — 1 GHz = 10° machine cycles.per, second 49 / 60



What is the Top500

List of the 500 most powerful machines in the world

Recognized by:
» industry
» academia
» vendors
» media

Idea by Hans Meuer, Jack Dongarra, Erich Strohmaier, Horst Simon

The list is published twice per year (June and November)

Computers are ranked by their performance on the LINPACK Benchmark (Rmax,
FLOPS)

A great way to keep track of computer evolution!
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FLOPS: Floating Point Operations Per Second

Rpeak: theoretical peak performance provided by the constructor

A consumer processor has peak performance of the order of hundreds of GigaFLOPS,
while top supercomputers are in the order of ExaFLOPS.
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FLOPS: Floating Point Operations Per Second

Rpax: performance measured with the LINPACK benchmark
m Solve Ax=b with LU decomposition
m Data is partitionned onto a PxQ grid of processes
m |n practice:
» download HPL

» compile
» modify HPL.dat
» run!
In practice, we solve a dense linear system

Ax = b

the following way:
m let P be a permutation matrix, then 3P|PA = LU.
Compute P, L, U.
m solve Ly = Pband Ux =y
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Memory requirements
=P L |

m need to store A and b
= N x N + N real numbers

m double precision numbers use 8 bytes
= 8(N2 + N) bytes of RAM needed

m given a fixed amount of RAM, it is easy to compute the N parameter in HPL.dat

W SCITAS P. Antolin 53 / 60



Number of operations

= an LU decompostion requires O(N3) operations
m solving triangular systems requires O(N?) operations

Precisely, the benchmark algorithm requires
2
§N3 + N? + O(N)

operations for a matrix of order .
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Orders of magnitude: Watts

1 kW: a hairdryer
EPFL average consumption (Ecublens campus): ~5 MW

100 kW: 3 days steady consumption of 100 kW = 1 year power consumption of a
typical family

1 MWy cost: 2.5 MCHF (average domestic energy price in Switzerland)

Top supercomputers’ consumption is in the order of 30 MW: ~75 MCHF /year
(considering domestic energy price)
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Highlights of the Top500
=P L

m The HPL benchmark has been criticized by many, for the following reasons:

B it is not representative of the real applications running on the machines
B it is suspected that the chip manufacturers optimize their instruction set only
to have a higher HPL score

m \We have a new candidate: the High Performance Conjugate Gradient (HPCG)

m There is a big turnover in the machines in the list.
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Top500 — November 2024
=P L [

Machine # cores  Rpax Rpeak Power Country
[PFlops] [PFlops] [MW]
1 El Capitan 11,039,616 1,742 2,746 29,6 USA
2 Frontier 9,066,176 1,353 2,056 24,6 USA
3 Aurora 9,264,128 1,012 1,980 38,7 USA
4 Eagle 2,073,600 561 847 USA
5 HPC6 3,143,520 478 607 8,5 Italy
6 Fugaku 7,630,848 442 537 29.9 Japan
7 Alps 2,121,600 435 575 7,1 Switzerland
8 LUMI 2,752,704 380 532 7,1 Finland
9 Leonardo 1,824,768 241 306 7.5 Italy
10 Tuolumne 1,161,216 208 289 3,4 USA

=scmas 102 Kuma 26,240 12 P. ARQin 0,3 Switzerland (EPFL) 57 / 60



Top500 — November

EPFL A few interesting facts

Countries System Share

@ United States

® China
Germany

@ Japan

@ France

® italy

@ United Kingdom

@® South Korea

@ Netherlands

@ Canada

@ Others

34.6%
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EPFL

= SCITAS

Top500 — November 2024

A few interesting facts

Countries Performance Share

P. Antolin

@ United States

@ China
Germany

@ Japan

@ France

® ltaly

@ United Kingdom

@ South Korea

@ Netherlands

@ Canada

@ Others
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EPFL

= SCITAS

Top500 — November 2024

A few interesting facts

Vendors System Share

23.2%

P. Antolin

@ Lenovo

@® HPE
EVIDEN

@ DELL

® Nvidia

® Fujitsu

@ NEC

@ Inspur

@ Microsoft Azure

@ MEGWARE

@ Others
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EPFL A few interesting facts

Operating system Family System Share

@ Linux
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L=y = L=
LP' L A few interesting facts

Operating System System Share

= SCITAS

@ Linux
@ Cent0S
HPE Cray 0S
@ Red Hat Enterprise Linux
@ Cray Linux Environment
® Ubuntu 22.04
@ RHEL
@ Ubuntu 22.04.3 LTS
@ bullx SCS
@ Linux/TOSS
@ Others
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EPFL A few interesting facts

Cores per Socket System Share

s
o2
32
@8
® 56
® 20
® 16
® 18
@ 28
® %
@ Others
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Top500 — November 2024

L=y = L=
LP' L A few interesting facts

Processor Generation System Share

@ AMD Zen-3 [Milan)
@ Xeon Gold 62xx (Cascade
14.6% 14.2% Lake)

AMD Zen-2 (Rome)
@ Xeon Platinum (Sapphire Ra...
@ Xeon Gold (Skylake)
@ Xeon Platinum 83xx (Ice Lake)
@ Xeon Platinum 82xx (Cascad...
@ AMD Zen-4 (Genoa)
@ Intel Xeon E5 (Broadwell)
@ Xeon Platinum (Skylake)
@ Others
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EPFL A few interesting facts

Segments System Share

@ Industry

@® Research
Academic

@ Government

@ Vendor

® Others
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Top500 — November 2024

L=y = L=
LP' L A few interesting facts

Projected Performance Development

10 EFlop/s
1 EFlop/s
100 PFlop/s
10 PFlop/s
1 PFlop/s

100 TFlop/s

Performance

10 TFlop/s

1 TFlop/s
100 GFlop/s
10 GFlop/s

1 GFlop/s

100 MFlop/s
1990 1995 2000 2005 2010 2015 2020 2025

Lists
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The Green 500

w m provides a ranking of the most energy-efficient

500 supercomputers in the world
g = MFLOPs/Watts
http://www.green500.org
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http://www.green500.org

.:P.:L The Green 500

EPFL | news EPFL ENAC SB STI IC SV CDM CDH Al Q N

& News

New supercomputer enables cutting-edge and
sustainable research

EPFL's new Kuma supercomputer, which ranks 20m.24

283rd in the Green500 ranking, illustrates EPFL's
efforts to support cutting-edge research with a IMAGES TO DOWNLOAD
low environmental impact. With Kuma, EPFL is

helping anchor Switzerland’s position at !heP_ Antolin
forefront of sustainable computing.
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Welcome

Welcome to the course!
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