
MATH-454 Parallel and High Performance Computing
Lecture 0: Course Introduction

Pablo Antolin
Slides of N. Richart, E. Lanti, V. Keller’s lecture notes

February 20 2025



The team

Pablo Antolín Philipp Weder

P. Antolin 2 / 60



Today’s program

Today
Course organization and description
Some definitions and basic concepts
Parallelism
The Top500

P. Antolin 3 / 60



Moodle page

https://moodle.epfl.ch/course/view.php?id=13817

Slides, exercises, and solutions
Calendar
Please, join the ED Discussion Forum (link on Moodle)
Instructions for accessing the computing facilities

P. Antolin 4 / 60

https://moodle.epfl.ch/course/view.php?id=13817


GIT repositories

First, register in https://gitlab.epfl.ch with your epfl account!

Example codes from the course
▶ https://gitlab.epfl.ch/math454-phpc/course-examples-2025.git

Course exercises
▶ https://gitlab.epfl.ch/math454-phpc/exercises-2025.git

P. Antolin 5 / 60

https://gitlab.epfl.ch
https://gitlab.epfl.ch/math454-phpc/course-examples-2025.git
https://gitlab.epfl.ch/math454-phpc/exercises-2025.git


Course organization

Theory on Thursdays, 13h15, in room DIA 003
Exercises on Thursdays, 15h15 in room DIA 003
Theory lectures will be recorded and posted on https://mediaspace.epfl.ch
(for EUROfusion: Fusion Education and Learning Hub)
Evaluation will be:
▶ Two graded assignments: 25% + 25%
▶ Course’s project: 25%
▶ Oral exam: 25%

The oral exam will be a presentation of your project + questions about the project
and the course (5+5 minutes)
You will be given access to several computing facilities during this course. Follow
the instructions on Moodle. Please respect the usage policies
Visit to EPFL supercomputers (to be precised)

P. Antolin 6 / 60

https://mediaspace.epfl.ch


Calendar

Week 0: today ⇒ course introduction + Theory homework
Weeks 1–8: (Feb. 27 – Apr. 17 2025) ⇒ ex cathedra lectures + exercise sessions
Weeks 9–13: (May. 1 – May. 22 2025) ⇒ work on project
Final project proposal: To be discussed on April 10 2025
Final project submission: Deadline June 8 2025
Oral exam ⇒ June/July ⇒ to be set by SAC

P. Antolin 7 / 60



What this course is about

To be able to:
▶ sustain a conversation about general HPC topics
▶ understand the concepts behind data and instruction parallelism
▶ learn how to use shared memory, distributed memory, and accelerators

paradigm efficiently
▶ get a feeling of what algorithms are suited for parallelism
▶ choose a target architecture based on the needs of a (real) application
▶ learn to use common HPC machines
▶ get your hands dirty with the most common programming techniques

You will learn OpenMP, MPI, and CUDA using C++ (and some Python)

P. Antolin 8 / 60



What this course is NOT about

Bleeding-edge programming languages as Julia, Rust, Go, or alike
PGAS languages as UPC, CAF, Fortress, HPF, or alike
High-level parallel programming concepts or tools as SYCL or similar
Auto parallelization tools or flags as yucca, par4all, intel -parallel, or alike

P. Antolin 9 / 60



Calendar

0. Introduction
1. Hands-on on servers
2. Performance measurement
3. OpenMP
4. Intro to MPI
5. Advanced MPI (graded exercise)
6. Hybrid MPI/OpenMP and MPI with

Python

7. Intro to CUDA
8. Advanced CUDA (graded exercise)
9. Work on project I (?)

10. Work on project II
11. Work on project III
12. Work on project IV

P. Antolin 10 / 60



What we expect from you

Follow the lectures. Do not hesitate to interrupt the lecturer if you may have a
question that could interest your mates
The exercises are key! Without getting your hands dirty you’ll make no progress.
TA is there to answer your questions
Exercises are exercises. Project is project. You will have at least 3 times 4 hours to
ask questions about the project plus the possibility of posting questions on Ed
Forum

P. Antolin 11 / 60



Prerequisites

Moderate C++ (and Python) knowledge
Basic git
Basic bash and linux knowledge

P. Antolin 12 / 60



For the practical lessons

For the practical lessons we will use EPFL’s supercomputers.
Please, check that you’re registered in (link on Moodle)
https://groups.epfl.ch/#/home/S30353

For accessing them you have to use your laptop.
Linux or macOS: just use a terminal + ssh

Windows:
▶ Likely the easiest alternative is to use Git Bash from

https://git-scm.com/
▶ Windows Subsystem for Linux (WSL2)

From any OS: connect to the VDI and select virtual machine
SB-MATH-LINUX-2023

P. Antolin 13 / 60

https://groups.epfl.ch/#/home/S30353
https://git-scm.com/


Get to know each other

1. Name
2. Background: bachelor, EPFL?
3. Master? PhD? Which program?
4. Programming experience

▶ C/C++?
▶ Parallel programming?

5. Is this course directly related to your work?

P. Antolin 14 / 60



Basic computing Thesaurus

Parallel computing
form of computation in which calculations are carried out simultaneously

Distributed (or throughput) computing
Distributed computing is the method of making multiple computers work together
to solve a common problem. It makes a computer network appear as a powerful
single computer that provides large-scale resources to deal with complex challenges
Grid computing (e.g., SETI@home)

Embarassingly parallel workload
Problem where little or no effort is needed to split the problem into a number of
parallel tasks. This is due to minimal or no dependency upon communication
between the parallel tasks, or for results between them.
Example: parameter sweeps. Opposite: inherently sequentialP. Antolin 15 / 60



Basic computing Thesaurus

Supercomputing
Use of the fastest biggest machines to solve large problems
Solving problems on the Top500 machines

High Performance Computing
Mostly a buzzword
Supercomputing + large data + post-processing

Other cool topics around HPC
Cloud Computing (e.g., AWS, Microsoft Azure, Google Cloud)

P. Antolin 16 / 60



Von Neumann architecture (stored program computer)

1. ALU: Arithmetic and Logical Unit
2. Control Unit
3. Memory
4. Input/Output

P. Antolin 17 / 60



System bus

Address bus: instructions on where to find the data
Data bus: instructions on what to find
Control bus: instructions on what to do with (e.g., read, write, fetch,
etc. . . )

P. Antolin 18 / 60



Memory pyramid

P. Antolin 19 / 60



How does it look like in reality?

P. Antolin 20 / 60



Some important values

CPU performance measured in FLOPS (Floating Point Operations Per Second)
Memory bandwidth in Bytes per second
Memory latency in seconds

It is usual to give the peak values (never reachable) defined as:
Peak CPU performance CPU Frequency × Number of operations per clock cycle
× size of the largest vector × number of cores
Memory bandwidth RAM Frequency × Number of transfers per clock cycle ×
Bus width × number of interfaces
Memory latency depends on the size of the data. Usually given by the constructor

P. Antolin 21 / 60



Benchmarks to measure the values

CPU performance: HPL (LINPACK)
Memory bandwidth: STREAM or PMBW
Memory latency Intel Memory Latency Checker

P. Antolin 22 / 60



HPL results on one Fidis node (f104)

P. Antolin 23 / 60



Memory bandwidth example

P. Antolin 24 / 60



Intel Memory Latency Checker

P. Antolin 25 / 60



Intel Memory Latency Checker

P. Antolin 25 / 60



Intel Memory Latency Checker

P. Antolin 25 / 60



Introductory tale

Next Friday afternoon it’s Charlotte’s 10th birthday party! She decides to invite 20
friends.

P. Antolin 26 / 60



Introductory tale

. . . Mrs. Smith – her mother – will not cook anything special, just some sandwiches for
Charlotte’s friends.

Daddy Smith and Charlotte’s brother – Mike – will help too. . .

P. Antolin 26 / 60



Introductory tale

. . . Mrs. Smith knows well how to make a sandwich. Four steps of approximately the
same duration (1 unit of time) are required:

1. cut the bread in two halves
2. spread the butter on the bread
3. add a piece of ham/cheese, a few pickles, and some mustard
4. close the sandwich carefully and put it on a tray

P. Antolin 26 / 60



Introductory tale

. . . how the family could proceed to produce 20 sandwiches in the more efficient
manner. . .

P. Antolin 26 / 60



Introductory tale

old-school fasion? Mrs. Smith does it all alone while Mr. Smith and the kids watch TV?
Pros:
▶ Mrs. Smith does it well without having to explain to others

Cons:
▶ We are in the 21st century . . .
▶ What happens if Charlotte decides to invite the whole school to her birthday?

Time to make 20 sandwiches = 80 units of time
P. Antolin 26 / 60



Introductory tale

. . . 1923 Ford T mode? Mrs. Smith cuts the bread,
then Mr. Smith spread the butter while Mrs. Smith
cuts a new bread, Charlotte adds ham and pickles
while Mrs. Smiths cut bread and finally Mike closes
the sandwiwch and put it in a tray

Pros:
▶ 4× more sandwiches produced when the pipeline is full
▶ specialized tasks, very few communications

Cons:
▶ each step must have the same duration
▶ No place for Shirley (Charlotte’s best friend). Only 4 persons are required to

produce 8× more sandwiches
Time to make 20 sandwiches = 23 units of timeP. Antolin 26 / 60



Introductory tale

. . . totally distributed? Mrs. & Mr. Smith, Charlotte,
and Mike produce 5 sandwiches each. . .

Pros:
▶ Most efficient solution: number of sandwiches to produce / number of people

Cons:
▶ resources problem: need for 4 knives, 4 packets of butter, 4 portions of ham,

etc. . .
▶ deadlocks: if only 1 knife is available, one person works when other waits

Time to make 20 sandwiches = 20 units of time

P. Antolin 26 / 60



Performance analysis

Before starting parallelization: insight of the application
Is the algorithm/application a good candidate for parallelization?
Which parallelization strategy should I choose?
How should I partition the problem?

Helps understanding and improving existing implementations
Do the benchmark match the performance predictions?
Which factors have most influence on the performance?
Which hardware fits most to the application needs?

P. Antolin 27 / 60



Speedup and efficiency

S(p) =
T1

Tp
E (p) =

S(p)

p

where
T1: Execution time using 1 process
Tp: Execution time using p processes
S(p): Speedup of p processes
E (p): Parallel Efficiency

Example:
p Walltime [s] S(p) E(p)

1 24.5 1.0 1.0

2 13.4 1.8 0.9

4 6.8 3.6 0.9

8 4.0 6.1 0.75 P. Antolin 28 / 60



Complexity analysis

Observation:
The speedup S(p) is determined by the computation time and the communication
time, function of the problem size N

Communication time:
It is an overhead to the parallel execution time. It can be partially hidden by
computation.

Complexity:
Computing the complexity O(N, p) provides and insight into the parallelization
potential.

P. Antolin 29 / 60



Complexity analysis: example c = Ab

Full N × N matrix vector multiplication with the naïve method O(N2)

struct timeval t;
const double t1 = gettimeoftheday(&t,0);
for (i=0;i<N;i++){

for (j=0;j<N;j++){
c[i] = c[i] + A[i][j]*b[j];

}
}
const double t2 = gettimeoftheday(&t,0);
const double mflops = 2.*(double)N*(double)N / (t2-t1) / 1.0E6;

P. Antolin 30 / 60



Complexity analysis: example c = Ab

Sequential algorithm:
Time complexity: O(N2)

Size complexity: O(N2)

P. Antolin 31 / 60



Complexity analysis: example c = Ab

Parallel version

t1 = MPI_Wtime();
MPI_Bcast(b, ndiag, MPI_FLOAT, 0, MPI_COMM_WORLD);
MPI_Scatter(A,(nn_loc*ndiag),MPI_FLOAT,A_loc,(nn_loc*ndiag),MPI_FLOAT,0,

MPI_COMM_WORLD);
t2 = MPI_Wtime();
for (j=0;j<ndiag;j++){

for (i=0;i<nn_loc;i++){
c[i] = c[i] + A_loc[i+j*nn_loc]*b[i];

}
}
t3 = MPI_Wtime();
MPI_Gather(c,nn_loc,MPI_FLOAT,b,nn_loc,MPI_FLOAT,0,MPI_COMM_WORLD);
t4 = MPI_Wtime();

P. Antolin 32 / 60



Complexity analysis: example c = Ab

Parallel algorithm over p processes:
Computational complexity: O(N

2

p )

Communication complexity: O(log p + N)

Overall complexity: O(N
2

p + log p + N)

for reasonably large N, latency is negligible compared to bandwidth
The algorithm is not scalable (as the overall complexity scales with the problem
size N independently of the number of processes p)

P. Antolin 33 / 60



On the importance of algorithmic analysis

Full N × N matrix matrix multiplication with the naïve method O(N3)

struct timeval t;
const double t1 = gettimeoftheday(&t,0);
for (i=0;i<N;i++){

for (j=0;j<N;j++){
for (k=0;k<N;k++){

C[i][j]=C[i][j] + A[i][k]*B[k][j];
}

}
}
const double t2 = gettimeoftheday(&t,0);
const double mflops = 2.0*pow(N,3) / (t2-t1) / 1.0E6 ;

P. Antolin 34 / 60



On the importance of algorithmic analysis

P. Antolin 35 / 60



Flynn’s taxonomy

Classic model, simple, gives a good first approximation

Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

most modern machines are hybrids of these categories

SISD: entirely sequential program
SIMD: same operation is done over a large data set
MISD: rare. Only used for fault tolerance purpose
MIMD: several processors that function asynchronously and independently

P. Antolin 36 / 60



Flynn’s taxonomy

Classic model, simple, gives a good first approximation

Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

most modern machines are hybrids of these categories
SISD: entirely sequential program
SIMD: same operation is done over a large data set
MISD: rare. Only used for fault tolerance purpose
MIMD: several processors that function asynchronously and independently

P. Antolin 36 / 60



Flynn’s taxonomy: notable examples

Single Instruction Multiple Instruction

Single
Data

Any sequential
code

Multiple
Data

Intel SSE
(Streaming SIMD
extensions, 4 float
operations per
cycle)
GPUs

A cluster
(distributed
memory
architecture)
A multicore
processor

P. Antolin 37 / 60



Flynn’s taxonomy: notable examples

Single Instruction Multiple Instruction

Single
Data

Any sequential
code

Multiple
Data

Intel SSE
(Streaming SIMD
extensions, 4 float
operations per
cycle)
GPUs

A cluster
(distributed
memory
architecture)
A multicore
processor

P. Antolin 37 / 60



Flynn’s taxonomy: notable examples

Single Instruction Multiple Instruction

Single
Data

Any sequential
code

Multiple
Data

Intel SSE
(Streaming SIMD
extensions, 4 float
operations per
cycle)
GPUs

A cluster
(distributed
memory
architecture)
A multicore
processor

P. Antolin 37 / 60



Flynn’s taxonomy: notable examples

Single Instruction Multiple Instruction

Single
Data

Any sequential
code

Multiple
Data

Intel SSE
(Streaming SIMD
extensions, 4 float
operations per
cycle)
GPUs

A cluster
(distributed
memory
architecture)
A multicore
processor

P. Antolin 37 / 60



Types of parallelism

Bit-level parallelism: SIMD in the register (like SSE)
Task parallelism or pipelining (Instruction-level parallelism)
Data parallelism (loop parallelism)

P. Antolin 38 / 60



Bit-level parallelism

Parallelism based on the size of the data the processor can process at once
SIMD within a register (SWAR)

P. Antolin 39 / 60



Task parallelism

often called pipelining
think of it as an assembly chain
▶ a task is divided into a sequence of smaller tasks
▶ each task is executed on a specialized piece of hardware
▶ each piece of hardware operates concurrently with the other stages of the

pipeline
▶ each of the step is performed during a clock period of the machine
▶ filling the pipeline takes several clock cycles (latency)
▶ once the pipeline is filled, a result appears every clock cycle

P. Antolin 40 / 60



Data parallelism

often called loop-level parallelism
data is distributed across different computing units or
resides on a global memory address space

... more on that on the next lectures

P. Antolin 41 / 60



Levels of parallelism

Thread 1 Thread 2 Thread 3

GPU 1 GPU 2 . . .

4 × SIMD 4 × SIMD 4 × SIMD

OpenMP OpenMP

NVLink

MPI MPI

P. Antolin 42 / 60



Levels of parallelism

Thread 1 Thread 2 Thread 3 GPU 1 GPU 2 . . .

4 × SIMD 4 × SIMD 4 × SIMD

OpenMP OpenMP NVLink

MPI MPI

P. Antolin 42 / 60



Bit-level parallelism

SIMD parallel processing is applied across sections of a CPU register
“vector” computing
on x86 processors, this is achieved with the following instructions sets:
▶ MMX, 3DNow!
▶ SSE, SSE2, SSSE3, SSE4
▶ AVX, AVX2, AVX512

SSE up to the currently latest version 4.2 can process four single precision (32-bit)
floating point numbers or two double precision (64-bit) floating point numbers in
vectorized manner.
AVX512 can process eight double precision floating point numbers or sixteen in
single precision.

P. Antolin 43 / 60



Processor instructions extensions

grep -m1 flags /proc/cpuinfo
flags : fpu vme de pse tsc msr
pae mce cx8 apic sep mtrr pge mca cmov pat pse36
clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe
syscall nx pdpe1gb rdtscp lm constant_tsc art
arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64
monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16
xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm
abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3
invpcid_single pti intel_ppin ssbd mba ibrs ibpb
stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase
tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm
cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt
clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec
xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total
cqm_mbm_local dtherm ida arat pln pts pku ospke md_clear flush_l1dP. Antolin 44 / 60



Taking advantage of vectorization

hope that Matlab/Python/Octave is smart and does it by itself (??)

count on the compiler (what most people do)
help the compiler by manually unrolling loops and adding vectors (that’s what
most people do when the previous fails)
use intrinsics within your code: manual vectorization with processor instructions
(painful but works)
write assembly code and link it with nasm (you don’t want to do this)
use efficient vectorized implementations (MKL, OpenBLAS,. . . ) of BLAS,
LAPACK, etc.

P. Antolin 45 / 60



Taking advantage of vectorization

hope that Matlab/Python/Octave is smart and does it by itself (??)
count on the compiler (what most people do)

help the compiler by manually unrolling loops and adding vectors (that’s what
most people do when the previous fails)
use intrinsics within your code: manual vectorization with processor instructions
(painful but works)
write assembly code and link it with nasm (you don’t want to do this)
use efficient vectorized implementations (MKL, OpenBLAS,. . . ) of BLAS,
LAPACK, etc.

P. Antolin 45 / 60



Taking advantage of vectorization

hope that Matlab/Python/Octave is smart and does it by itself (??)
count on the compiler (what most people do)
help the compiler by manually unrolling loops and adding vectors (that’s what
most people do when the previous fails)

use intrinsics within your code: manual vectorization with processor instructions
(painful but works)
write assembly code and link it with nasm (you don’t want to do this)
use efficient vectorized implementations (MKL, OpenBLAS,. . . ) of BLAS,
LAPACK, etc.

P. Antolin 45 / 60



Taking advantage of vectorization

hope that Matlab/Python/Octave is smart and does it by itself (??)
count on the compiler (what most people do)
help the compiler by manually unrolling loops and adding vectors (that’s what
most people do when the previous fails)
use intrinsics within your code: manual vectorization with processor instructions
(painful but works)

write assembly code and link it with nasm (you don’t want to do this)
use efficient vectorized implementations (MKL, OpenBLAS,. . . ) of BLAS,
LAPACK, etc.

P. Antolin 45 / 60



Taking advantage of vectorization

hope that Matlab/Python/Octave is smart and does it by itself (??)
count on the compiler (what most people do)
help the compiler by manually unrolling loops and adding vectors (that’s what
most people do when the previous fails)
use intrinsics within your code: manual vectorization with processor instructions
(painful but works)
write assembly code and link it with nasm (you don’t want to do this)

use efficient vectorized implementations (MKL, OpenBLAS,. . . ) of BLAS,
LAPACK, etc.

P. Antolin 45 / 60



Taking advantage of vectorization

hope that Matlab/Python/Octave is smart and does it by itself (??)
count on the compiler (what most people do)
help the compiler by manually unrolling loops and adding vectors (that’s what
most people do when the previous fails)
use intrinsics within your code: manual vectorization with processor instructions
(painful but works)
write assembly code and link it with nasm (you don’t want to do this)
use efficient vectorized implementations (MKL, OpenBLAS,. . . ) of BLAS,
LAPACK, etc.

P. Antolin 45 / 60



Exploiting bit parallelism

Bit-level parallelism can be automatically exploited by the compiler
ex1.c

7 for (i=0; i<256; ++i){
8 a[i]=i; b[i]=i;
9 }

10 for (i=0; i<256; ++i)
11 c[i] = a[i] + b[i];

gcc
gcc -O3 -msse2 -ftree-vectorizer-verbose=2 ex1.c

ex1.c:10: note: LOOP VECTORIZED.
ex1.c:7: note: LOOP VECTORIZED.
ex1.c:6: note: vectorized 2 loops in function.

icc
icc -O3 -vec-report ex1.c
ex1.c(7): (col. 2) remark: LOOP WAS VECTORIZED.

P. Antolin 46 / 60



Distributed versus shared memory machines

Distributed memory

P0

M0

P1

M1

. . .
PN

MN

network or switch

Shared memory

P0 P1 . . . PN

interconnect

memory

P. Antolin 47 / 60



The Top500

P. Antolin 48 / 60



Measuring computers speed

Kilo k thousand 103

Mega M million 106

Giga G billion 109

Tera T trillion 1012

Peta P quadrillion 1015

Exa E quintillion 1018

Zetta Z sextillion 1021

Yotta Y septillion 1024

Today’s units:

Processor speed GHz

RAM GB

Hard disk TB

Hz = 1/s → 1 GHz = 109 machine cycles per secondP. Antolin 49 / 60



What is the Top500

List of the 500 most powerful machines in the world
Recognized by:
▶ industry
▶ academia
▶ vendors
▶ media

Idea by Hans Meuer, Jack Dongarra, Erich Strohmaier, Horst Simon
The list is published twice per year (June and November)
Computers are ranked by their performance on the LINPACK Benchmark (Rmax,
FLOPS)

A great way to keep track of computer evolution!

P. Antolin 50 / 60



FLOPS: Floating Point Operations Per Second

RPeak : theoretical peak performance provided by the constructor

A consumer processor has peak performance of the order of hundreds of GigaFLOPS,
while top supercomputers are in the order of ExaFLOPS.

P. Antolin 51 / 60



FLOPS: Floating Point Operations Per Second

RMax : performance measured with the LINPACK benchmark
Solve Ax=b with LU decomposition
Data is partitionned onto a PxQ grid of processes
In practice:
▶ download HPL
▶ compile
▶ modify HPL.dat
▶ run!

In practice, we solve a dense linear system

Ax = b

the following way:
let P be a permutation matrix, then ∃P|PA = LU.
Compute P , L, U.
solve Ly = Pb and Ux = y

P. Antolin 52 / 60



Memory requirements

need to store A and b
⇒ N × N + N real numbers
double precision numbers use 8 bytes
⇒ 8(N2 + N) bytes of RAM needed
given a fixed amount of RAM, it is easy to compute the N parameter in HPL.dat

P. Antolin 53 / 60



Number of operations

an LU decompostion requires O(N3) operations
solving triangular systems requires O(N2) operations

Precisely, the benchmark algorithm requires

2
3
N3 + N2 +O(N)

operations for a matrix of order N.

P. Antolin 54 / 60



Orders of magnitude: Watts

1 kW: a hairdryer
EPFL average consumption (Ecublens campus): ∼5 MW
100 kW: 3 days steady consumption of 100 kW = 1 year power consumption of a
typical family
1 MWy cost: 2.5 MCHF (average domestic energy price in Switzerland)
Top supercomputers’ consumption is in the order of 30 MW: ∼75 MCHF/year
(considering domestic energy price)

P. Antolin 55 / 60



Highlights of the Top500

The HPL benchmark has been criticized by many, for the following reasons:
▶ it is not representative of the real applications running on the machines
▶ it is suspected that the chip manufacturers optimize their instruction set only

to have a higher HPL score
We have a new candidate: the High Performance Conjugate Gradient (HPCG)
There is a big turnover in the machines in the list.

P. Antolin 56 / 60



Top500 – November 2024

Machine # cores Rmax
[PFlops]

Rpeak
[PFlops]

Power
[MW]

Country

1 El Capitan 11, 039, 616 1, 742 2, 746 29, 6 USA

2 Frontier 9, 066, 176 1, 353 2, 056 24, 6 USA

3 Aurora 9, 264, 128 1, 012 1, 980 38, 7 USA

4 Eagle 2, 073, 600 561 847 USA

5 HPC6 3, 143, 520 478 607 8, 5 Italy

6 Fugaku 7, 630, 848 442 537 29, 9 Japan

7 Alps 2, 121, 600 435 575 7, 1 Switzerland

8 LUMI 2, 752, 704 380 532 7, 1 Finland

9 Leonardo 1, 824, 768 241 306 7, 5 Italy

10 Tuolumne 1, 161, 216 208 289 3, 4 USA

· · · · · · · · · · · · · · · · · · · · ·
102 Kuma 26, 240 12 22 0, 3 Switzerland (EPFL)P. Antolin 57 / 60



Top500 – November 2024
A few interesting facts

P. Antolin 58 / 60



Top500 – November 2024
A few interesting facts

P. Antolin 58 / 60



Top500 – November 2024
A few interesting facts

P. Antolin 58 / 60



Top500 – November 2024
A few interesting facts

P. Antolin 58 / 60



Top500 – November 2024
A few interesting facts

P. Antolin 58 / 60



Top500 – November 2024
A few interesting facts

P. Antolin 58 / 60



Top500 – November 2024
A few interesting facts

P. Antolin 58 / 60



Top500 – November 2024
A few interesting facts

P. Antolin 58 / 60



Top500 – November 2024
A few interesting facts

P. Antolin 58 / 60



Top500 – November 2024
A few interesting facts

P. Antolin 58 / 60



Top500 – November 2024
A few interesting facts

P. Antolin 58 / 60



Top500 – November 2024
A few interesting facts

P. Antolin 58 / 60



The Green 500

provides a ranking of the most energy-efficient
supercomputers in the world
MFLOPs/Watts

http://www.green500.org

P. Antolin 59 / 60

http://www.green500.org


The Green 500

P. Antolin 59 / 60



Welcome

Welcome to the course!

P. Antolin 60 / 60


	Course organization
	Getting to know each other
	Some definitions and basic concepts
	Parallelism
	Introduction
	Theoretical analysis of a code
	Flynn's taxonomy
	Types of parallelism
	Levels of parallelism

	The Top500: History and background
	Some background
	Measuring FLOPs: HPL


