=PFL

Parallel and High Performance Computing

Dr. Pablo Antolin

Series 7

April 10 2025

CUDA - Intro to GPU programming

1 CUDA

These exercises will make you experiment with the main concepts of CUDA programming. To
access the code pull the math454-phpc/exercises-2025 repository.

For all the CUDA exercises we will use the cluster izar. The home folders are shared across hjed
and izar, so all your files are accessible from both machines.

For every exercise we provide you some starting code that contains comments marked TODO where
you will have to add your code. You will also find a submission script called script.sh. In the
script all the parameters to submit a slurm job using gpus are there:

e Account: -—account=math-454

o QOS: -—qos=math-454

e 1 GPU: --gres=gpu:1

e Partition: --partition=gpu (the default on izar)

To compile you will need to load cuda in addition to a compiler module load gcc cuda.

Exercise 1.1: Hello, World

This exercise is for illustrative purposes only: In general, it is a bad idea to use a printf in a
CUDA kernel since it forces useless synchronizations between the host and the device.

e In the folder hello world edit the hello world.cu file to add a printf in the CUDA kernel.
Try printing the thread and block indexes.

e Be sure to add the proper instruction after calling the kernel to be sure to get the output on
the screen.




Exercise 1.2: Vector addition

In this exercise you will experience different implementations of the vector addition kernel. To
test before having implemented all the versions of the kernel you can comment the calls to not yet
implemented kernels.

e Allocate and deallocate the vectors A, B, and C with CUDA managed memory.

e Implement the vector addition with only 1 thread in vectorAddOneThread. Modify the call
to the kernel to use 1 thread, 1 block.

e Implement the vector addition with 256 threads and 1 block in vectorAddOneBlock. Modify
the call to the kernel to use 256 threads and 1 block.

e Implement the vector addition with 256 threads and the proper amount of blocks to have one
thread per entry in the array in vectorAdd. Modify the call to the kernel to use 256 threads
and the proper amount of blocks.

Exercise 1.3: Matrix multiplication

In this exercise we will implement a naive version of the matrix multiplication
e Look at how the kernel is called in matrix mul.cu.

e Implement the naive matrix multiplication in matrix mul_gpu.cu




	CUDA

