
Parallel and High Performance Computing

Dr. Pablo Antoĺın

Series 6

April 3 2025

Advanced MPI

General information

In this exercise we will practice three advanced MPI topics: derived datatypes, persistent commu-
nications, and MPI I/O.

1 Pi

Exercise 1.1: Derived types

Note: This exercise is a very artificial and unrealistic application of derived MPI datatypes. It is
only supposed to make you play around with them.

• Take the Gather version of the π computation from Series 5 and consider a struct containing
a double and an integer:

1 struct Sum {

2 double sum;

3 int rank;

4 };

Declare a derived data type for this struct in MPI.

Note: A starting code is available in the exercise repository in the file pi gather.cc of the
folder lecture 06/pi.

• After having computed the local sum contribution in each process, create a Sum struct con-
taining the local sum and the local MPI prank.

• Gather all the Sum structs on process 0 using the custom MPI datatype. Check that the
gathered ranks are the integers from 0 to (psize-1), sorted in ascending order.

• Add up all the sum contributions with process 0 and Bcast the result.

1



Exercise 1.2: Persistent communications

Use the asynchronous ring version as a starting point for this exercise (Series 5 Exercise 2.3), and
modify it to use persistent communications instead.
Note: A starting code is available in the exercise repository in the file pi p2p async ring.cc of
the folder lecture 06/pi.

2 Write BMP

Exercise 2.1: MPI I/O

• For this exercise we will use the code in the write bmp folder. This code uses a Grid and fills
it with data, and then writes this grid as a bmp image.

• To execute the code, after building the executable using the provided Makefile, you have to
pass as argument to the executable the number of points per direction (one single integer).

• You will have to modify the dump function in dumper.cc to write the file in parallel. The
way the dumper works is the following:

– Allocates a vector img of char with length h × row size where h is the height (m) of
the grid and row size the width (n) times 3 (for the 3 colors red, green, and blue), plus
a padding required by the bmp specification.

– The grid’s data is transfered to the vector img.

– Two vectors bmpfileheader and bmpinfoheader are filled with the required headers for
the bmp file to be valid.

– The headers are written in the file.

– The image is written in the file.

To parallelize the data writing, you can use MPI File write at instead of fout.write()

calls. The data to be written can be split along h. Thus, row size will remain the same for
each task but the total height h will be split among the tasks. Therefore, you will have to
compute the proper offsets for each task. Notice that the header should be written only once
at the beginning of the file.

• Optional: This dumper file is the same as the one used by the Poisson code, you can try to
modify it to use it with your parallel Poisson code. You will have to be careful to ignore the
ghost cells when assigning the values of img.

Notice that in a näıve non-parallel dumping, the root process would gather all the Poisson
values u from all the processes, and the would dump the results to the file. This approach has
two main problems: It requires global communication (all the processes send information to
the root) and the writing is serial (only the root process writes the file).

3 Poisson stencil with mpi4py

In this second part of the exercise, you will implement the Poisson stencil in 2D using Python. An
explanation of the Poisson stencil can be found in Series 0 and a possible parallelization strategy is
included in this week’s slides.

2



Your task is to transform the provided serial Python code into a parallel version using the mpi4py

package. Useful documentation can be found at https://mpi4py.readthedocs.io/en/stable/.
The required modules can be loaded as

module load intel intel-oneapi-mpi

module load python py-mpi4py

Exercise 3.1: Blocking communications

Consider first an implemenation based on blocking communications with MPI Sendrecv.

Exercise 3.2: Non-blocking communications

Now, try using non-blocking communications.

3

https://mpi4py.readthedocs.io/en/stable/

	Pi
	Write BMP
	Poisson stencil with mpi4py

