
Parallel and High Performance Computing

Dr. Pablo Antoĺın

Series 05 - Assignment 1

March 27 2025

Conjugate gradient

1 General information

This Series will be graded and it amounts for 25% of the total grade of the course. You have to
submit your results to Moodle before April 9 at 23h59 CEST.
During the exercise session on March 27 you will have the opportunity to ask questions about the
exercise, however during the exercise session on April 3 no questions will be answered about this
Series.

2 Problem description

The Conjugate Gradient (CG) method is an iterative algorithm designed to solve linear systems
of equations of the form Ax = b. For the method to be applicable, the matrix A must be real,
symmetric, and positive definite, meaning that it belongs to Rn×n with n > 0, satisfies A⊤ = A,
and ensures x ·Ax > 0 for all x ∈ Rn different from zero.
At each iteration k, the algorithm generates an approximate solution xk, which is updated as

xk+1 = xk + αkpk.

Here, pk represents the conjugate vector, also known as the search direction, and αk is the step
length for that iteration. The residual, defined as

rk = b−Axk,

plays a crucial role in adjusting the search direction.
A key property of CG is that the search directions pk are A-conjugate with all previous directions
{pi}k−1

i=0 , meaning they satisfy the condition:

pk ·Apj = 0, j = 0, . . . , k − 1.

A practical way to enforce this conjugacy is through the formula:

pk = rk −
k−1∑
i=0

pi ·Ark
pi ·Api

pi.

1

The iterative process is typically terminated when the Euclidean norm of the residual falls below a
prescribed tolerance ϵ, that is, when

∥rk∥2 < ϵ.

At this point, the approximation is considered sufficiently accurate, and the algorithm concludes.

3 Basic sequential algorithm

Data: A, b, x0, ϵ
Result: x such that Ax ≈ b
initialization:
r0 := b−Ax0
p0 := r0
k := 0
while ∥rk∥2 > ϵ do

αk := rk·rk
pk·Apk

xk+1 := xk + αk pk
rk+1 := rk − αk Apk
βk :=

rk+1·rk+1

rk rk
pk+1 := rk+1 + βk pk
k := k + 1

end
x := xk

4 The project

The goal of this project is to develop a parallel implementation of the CG algorithm for sparse
matrices using MPI. The following tasks must be completed:

a) Profiling of the sequential code to determine the parts, which have to be parallelized

b) Estimate the sequential fraction of the code and predict the speedup and efficiency based on
Amdahl’s and Gustafson’s laws, respectively.

c) Parallelize the code using MPI and measure the speedup and efficiency by performing strong
and weak scaling experiments, respectively.

d) Compare your measurements to your prediction and explain your results.

5 The code

A sequential code is available in the repository of the exercises in the sub-folder project/cg.
Matrices are read in matrix market format. An example of matrix is given in lap2D 5pt n100.mtx.
It corresponds to the matrix from a Poisson problem on a grid of 100× 100. More examples can be
found on https://sparse.tamu.edu/.
Before compiling or running the code, load

2

https://sparse.tamu.edu/

$> module load gcc openmpi openblas

Then, compile the code using the provided Makefile.
The provided code contains a serial implementation of a sparse solver CGSolverSparse. The sparse
solver uses a sparse matrix storage called COO (for coordinates), sometimes also referred to as aij.
It consists of 3 arrays: one for the Is (irn), one for Js (jcn), and one for the values (a). For a
sparse matrix A we then have:

Airn[i],jcn[i] = a[i] ∀i ∈ [0,nnz[,

and Ajcn[i],irn[i] = a[i] if irn[i] ̸= jcn[i] and is sym.

Where nnz is the number of non-zero entries in the matrix, and is sym is true if the matrix is
symmetric.

6 Submitting the project

You must submit a report and your code. The report should be no longer than two pages. Make
sure you provide answers to all questions above. The code must be submitted as a tarball archive
containing all the necessary files to compile and run the code. Find some instructions on how to
create a tarball archive below.

6.1 Creating a tarball on Mac/Linux

a) Open a terminal and navigate to your project directory.

b) Rename the project directory to <first name> <last name> <SCIPER>.

c) Run the following command:

$> tar -czvf <first_name>_<last_name>_<SCIPER>.tar.gz

<first_name>_<last_name>_<SCIPER>↪→

6.2 Creating a tarball on Windows

a) Go to your project folder and rename it to <first name> <last name> <SCIPER>.

b) Right-click your project folder and select 7-Zip > Add to archive.

c) Choose tar as the archive format.

d) Click OK, then repeat the process, selecting gzip as the compression format.

e) Rename the final file to <first name> <last name> <SCIPER>.tar.gz.

3

	General information
	Problem description
	Basic sequential algorithm
	The project
	The code
	Submitting the project
	Creating a tarball on Mac/Linux
	Creating a tarball on Windows

