=PFL

Parallel and High Performance Computing

Dr. Pablo Antolin

Series 3

March 13 2025

Debugging, profiling, and thread level parallelism
with OpenMP

This week the exercise serie consists of 3 distinct parts: debugging, profiling a serial code, and
thread level parallelism with OpenMP.

1 Debugging

In this part we will see how to sanitize a code for the most commonly found bugs: buffer overflows.

Exercise 1: Write overflow

e In the debugging folder, execute make to build the executables.
e Execute ./write

e Run the code with gdb:

‘ $> gdb . /write ’

e Once inside gdb, run the code with run, as:

‘ (gdb) run ’

It should stop at the line where the segfault happens.
e Check at which line the segfault occurred and study the code write.cc

e You can print the value of the variables with print. For instance,

(gdb) print i
(gdb) print data

e Fix the bug and check that the code works properly now.

e Describe the bug.

Exercise 2: Read overflow

e Execute the ./read executable.
e [t might run fine but there is a bug.

e Run the code with valgrind:

$> valgrind ./read

e Check at which line the error occurred and study the code read.cc
e Describe the bug.

e You can also compile with special sanitize options:

$> module load gcc
$> make clean
$> CXXFLAGS='-fsanitize=address' make

Execute again the buggy version of ./read (and ./write)
In this case the bounds check is always done at execution time.

Note: The sanitizers are relatively new. They were initially implemented in clang and ported
to gcc. Therefore, you should use a relatively new version of the compilers. On EPFL’s cluster
it means loading the module for gcc (it is not implemented in Intel compilers). At execution
it will try to allocate a significant amount of memory. On some system’s this behavior is
blocked and will make the sanitizer fail.

2 Profiling 101

In this part we will use the code in the poisson folder. This code will be used in multiple series.

Exercise 3: Sequential profiling with gprof

gprof is a profiling tool based on function calls counting. Therefore, if there are no functions you
will see nothing. And you cannot get a grain finner than function calls.

e To use gprof you have to add the —pg option at compilation. Due the fact this is a C++ code
it is highly recommended to at least have one level of optimization.

$> CXXFLAGS='-pg -g -01' make

e Run the code using a batch script, for instance:

#!/bin/bash -1
#SBATCH --qos=math-454
#SBATCH --account=math-454

./poisson

It should generate automatically a gmon.out file in addition to the normal output of the code.

e This file can be visualized with gprof:

$> gprof ./poisson

e Where is most of the time spent? What can you do about it?

e Remove this “unnecessary” call to this expensive function at every iteration.

Exercise 4: Sequential profiling with perf

perf uses hardware counters present in the CPU. It does a statistical analysis of the execution,
hence results may vary between runs.

e Make sure you commented the calls to the dump function.
e Change the size of the problem to 1024 (modify the line #define N 256).

e To do some profiling with perf, recompile your code with the following options:

$> make clean
$> CXXFLAGS='-g -pg -02' make

You can also compile with more optimization -03 but the results will be a bit harder to
interpret.

e Run you code adding the perf tool in front of the executable, as

#!/bin/bash -1
#SBATCH --qos=math-454
#SBATCH --account=math-454

perf record -o perf.data --call-graph dwarf ./poisson

This will ask perf to record the collected statistics for the call graph of the run.

e You can visualize the results in an interactive way using:

$> perf report -g

This will report in the form of a call graph the results written in the perf.data file. Try to
navigate the results and inspect the instructions that are more time consuming.

e perf can also give you some stats. Run it from a script as:

#!/bin/bash -1
#SBATCH --qos=math-454
#SBATCH --account=math-454

perf stat ./poisson

e Copy the poisson executable to ./poisson_ji

e In the compute step function, permute the order of the loops on i and j. Recompile and copy
the executable to ./poisson_ij

e Compare the perf stats of both executables.

e To get a better understanding on what is the difference between the two runs, re-run them
with:

#!/bin/bash -1
#SBATCH --qos=math-454
#SBATCH --account=math-454

perf stat -e Ll-dcache-loads,Ll-dcache-load-misses ./poisson_ij
perf stat -e Ll-dcache-loads,Ll-dcache-load-misses ./poisson_ji

e What do you notice?

3 Thread Level Parallelism: OpenMP

In this part we will start with a simple code that computes an approximation of 7 using the
relationship:
1
T 1
- = ——dzx.
4 /0 1+ 22

Exercise 5: OpenMP: hello world

e In the file pi.cc add a function call to get the number of threads. Both omp_get_num_threads
and omp_get max_threads are good candidates, but they do not do the same thing. Check
OpenMP’s documentation.

e Compile using the proper options for OpenMP.
e Test that it works by varying the number of threads export OMP_NUM_THREADS

e To vary the number of threads in a sbatch job you can set the number of threads to the
number of cpus per task

#!/bin/bash

#SBATCH --qos=math-454
#SBATCH --account=math-454
#SBATCH -c <nthreads>

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
<my_openmp_executable>

Exercise 6: Parallelize the loop

The way this exercise ask you to parallelize the code is willingly not correct. The purpose is to make
you realize the effect of a race condition.

e Add a parallel for work sharing construct around the integral computation, with default for
all variables context.

Run the code

Run the code

Run the code

You should observe different results due to a race condition.

Exercise 7: Naive reduction

Here again, it is not the optimal way to do it. But it is often the first idea you might have to solve
the problem of the previous exercise. Actually, in bigger codes, you might do it without being so
clear that the placement of critical region can impact performances.

e To solve the race condition from the previous exercise we can protect the computation of the
sum. Add a critical directive to protect it.

e Run the code.

e What can you observe on the execution time while varying the number of threads?

Exercise 8: Naive reduction +-+

This solution is perfectly good in terms of result and performance. It will match the results of
Ezercise 9, so it might provide us some information of how reduction is actually implemented.

e Create a local variable partial_sum per thread.
e Make each thread compute it’s own partial_sum (private).

o After the computation of the integral use a critical directive to add the partial_sum to the
shared sum.

Exercise 9: Reduction

e Use the reduction clause.

e Compare the timings with the previous versions.

Exercise 10: Poisson

e Now you can apply what you learned to the poisson code.

e Remember that 90% of the time is spend in the dumpers. So modify this behavior to dump
only at the end of the simulation to get a validation image.

	Debugging
	Profiling 101
	Thread Level Parallelism: OpenMP

