=PFL

Parallel and High Performance Computing

Dr. Pablo Antolin

Series 2

March 6 2025

Measuring CPU performances

Exercise 1: Theoretical analysis: Amdhal’s and Gustafson’s laws

Recall the 2D Poisson solver from the Exercise 6 of Series 0. We now assume a very simple paral-
lelization strategy for the solver:

Each processor i gets N/p lines of the grid, where p is the total number of processors, and N is
the total number of lines in the grid. We consider sd; the subdomain of size N x % belonging to
processor i. Processor 0 is in charge of the initialization stage. Afterwards, at each iteration k the
algorithm is:

a) Compute a step of the Jacobi solution on sd;.
b) Send the last line of sd; to processor i + 1 and the first line of sd; to processor i — 1.

c) Receive the last line of sd;—; from processor i — 1 and the first line of sd;y; from processor
1+ 1.

d) Compute the local L2-norm.
e) Send the local L?-norm to processor 0.

f) If i = 0, compute the global L?norm, by suming all the local L?-norms, and send it to all
Processors.

g) Receive the global L?-norm from process 0.
h) Compare with espilon. Exit if reached.

Note in the second and third steps, adjustments should be required for the first and last subdomains.

Answer the following questions:

a) What is the definition of the Amdah!’s law (with the serial part 1 —« and the serial execution
time 77)? What does this law measure?

b) What is the definition of the Gustafson’s law (with the non-parallelizable part 1 — «(N) and
problem size N)? What does this law measure?




c¢) Considering the algorithm above and information gathered in Table 1, provide an estimation
of 1 — «, the serial part of the code that can not be parallelized.

d) What is the upper bound of the speedup according to Amdahl’s law?

e) What would be the maximum efficiency with 128 processors?

Exercise 2: Theoretical roofline

Run the following command (in a single node) in helvetios:

‘$> srun -n 1 --qos=math-454 --account=math-454 cat /proc/cpuinfo

Determine:
a) The theoretical peak performance of a single core.
b) The theoretical performance of the memory.
¢) The roofline model, in particular the ridge point.

Note: You will need to check some information on https://en.wikichip.org

N tiotal Linit Nsteps Lstep
128 0.003 0.000 109 0.00003
256 0.496 0.004 8194 0.00006
384 1.083 0.011 7445 0.00015
512 2.242 0.021 8238 0.00027
640 4.215 0.043 8234 0.00051
768 5.500 0.0561 6088 0.00090
896 7.736 0.078 5655 0.00137
1024  15.246 0.153 7395 0.00206
1152 23.317 0.234 7450 0.00313
1280 34.051 0.341 7724 0.00441
1408  40.636 0.407 8371 0.00485
1536 75.720 0.758 13049 0.00580
1664  87.591 0.874 13222 0.00662
1792  85.202 0.851 13255 0.00643
1920 107.046 1.071 13652 0.00784
2048 126.070 1.261 13964 0.00903
2176 132905 1.329 13521 0.00983
2304 236.203 2.361 18680 0.01264
2432  246.091 2.461 18814 0.01308
2560 258.232 2.582 17515 0.01474

Table 1: Time measurements of a 2D Poisson solver. N is the size of the problem (grid size =
N x N); tiotal is the total time (in seconds); tini¢ is the initialization time (in seconds); ngteps is the
number of iterations steps to reach an espilon of 0.005; tcp is the time (in seconds) per iteration.



https://en.wikichip.org

Exercise 3: Measured roofline Let’s now measure the CPU and memory performances using

some tools.

a) Compile and run the code in Stream to compute the sustained memory performance (consider
the minimum value which you see).

b) Compile and run the code in Dgemm to compute the sustained peak performance.
¢) Compute the roofline model, in particular the ridge point.

How to compile:

$> module load intel

$> module load intel-oneapi-mkl
$> cd <FOLDER>

$> make

How to run:

$> module load intel

$> module load intel-oneapi-mkl # only when running ./dgemm
$> export KMP_AFFINITY=compact

$> export granularity=fine

$> export OMP_NUM_THREADS=1

$> srun -n 1 -N 1 --qos=math-454 --account=math-454

— —-cpus-per-task=$0MP_NUM_THREADS ./stream

$> srun -n 1 -N 1 --qos=math-454 --account=math-454

— —-cpus-per-task=$0MP_NUM_THREADS ./dgemm

Compare the results using OMP_NUM_THREADS=8.

Exercise 4: Jacob: stencil We want to solve the Jacobi stencil:
u(i,j) = 1/4xC u(i-1, j) + u(i+1, j) + u(i, j-1) + u(i, j+1) )
a) What is the arithmetic intensity (AI) of this equation?

b) According to the roofline model, what is the maximum performance we can get?

Go to the directory Jacobi:
® jacobi.c is the main driver.
e jacobi-naive.c is the “classic” implementation.

Compile and run this code using the Makefile. Launch it as:

$> module load intel

$> export KMP_AFFINITY=compact
$> export granularity=fine

$> export OMP_NUM_THREADS=1




$> srun -n 1 -N 1 --qos=math-454 --account=math-454
— —-cpus-per-task=$0MP_NUM_THREADS ./jacobi-naive 1000

where 1000 is the number of points per direction of the stencil. Repeat the same operation, but
using 8 threads instead of 1. Repeat it again, but using 10000 points per direction. Consider the
median value over the iterations, hence discarding possible outliers in the performance values which
you obtain.

c) Report the computed performance for all the cases.

d) What are the differences between the expected maximum performance and the obtained ones?
How can these differences been explained?

Exercise 5: (if you finish early...) The files jacobi-sse.c and jacobi-avx*.c containt dif-

ferent implementations using DLP with intrinsics. Compile and run them in the same setting as in
the previous exercise. Consider as well the executable jacobi-naive-auto-vec.

a) Which one is the fastest and why?

b) Can you beat those implementations?




