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Some basic concepts

This serie can be done exclusively with pen and paper. The objective is to introduce a few basic
concepts and to perform the theoretical analysis of a code and understand if it is worth or not to
parallelize its sequential version and what could be its theoretical parallel performance. The answers
to exercises can be found in the slides of the first lecture and the videos proposed on moodle.

Exercise 1: Big O notation

a) Define in one sentence time and space complexities of an algorithm.

b) Assume you have two algorithms A1 (with time complexity Ot(N logN) and space complexity
Os(N)) and A2 (with Ot(N

3) and Os(N
3)). Which one is worth to be parallelized?

Exercise 2: Vocabulary

a) Why a DAG (Direct Acyclic Graph) is useful for the analysis of a parallelization strategy for
a particular algorithm?

b) What is the critical path in a DAG?

c) What are the three main kinds of parallelism?

d) What is one of the main solutions for solving the “irregular parallelism” problem?

Exercise 3: Machine model

a) What ILP, TLP, and DLP stand for?

b) What is a vector intrinsic?

c) Sort the following memories according to their speed of access: DRAM, L2, L1, L3, SSD.

d) Which are the 4 types of parallel architectures according to Flynn’s taxonomy? Provide an
example of each.

1



Exercise 4: Threads and processes

a) What are the main differences between thread and process?

Exercise 5: Performance aspects

a) What is the definition of speedup?

b) What is the definition of parallel efficiency?

Exercise 6: Performance aspects of the 2D Poisson solver

We are going to study a Poisson equation solver in 2D. The Poisson’s problem reads:

∆u = f in Ω = [0, 1]× [0, 1] (1)

u = 0 on ∂Ω (2)

with
f(x, y) = −2π2 sin(πx) cos(πy). (3)

In 2D, the partial differential equation (1) becomes(
∂2

∂x2
+

∂2

∂y2

)
u(x, y) = f(x, y). (4)

The equation is discretized in Ω as a rectangular grid of size N × N . We use a centered finite
differences discretization scheme to approximate (4), that yields a linear system Ax = b. Using a
Jacobi method, that system can be solved iteratively by expressing uk+1 as a function of uk (solution
u at iteration k). Thus, introducing the discretization scheme we obtain

uk+1
i,j =

1

4

(
uki+1,j + uki−1,j + uki,j+1 + uki,j−1 − fi,jh

2
)
, (5)

where h = 1/N . uki,j corresponds to the solution u at iteration k, at the point i, j of the grid, with

i, j = 1, . . . , N . The discrete counterpart of f(x, y) reads fi,j = −2π2 sin(πih) cos(πjh).

Below you can find the bulk of a sequential code to solve the 2D Poisson equation using Jacobi’s
method. We set EPS = .005 the minimal error that the L2-norm must reach.
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1 # define EPS 0.005

2 # define N 1024

3

4 int main() {

5 const float h = 1. / (float)N;

6

7 // Allocation of the arrays of pointers

8 float **u, **uo, **f;

9 // malloc . . .

10

11 // initialization of u0 and f

12 // for(int i = 0; i < N; ...

13

14 k = 0;

15 const float start = second();

16 do {

17 float l2 = 0.;

18

19 for(int i = 1; i < N-1; ++i) {

20 for(int j = 1; j < N-1; ++j) {

21 // computation of the new step

22 u[i][j] = 0.25 * (uo[i-1][j] + uo[i+1][j] + uo[i][j-1] + uo[i][j+1] -

f[i][j] * h * h);↪→

23

24 // L2 norm

25 l2 += (uo[i][j] - u[i][j]) * (uo[i][j] - u[i][j]);

26 }

27 }

28

29 // copy new grid into old grid

30 for(int i = 0; i < N; ++i) {

31 for(int j = 0; j < N; ++j) {

32 uo[i][j] = u[i][j];

33 }

34 }

35

36 k++;

37 } while(l2 > EPS);

38

39 const float t = second() - start;

40 printf("T=%.5f s for %d steps (%.5f s/step)\n", t, k, t / k) ;

41

42 // Deallocation

43 // free ...

44

45 return 0;

46 }
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a) Compute the computational complexity of the algorithm (“big O” notation) in time.

b) Compute the computational complexity of the algorithm (“big O” notation) in space.

c) Is this problem worth to be parallelized?

4


