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Exercise 1. Show by a direct computation that the “symplectic Euler method” is
symplectic.

Exercise 2. Consider a general Hamiltonian system of the form

ṗi = −∂H
∂qi

(p, q), q̇i = ∂H

∂pi

(p, q), i = 1, . . . , d, (1)

where p, q ∈ Rd and H : R2d → R denotes the Hamiltonian function.
The aim of this exercise is to prove the following statement in E. Celledoni, R. McLach-

lan, D. McLaren, B. Owren, G. Quispel and W. Wright, Energy-preserving Runge–Kutta
methods, ESAIM: M2AN, vol. 43, 2009:

“No consistent Runge–Kutta method exactly preserves the Hamiltonian for all polyno-
mial Hamiltonian systems. However, for any given polynomial Hamiltonian, there exists
a consistent Runge–Kutta method that exactly preserves it.”

i) Show that a consistent Runge–Kutta method cannot exactly preserve the Hamilto-
nian H(p, q) for all Hamiltonian systems (3) with polynomial H(p, q).
Hint: Let d = 1 and consider the Hamiltonian H(p, q) = p−

∫ q
0 g(t) dt where g(t) is

some polynomial.
ii) Consider the average vector field (AVF) method

yn+1 = yn + h
∫ 1

0
f(θyn+1 + (1− θ)yn) dθ,

where yn ∈ R2d, and assume that the vector field f : R2d → R2d is L-Lipschitz
continuous. Show that this method is well-defined for a step size h small enough.
Hint: use a fixed-point theorem.

iii) Show that the AVF method exactly conserves the energy H(y) for any system (3).
Hint: prove and use that H(yn+1)−H(yn) =

∫ 1

0

d
dθ
(
H(θyn+1 + (1− θ)yn)

)
dθ.

iv) Assume that the Hamiltonian function H(p, q) is polynomial. Show that there exists
a quadrature formula (bi, ci)i=1,...,s, with nodes ci and weights bi, such that

∫ 1

0
f(θyn+1 + (1− θ)yn) dθ =

s∑
i=1

bif(yn + (yn+1 − yn)ci),

where f(y) = J−1∇H(y).
v) Using point iv), construct a Runge–Kutta method which coincides with the AVF

method for this particular polynomial Hamiltonian H(p, q) and deduce that this
Runge–Kutta method exactly preserves the Hamiltonian.

Exercise 3. Find a consistent, irreducible Runge–Kutta method which is symplectic,
but different from all Gauss methods.
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Exercise 4. Consider the mathematical model for a pendulum

ṗ = −∂H
∂q

(p, q), q̇ = ∂H

∂p
(p, q), (2)

where H(p, q) = 1
2p

2 − cos(q) and with a set of initial values

pi
0 = sin(αi)/4, qi

0 = π/2 + cos(αi)/4, i = 1, . . . , 100,

where αi = 2πi/100.

i) For all i = 1, . . . , 100, solve problem (5) from t0 = 0 to T = 10 with (pi
0, q

i
0) as initial

condition and using the implicit midpoint rule.
ii) For different step sizes h = 0.1, 0.2, . . . , 2 verify that the area defined by the polygon

(pi, qi), i = 1, . . . , 100, is conserved at the final time T = 10.
Hint: to compute the area of a polygon in Matlab use the function polyarea.

iii) Repeat points i) and ii) using the explicit midpoint rule. Is the area defined by the
polygon (pi, qi), i = 1, . . . , 100, still conserved?
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