

Series 7

Exercise 1. Let $\rho: \mathbb{R}^d \rightarrow \mathbb{R}^d$ be a linear invertible map and $y' = f(y)$ be a ρ -reversible problem, i.e., $\rho \circ f = -f \circ \rho$. Show that the numerical flow $\phi_h: \mathbb{R}^d \rightarrow \mathbb{R}^d$, $y_0 \mapsto y_1$, of any Runge–Kutta method satisfies the property $\rho \circ \phi_h = \phi_{-h} \circ \rho$.

Exercise 2. Let $f: \mathbb{R}^d \rightarrow \mathbb{R}^d$ be locally Lipschitz continuous and consider the differential equation

$$y' = f(y), \quad y(0) = y_0.$$

Assume that a unique solution exists for all $t \in \mathbb{R}$ and define the flow of the differential equation

$$\varphi_t(y_0) := y(t; 0, y_0),$$

which denotes the solution at time t with initial value y_0 at time 0.

i) Show that $\varphi_t \circ \varphi_s(y_0) = \varphi_{t+s}(y_0)$ and deduce that $\varphi_t \circ \varphi_{-t} = \text{Id}$ for all $t, s \in \mathbb{R}$.

Hint: use an argument similar to Exercise 2 ii) b) of Series 5.

Given a numerical method $y_{n+1} = \Phi_h(y_n)$, its adjoint $y_{n+1} = \Phi_h^*(y_n)$ is the method defined as $y_{n+1} = \Phi_{-h}^{-1}(y_n)$ or equivalently $y_n = \Phi_{-h}(y_{n+1})$. Moreover, we say that a numerical method $y_{n+1} = \Phi_h(y_n)$ is symmetric if it satisfies $\Phi_h \circ \Phi_{-h} = \text{Id}$. Show that:

- ii) Φ_h symmetric $\Leftrightarrow \Phi_h = \Phi_h^*$,
- iii) $(\Phi_h^*)^* = \Phi_h$,
- iv) $(\Phi_h \circ \Psi_h)^* = \Psi_h^* \circ \Phi_h^*$ for all one-step methods Φ_h and Ψ_h .

Exercise 3. Consider an s -stage Runge–Kutta method which is consistent, i.e., $\sum_{i=1}^s b_i = 1$, and whose coefficients are such that $\sum_{j=1}^s a_{ij} = c_i$ for all $i = 1, \dots, s$.

i) Show that the adjoint of the Runge–Kutta method is still a Runge–Kutta method with coefficients

$$a_{ij}^* = b_{s+1-j} - a_{s+1-i, s+1-j}, \quad b_i^* = b_{s+1-i}, \quad c_i^* = 1 - c_{s+1-i}, \quad i, j = 1, \dots, s. \quad (1)$$

Hint: use the convention that the c_i and the c_i^* are ordered, i.e., $c_1 \leq \dots \leq c_s$ and $c_1^* \leq \dots \leq c_s^*$.

- ii) Deduce that if $a_{ij} = b_j - a_{s+1-i, s+1-j}$ for all $i, j = 1, \dots, s$ then the method is symmetric.
- iii) Deduce that if the Runge–Kutta method is explicit then it cannot be symmetric.

Exercise 4. Show that if an irreducible Runge–Kutta method conserves quadratic invariants then so does its adjoint.