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Exercise 1. Show that if the coefficients of a Runge–Kutta method satisfy biaij +
bjaji = bibj for i, j = 1, . . . , s, then the method conserves all invariants of the form
I(y) = y>Cy + d>y + e, where C ∈ Rn×n, d ∈ Rn and e ∈ R.

Exercise 2. Consider the partitioned system

ẏ = f(y, z), ż = g(y, z), (1)

where y(t) ∈ Rn and z(t) ∈ Rm. Without using the Cooper theorem proved in Exercise
3, show that the symplectic Euler method conserves all quadratic invariants of the form
Q(y, z) = y>Dz, where D ∈ Rn×m.

Exercise 3. (Cooper theorem for partitioned RK methods) Consider the parti-
tioned system (1). Show that if the coefficients of a partitioned Runge–Kutta method
satisfy

biâij + b̂jaji = bibj, i, j = 1, . . . , s,
bi = b̂i, i = 1, . . . , s,

then the method conserves all quadratic invariants of the form Q(y, z) = y>Dz, where
D ∈ Rn×m.

Exercise 4. Consider the partitioned system (1) and let
{
{bi, aij}, {b̂i, âij}

}
be a

partitioned method which conserves all quadratic invariants of the form

Q(y, z) = y>Cy + 2y>Dz + z>Ez,

where C ∈ Rn×n, D ∈ Rn×m, E ∈ Rm×m. Moreover, let both methods {bi, aij} and
{b̂i, âij} be irreducible.

i) Prove that {bi, aij} conserves quadratic invariants of the form QC(y) = y>Cy and
{b̂i, âij} conserves quadratic invariants of the form QE(z) = z>Ez and deduce that

biaij + bjaji = bibj, i, j = 1, . . . , s,
b̂iâij + b̂j âji = b̂ib̂j, i, j = 1, . . . , s.

ii) Prove that the partitioned method
{
{bi, aij}, {b̂i, âij}

}
is irreducible and deduce that

biâij + b̂jaji = bibj, i, j = 1, . . . , s,
bi = b̂i, i = 1, . . . , s.

iii) Combining points i) and ii), show that

biaij = biâij, i, j = 1, . . . , s.

iv) Using point iii), prove that the Runge–Kutta methods {bi, aij} and {b̂i, âij} define
the same numerical scheme, i.e., that y1 = ŷ1.
Hint: split the indices i = 1, . . . , s in two sets depending on whether bi = 0 or bi 6= 0.
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Exercise 5. (Isospectral flows and isospectral methods) Consider the matrix dif-
ferential equation

L′ = [B(L), L], L(0) = L0, (2)
where L ∈ Rd×d, L0 ∈ Rd×d is symmetric, B(L) ∈ Rd×d is skew-symmetric for all L and
[B,L] = BL− LB is the commutator between B and L.

i) Define the problem
U ′ = B(L)U, U(0) = Id,

where U ∈ Rd×d and deduce that U(t) is orthogonal for all t ≥ 0.
ii) Which Runge–Kutta method would you use to approximate U1 ≈ U(h) in order to

conserve the orthogonality?
iii) Show that L(t) = U(t)L0U(t)> and deduce that L(t) is symmetric for all t ≥ 0.
iv) Prove that the characteristic polynomial det(L(t) − λI) is constant in time and

deduce that the eigenvalues of L(t) are constant in time as well.

It follows that the characteristic polynomial det(L(t)−λI) = ∑d
k=0 αk(t)λk is invariant,

hence its coefficients αk(t) are independent of t. The coefficients are polynomial invariants
as α0 = detL, αd−1 = (−1)d−1traceL, etc. For d ≥ 3, this is a higher-order invariant
and there is no hope for a Runge–Kutta method to automatically conserve it, hence
the eigenvalues neither. In the remaining of this exercise we derive isospectral methods,
which conserve the eigenvalues of L(t) (Calvo, Iserles & Zanna, 1999). Assume that Ln,
an approximation of L(tn), is known. Solve numerically the problem

U ′ = B(ULnU
T )U, U(0) = I, (3)

from t = 0 to t = h and denote its solution by Un
1 . Then set Ln+1 = Un

1 Ln(Un
1 )T for

obtaining an approximation of L(tn+1).

v) Explain why, choosing the right numerical method to solve (3), the spectra of Ln

and Ln+1 are equivalent.

We consider now a particular case of (2), the Toda lattice, which represents a system of
particles on a line interacting pairwise with exponential forces. The system is Hamiltonian
and after a change of variables it can be written as (2) where

L0 =



a1 b1 bd

b1 a2 b2
b2 a3 b3

. . . . . . . . .
bd−2 ad−1 bd−1

bd bd−1 ad


with zeros everywhere else and B(L) = L+−L−, where L+ denotes the part of L strictly
above the diagonal and L− the part of L strictly below the diagonal.

vi) Fix the dimension d = 10, the values ai = bi = i/d for i = 1, . . . , d, the step size
h = 1 and the final time T = 100. Solve numerically equation (2) using the implicit
midpoint rule and verify that the eigenvalues of L are not conserved. Then, apply
the isospectral method using the implicit midpoint rule to solve (3) and verify that
the eigenvalues of L are now conserved up to machine precision, i.e., ∼ 10−16.
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