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Series 3

In the lecture we saw the following result:

Theorem. A collocation method is equivalent to the s-stage Runge-Kutta method with
coefficients given by

w = “l(r)dn b= / ers (1)

where ¢; are the Lagrange interpolant polynomials given by

T — Cg
gi T) = .
(7) ]};[ p—
Note that fi(Cj) = (51]
Exercise 1. (Quadrature formulas and collocation methods) Let 0 < ¢ < ... <
cs < 1 be given. Consider for a;;,b; € R, for ¢ =1,..., s, the relations

C(q) : Zaijcé?_l:%, i=1,...,s and k=1,...,q,
j=1

5 _ 1
B(q) : Zbicflzg, k=1,...,q.
i=1

i) Prove that 375_, (Tt =7F ik < s
it) Show that a collocation method satisfies C'(¢) and B(q) for ¢ = s, i.e., that
implies C'(q) and B(q) for ¢ = s.
Hint: use point
iit) Show that C(q) for ¢ = s uniquely determines a;; for i,j = 1,...,s and, similarly,
that B(q) for ¢ = s uniquely determines b; for i = 1,...,s, i.e., that C(q) and B(q)
for ¢ = s imply .

Hint: you may write £;(1) = >5_, ay, 787! for some oy, € R.

Points |i7)| and show that and C(q), B(q) for ¢ = s are equivalent.

w) Show that if C'(q) holds for ¢ = s then [ p(T)dT = 325_; ai;p(c;) for all polynomials
p of degree deg(p) < s — 1. Similarly, show that if B(g) holds for ¢ = s then
Ji p(T)dT = Y5, bip(c;) for all polynomials p of degree deg(p) < s — 1.
Hint: you may write p(7) = X5_, pe7"~! for some p;, € R.

v) In particular, show that a collocation method is consistent (>.;_, b; = 1) and invari-

ant under transformation into autonomous form (3-5_; a;; = ¢;).

Exercise 2. Compute the Runge-Kutta coefficients (a; ; and b; for i,5 =1,...,s) of the
collocation methods with s = 2 nodes as a function of the nodes ¢; and ¢;. Then, using
the order conditions, find the nodes ¢; and ¢y such that the method has order 4.



Exercise 3. Let 0 <c¢; <...<c¢s <1 and consider the quadrature formula
1 S
/0 f(z)dx ~ Z bif(ci). (2)
i=1

Show that there exist unique scalars by, ...,bs such that the above quadrature formula
has order (at least) s, i.e.,

1 s
/ p(z)dz => " bp(c;) VpeP,
0 i=1

where P*~! is the set of polynomials of degree s — 1.
Hint: use the Lagrange interpolant polynomials /;.

Exercise 4. (Gauss, Radau and Lobatto quadrature) Let 0 < ¢; < ... < ¢, <1
and consider the quadrature formula .

i) Consider the Gauss nodes ¢y, .. ., c; which are the zeros of
(1) = (@1~ ) (3
Pl = s '

(a) Find n and a, B such that py(z) = @A @(8) (1)p(F) (z).
(b) Show that
1
| pl@a@yaz =0 ¥qep (4)
0
Hint: use the properties of the Jacobi orthogonal polynomials below.

(¢) Prove that 0 and 1 are not zeros of py, i.e., that ¢; # 0 and ¢, # 1.
Hint: use the general Leibniz rule for n-th order derivatives of product of
functions.

(d) Prove that the zeros of ps (¢;, i = 1,...,s) are distinct and lie in the open
interval (0,1).
Hint: you may use a contradiction argument and point (b) (assume that the
statement is false and find a polynomial ¢ such that is false).

(e) Show that the associated Gauss quadrature formula has order 2s, i.e., that
1 s
/ q(x)dz =Y big(c;) VqeP> L (5)
0 i=1

Hint: perform a division of polynomials and write ¢(z) = t(x)ps(x) + r(z) for
some polynomials ¢ and r.
(f) Show that the {b;}5_; corresponding to the Gauss quadrature formula are

strictly positive, i.e., that b; > 0 foralli=1,...,s.
Hint: prove that b; = [ 2(z)dw.

it) Consider the Radau nodes ¢y, ..., ¢; which are the zeros of

ds—l
dxs—l

(@ (1 —=2)). (6)

ps(z) =

Proceed similarly to point 7).
(a) Find n and a, 3 such that py(z) = &@Aw@h (2)pled) (z).

n



(b) Show that

1
| pl@a@dr =0 ¥qep (7)
0
(c) Prove that 0 is not and 1 is a zero of py, i.e., that ¢; # 0 and ¢, = 1.
(d) Prove that the zeros of ps (¢;, i = 1,...,s) are distinct and lie in the interval
(0,1].

(e) Show that the associated Radau quadrature formula has order 2s —1, i.e., that
1 S
/0 q(x)dz = big(c;) VqeP>> (8)
i=1

(f) Show that the {b;};_, corresponding to the Radau quadrature formula are
strictly positive, i.e., that b; > 0 foralli=1,...,s.

it7) Consider the Lobatto IIIA nodes ¢y, ..., cs, which are the zeros of
ds—2 ) L
pole) = T @ (1 =), Q

Proceed similarly to point 7).
(a) Find n and a, 8 such that py(z) = & wd) (2)p(F) (7).
(b) Show that
/Olps(x)q(x)dx =0 VqgeP (10)

(c) Prove that 0 and 1 are zeros of p, i.e., that ¢; =0 and ¢, = 1.

(d) Prove that the zeros of ps (¢;, i = 1,...,s) are distinct and lie in the closed
interval [0, 1].

(e) Show that the associated Lobatto IIIA quadrature formula has order 2s — 2,
i.e., that

/01 q(z)dx = ibiq(q) Vg€ P (11)

(f) Show that the {b;}5_; corresponding to the Lobatto IITA quadrature formula
are strictly positive, i.e., that b; >0 forall7z=1,...,s.
Remark: pay attention that the same argument as for Gauss and Radau nodes
cannot be employed, but it has to be adapted.

Jacobi orthogonal polynomials. The polynomials , @ and @D are related to the Jacobi orthogonal
polynomials on [—1, 1] which are defined for n € N and o, 8 > —1 by

1 dm”
(@:B) (1) = w@B) (1 1+2)"(1—2)"),
HODE) = e g (V@ ()

where
Wl @) = (1= 2)(1+ 2)”,

and the coeflicients e;a’ﬁ ) are some normalization scalars. The family of polynomials

{p%a”g) |n > 0} is orthogonal with respect to the scalar product with weight w(®?) ()

1
(pq) = [ D)o o).

Then, one can consider the shifted Jacobi orthogonal polynomials ﬁla’ﬁ)(;v) = pSf“ﬁ )(296 — 1) which are
orthogonal on the interval [0, 1] with respect to the shifted weight w(z) = w(2z — 1).



