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Series 3

In the lecture we saw the following result:
Theorem. A collocation method is equivalent to the s-stage Runge–Kutta method with
coefficients given by

aij =
∫ ci

0
`j(τ) dτ, bi =

∫ 1

0
`i(τ) dτ, (1)

where `i are the Lagrange interpolant polynomials given by

`i(τ) =
∏
k 6=i

τ − ck
ci − ck

.

Note that `i(cj) = δij.

Exercise 1. (Quadrature formulas and collocation methods) Let 0 ≤ c1 < . . . <
cs ≤ 1 be given. Consider for aij, bj ∈ R, for i = 1, . . . , s, the relations

C(q) :
s∑
j=1

aijc
k−1
j = cki

k
, i = 1, . . . , s and k = 1, . . . , q,

B(q) :
s∑
i=1

bic
k−1
i = 1

k
, k = 1, . . . , q.

i) Prove that ∑s
j=1 `j(τ)ck−1

j = τ k−1 if k ≤ s.
ii) Show that a collocation method satisfies C(q) and B(q) for q = s, i.e., that (1)

implies C(q) and B(q) for q = s.
Hint: use point i).

iii) Show that C(q) for q = s uniquely determines aij for i, j = 1, . . . , s and, similarly,
that B(q) for q = s uniquely determines bi for i = 1, . . . , s, i.e., that C(q) and B(q)
for q = s imply (1).
Hint: you may write `i(τ) = ∑s

k=1 αkτ
k−1 for some αk ∈ R.

Points ii) and iii) show that (1) and C(q), B(q) for q = s are equivalent.

iv) Show that if C(q) holds for q = s then
∫ ci

0 p(τ)dτ = ∑s
j=1 aijp(cj) for all polynomials

p of degree deg(p) ≤ s − 1. Similarly, show that if B(q) holds for q = s then∫ 1
0 p(τ)dτ = ∑s

i=1 bip(ci) for all polynomials p of degree deg(p) ≤ s− 1.
Hint: you may write p(τ) = ∑s

k=1 pkτ
k−1 for some pk ∈ R.

v) In particular, show that a collocation method is consistent (∑s
i=1 bi = 1) and invari-

ant under transformation into autonomous form (∑s
j=1 aij = ci).

Exercise 2. Compute the Runge–Kutta coefficients (ai,j and bi for i, j = 1, . . . , s) of the
collocation methods with s = 2 nodes as a function of the nodes c1 and c2. Then, using
the order conditions, find the nodes c1 and c2 such that the method has order 4.

1



Exercise 3. Let 0 ≤ c1 < . . . < cs ≤ 1 and consider the quadrature formula∫ 1

0
f(x)dx ≈

s∑
i=1

bif(ci). (2)

Show that there exist unique scalars b1, . . . , bs such that the above quadrature formula
has order (at least) s, i.e.,

∫ 1

0
p(x)dx =

s∑
i=1

bip(ci) ∀ p ∈ Ps−1,

where Ps−1 is the set of polynomials of degree s− 1.
Hint: use the Lagrange interpolant polynomials `i.

Exercise 4. (Gauss, Radau and Lobatto quadrature) Let 0 ≤ c1 < . . . < cs ≤ 1
and consider the quadrature formula (2).

i) Consider the Gauss nodes c1, . . . , cs which are the zeros of

ps(x) = ds

dxs
(xs(1− x)s). (3)

(a) Find n and α, β such that ps(x) = ẽ(α,β)
n w̃(α,β)(x)p̃(α,β)

n (x).
(b) Show that ∫ 1

0
ps(x)q(x)dx = 0 ∀ q ∈ Ps−1. (4)

Hint: use the properties of the Jacobi orthogonal polynomials below.
(c) Prove that 0 and 1 are not zeros of ps, i.e., that c1 6= 0 and cs 6= 1.

Hint: use the general Leibniz rule for n-th order derivatives of product of
functions.

(d) Prove that the zeros of ps (ci, i = 1, . . . , s) are distinct and lie in the open
interval (0, 1).
Hint: you may use a contradiction argument and point (b) (assume that the
statement is false and find a polynomial q such that (4) is false).

(e) Show that the associated Gauss quadrature formula has order 2s, i.e., that
∫ 1

0
q(x)dx =

s∑
i=1

biq(ci) ∀ q ∈ P2s−1. (5)

Hint: perform a division of polynomials and write q(x) = t(x)ps(x) + r(x) for
some polynomials t and r.

(f) Show that the {bi}si=1 corresponding to the Gauss quadrature formula are
strictly positive, i.e., that bi > 0 for all i = 1, . . . , s.
Hint: prove that bi =

∫ 1
0 `

2
i (x)dx.

ii) Consider the Radau nodes c1, . . . , cs which are the zeros of

ps(x) = ds−1

dxs−1 (xs−1(1− x)s). (6)

Proceed similarly to point i).
(a) Find n and α, β such that ps(x) = ẽ(α,β)

n w̃(α,β)(x)p̃(α,β)
n (x).
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(b) Show that ∫ 1

0
ps(x)q(x)dx = 0 ∀ q ∈ Ps−2. (7)

(c) Prove that 0 is not and 1 is a zero of ps, i.e., that c1 6= 0 and cs = 1.
(d) Prove that the zeros of ps (ci, i = 1, . . . , s) are distinct and lie in the interval

(0, 1].
(e) Show that the associated Radau quadrature formula has order 2s−1, i.e., that∫ 1

0
q(x)dx =

s∑
i=1

biq(ci) ∀ q ∈ P2s−2. (8)

(f) Show that the {bi}si=1 corresponding to the Radau quadrature formula are
strictly positive, i.e., that bi > 0 for all i = 1, . . . , s.

iii) Consider the Lobatto IIIA nodes c1, . . . , cs, which are the zeros of

ps(x) = ds−2

dxs−2 (xs−1(1− x)s−1). (9)

Proceed similarly to point i).
(a) Find n and α, β such that ps(x) = ẽ(α,β)

n w̃(α,β)(x)p̃(α,β)
n (x).

(b) Show that ∫ 1

0
ps(x)q(x)dx = 0 ∀ q ∈ Ps−3. (10)

(c) Prove that 0 and 1 are zeros of ps, i.e., that c1 = 0 and cs = 1.
(d) Prove that the zeros of ps (ci, i = 1, . . . , s) are distinct and lie in the closed

interval [0, 1].
(e) Show that the associated Lobatto IIIA quadrature formula has order 2s − 2,

i.e., that ∫ 1

0
q(x)dx =

s∑
i=1

biq(ci) ∀ q ∈ P2s−3. (11)

(f) Show that the {bi}si=1 corresponding to the Lobatto IIIA quadrature formula
are strictly positive, i.e., that bi > 0 for all i = 1, . . . , s.
Remark: pay attention that the same argument as for Gauss and Radau nodes
cannot be employed, but it has to be adapted.

Jacobi orthogonal polynomials. The polynomials (3), (6) and (9) are related to the Jacobi orthogonal
polynomials on [−1, 1] which are defined for n ∈ N and α, β > −1 by

p(α,β)
n (x) = 1

e
(α,β)
n w(α,β)(x)

dn

dxn
(
w(α,β)(x)(1 + x)n(1− x)n

)
,

where
w(α,β)(x) = (1− x)α(1 + x)β ,

and the coefficients e(α,β)
n are some normalization scalars. The family of polynomials

{p(α,β)
n |n ≥ 0} is orthogonal with respect to the scalar product with weight w(α,β)(x)

〈p, q〉 =
∫ 1

−1
p(x)q(x)w(α,β)(x)dx.

Then, one can consider the shifted Jacobi orthogonal polynomials p̃(α,β)
n (x) = p

(α,β)
n (2x − 1) which are

orthogonal on the interval [0, 1] with respect to the shifted weight w̃(x) = w(2x− 1).
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