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Exercise 1. Consider a collocation method with s = 2 nodes. Which condition do the
nodes c1 and c2 need to satisfy in order for the method to be A-stable?

Exercise 2. Consider the linear system ẏ = Ay with A ∈ Cd×d and assume that

Re 〈y, Ay〉 ≤ 0 for all y ∈ Cd,

where 〈·, ·〉 denotes the canonical scalar product on Cd, i.e., 〈x, y〉 = x>ȳ for all x, y ∈ Cd,
where ȳ is the complex conjugate of y. Moreover, define the norm for C ∈ Cd×d associated
with the scalar product

‖C‖ := sup
u,v∈Cd,‖u‖≤1,‖v‖≤1

|〈u, Cv〉|.

Finally, let R(z) be the stability function of an A-stable Runge–Kutta method. Hence,
|R(z)| ≤ 1 for all z ∈ C− and R(z) is holomorphic on C−.

i) Show that the norm of the solution ‖y(t)‖ is a decreasing function in time.

Assume first that A is normal, i.e., AA∗ = A∗A where A∗ is the conjugate transpose of A.
In this case, A can be diagonalized by a unitary matrix Q such that A = QDQ∗ where D
is diagonal and QQ∗ = Q∗Q = Id.

ii) Show that the eigenvalues of A belong to C−.
iii) Show that

‖R(A)‖ ≤ sup
Re z≤0

|R(z)|.

Hint: use, without proving it, that since R(z) is holomorphic on C−, then it can be
written as a power series, so it holds

R(A) = R(QDQ∗) = QR(D)Q∗,

where the stability function R is then applied to each component of the diagonal of
D.

Assume now that A is a general matrix and define the matrix function A : C→ Cd×d

A(ω) := ω

2 (A + A∗) + 1
2(A− A∗).

Moreover, for any fixed vectors u, v ∈ Cd define the function ϕ : C→ C

ϕ(ω) := 〈u, R(A(ω))v〉 .

iv) Show that A(ω) satisfies for all Re ω ≥ 0

Re 〈y,A(ω)y〉 ≤ 0 for all y ∈ Cd,

v) Show that the eigenvalues of A(ω) belong to C− for all Re ω ≥ 0.
vi) Show that A(ix) is normal for all x ∈ R.
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vii) Show that
‖R(A)‖ ≤ sup

Re z≤0
|R(z)|.

Hint: use, without proving it, that since R(z) is holomorphic on C−, employing the
Jordan canonical form and by point v), then ϕ is a rational holomorphic function
on C+. Hence, applying the Phragmén–Lindelöf theorem, which is an extension of
the maximum principle for holomorphic functions, the function ϕ satisfies

|ϕ(1)| ≤ sup
x∈R
|ϕ(ix)|.

viii) Deduce that the numerical solution is contractive, i.e., ‖yn+1‖ ≤ ‖yn‖, and thus the
numerical method preserves the property i) of the system.
Hint: use that yn+1 = R(hA)yn.

Exercise 3. Show that the stability functions of Gauss, Radau and Lobatto IIIA
collocation methods with s collocation points are Padé approximations. In particular,
prove that

RGauss(z) = Rs,s(z),
RRadau(z) = Rs−1,s(z),

RLobatto IIIA(z) = Rs−1,s−1(z).
Remark: Notice that the stability functions of Gauss and Lobatto IIIA collocation meth-
ods are therefore given in the diagonal of the following table, where the Padé approxima-
tion Rkj(z) is computed for j, k = 0, 1, 2.

k = 0 k = 1 k = 2

j = 0 1 1 + z 1 + z + 1
2z2

j = 1 1
1− z

1 + 1
2z

1− 1
2z

1 + 2
3z + 1

6z2

1− 1
3z

j = 2 1
1− z + 1

2z2
1 + 1

3z

1− 2
3z + 1

6z2
1 + 1

2z + 1
12z2

1− 1
2z + 1

12z2

Moreover, the stability functions of Radau collocation methods are given in the subdiag-
onal of the same table.

Exercise 4. Let ϕh denote the exact flow of a system of differential equations y′(t) =
f(y(t)) with y(t0) = y0. Consider a numerical method Φh of order p and let y2 = (Φh ◦
Φh)(y0), ω = Φ2h(y0) and z2 = (2py2 − ω)/(2p − 1).

i) Show that
y(t0 + 2h)− ω = 2p+1C(y0)hp+1 +O(hp+2),

where C(y0) is a constant dependent on the initial condition.
ii) Show that for the same constant C(y0)

ϕh(y1)− y2 = C(y0)hp+1 +O(hp+2).

iii) Show that for the same constant C(y0)

ϕh(y1) = ϕ2h(y0)− C(y0)hp+1 +O(hp+2).
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iv) Combining points ii) and iii) deduce that for the same constant C(y0)

y(t0 + 2h)− y2 = 2C(y0)hp+1 +O(hp+2).

v) Combining points i) and iv) deduce that

y(t0 + 2h)− z2 = O(hp+2),

which defines the accelerated method named Richardson extrapolation.
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