

Numerical Approximation of PDEs

Spring Semester 2025

Lecturer: Prof. Annalisa Buffa

Assistant: Mohamed Ben Abdelouahab

Session 6: April 3, 2025

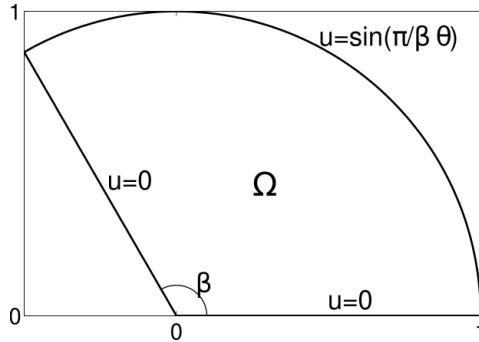


Figure 1: Domain and boundary conditions for exercise 1.

Exercise 1. Consider the equation $-\Delta u = 0$, with domain Ω and boundary conditions as in Figure 1.

1. Compute $\alpha \in \mathbb{R}^+$ such that $u = \rho^\alpha \sin\left(\frac{\pi}{\beta}\theta\right)$ is a solution of the problem.
2. Determine a condition on $\beta \in (0, 2\pi)$ such that $u \in H^1(\Omega)$ and a condition on $\beta \in (0, 2\pi)$ such that $u \in H^2(\Omega)$.
3. Complete the provided template `code_06_01_template.py` to perform a refinement study of the FEM approximation of the problem for $\beta = \pi/2$ and $\beta = 3\pi/2$. Check the convergence orders. What do you conclude ?

Hint: switch to polar coordinates, compute the analytic form of u , and then check the integrability of both $(\partial_x u)^2 + (\partial_y u)^2$ and $(\partial_{xx} u)^2 + 2(\partial_{xy} u)^2 + (\partial_{yy} u)^2$. Recall that polar coordinates read

$$\begin{cases} x &= \rho \cos \theta \\ y &= \rho \sin \theta \end{cases} \text{ i.e. } \begin{cases} \rho &= \sqrt{x^2 + y^2} \\ \theta &= \arctan\left(\frac{y}{x}\right) \end{cases}.$$

Moreover, the following identities hold:

$$\begin{aligned} \Delta u &= \frac{1}{\rho} \partial_\rho u + \partial_{\rho\rho} u + \frac{1}{\rho^2} \partial_{\theta\theta} u, \\ |\nabla u|^2 &= (\partial_\rho u)^2 + \frac{1}{\rho^2} (\partial_\theta u)^2, \\ (\partial_{xx} u)^2 + 2(\partial_{xy} u)^2 + (\partial_{yy} u)^2 &= (\partial_{\rho\rho} u)^2 + 2\left(\partial_\rho \left(\frac{1}{\rho} \partial_\theta u\right)\right)^2 + \left(\frac{1}{\rho^2} \partial_{\theta\theta} u + \frac{1}{\rho} \partial_\rho u\right)^2. \end{aligned}$$

Note that, for the sake of readability, here we simply write $\partial_x u$ instead of the more complete $\partial_x u(\rho(x, y), \theta(x, y))|_{\rho, \theta}$, and so on. Recall also that here we have

$$\int_{\Omega} f(x, y) dx dy = \int_0^1 \int_0^{\beta} f(x(\rho, \theta), y(\rho, \theta)) \rho d\theta d\rho.$$

Solution:

1. Note that $u = \rho^\alpha \sin\left(\frac{\pi}{\beta}\theta\right)$ fulfills the boundary conditions for every $\alpha \in \mathbb{R}^+$. Thus, we only need to enforce $\Delta u = 0$. For the Laplacian of u , we compute that

$$\begin{aligned} \Delta u &= \frac{1}{\rho} \alpha \rho^{\alpha-1} \sin\left(\frac{\pi}{\beta}\theta\right) + \alpha(\alpha-1) \rho^{\alpha-2} \sin\left(\frac{\pi}{\beta}\theta\right) - \frac{1}{\rho^2} \rho^\alpha \frac{\pi^2}{\beta^2} \sin\left(\frac{\pi}{\beta}\theta\right) \\ &= \left(\alpha + \alpha(\alpha-1) - \frac{\pi^2}{\beta^2}\right) \rho^{\alpha-2} \sin\left(\frac{\pi}{\beta}\theta\right). \end{aligned}$$

Consequently, u solves the PDE in Ω if and only if $\alpha = \frac{\pi}{\beta}$. In that case the solution reads $u = \rho^{\frac{\pi}{\beta}} \sin\left(\frac{\pi}{\beta}\theta\right) = \rho^\alpha \sin(\alpha\theta)$.

2. It holds that:

- $\partial_\rho u = \alpha \rho^{(\alpha-1)} \sin(\alpha\theta)$
- $\partial_{\rho\rho} u = \alpha(\alpha-1) \rho^{(\alpha-2)} \sin(\alpha\theta)$
- $\partial_\theta u = \rho^\alpha \alpha \cos(\alpha\theta)$
- $\partial_{\theta\theta} u = -\rho^\alpha \alpha^2 \sin(\alpha\theta)$
- $\partial_{\rho\theta} u = \alpha^2 \rho^{(\alpha-1)} \cos(\alpha\theta)$

First, we check that $u \in H^1(\Omega)$:

$$\begin{aligned} \int_{\Omega} |\nabla u|^2 dx dy &= \int_0^1 \int_0^{\beta} \left((\partial_\rho u)^2 + \frac{1}{\rho^2} (\partial_\theta u)^2 \right) \rho d\theta d\rho \\ &= \int_0^1 \int_0^{\beta} \left(\alpha^2 \rho^{2\alpha-2} \sin^2(\alpha\theta) + \frac{1}{\rho^2} \rho^{2\alpha} \alpha^2 \cos^2(\alpha\theta) \right) \rho d\theta d\rho \\ &= \pi \alpha \int_0^1 \rho^{2\alpha-1} d\rho, \end{aligned}$$

which is integrable, if $2\alpha - 1 > -1$, i.e. $\alpha = \frac{\pi}{\beta} > 0$. Thus $u \in H^1(\Omega)$ for every $\beta \in (0, 2\pi)$ and $\|\nabla u\|_{L^2(\Omega)}^2 = \frac{\pi}{2}$.

Using the same arguments as above, we check the H^2 semi-norm and find

$$\begin{aligned} |u|_{H^2(\Omega)}^2 &= \int_{\Omega} ((\partial_{xx} u)^2 + 2(\partial_{xy} u)^2 + (\partial_{yy} u)^2) dx dy \\ &= \int_0^1 \int_0^{\beta} \left((\partial_{\rho\rho} u)^2 + 2(\partial_\rho(\rho^{-1} \partial_\theta u))^2 + (\rho^{-2} \partial_{\theta\theta} u + \rho^{-1} \partial_\rho u)^2 \right) \rho d\theta d\rho \\ &= 2\pi \alpha(\alpha-1)^2 \int_0^1 \rho^{2\alpha-3} d\rho. \end{aligned}$$

Consequently, the H^2 semi-norm is finite, if $\rho^{2\alpha-3}$ is integrable or if $\alpha = 1$. That is, $u \in H^2(\Omega)$, if

$$2\alpha - 3 > -1 \vee \alpha = 1 \Leftrightarrow \alpha = \frac{\pi}{\beta} \geq 1 \Leftrightarrow \beta \leq \pi.$$

In other words, the domain Ω has to be convex.

3. The solution script is provided on Moodle.

Exercise 2. Assume that $\Omega \subseteq \mathbb{R}^n$ is a domain with a sequence of triangulations \mathcal{T}_h indexed over $h > 0$. The sequence of triangulations is shape-regular and quasi-uniform. Suppose that the Poisson problem

$$\begin{aligned} -\Delta u &= f & \text{in } \Omega, \\ u &= 0 & \text{on } \partial\Omega, \end{aligned} \tag{1}$$

has a weak solution $u \in H^2(\Omega)$ for any $f \in L^2(\Omega)$ and that

$$\|u\|_{H^2(\Omega)} \leq C\|f\|_{L^2(\Omega)}. \tag{2}$$

Let u_h be the Galerkin solution using piecewise linear finite elements. Show that for any $g \in L^2(\Omega)$, we have the convergence estimate

$$\left| \int_{\Omega} g(u - u_h) \right| \leq Ch^2 \|g\|_{L^2(\Omega)} \|f\|_{L^2(\Omega)}.$$

You can use a technique similar as in the proof of the Aubin-Nitsche lemma.
Lastly, interpret the result in the case $g = 1$.

Solution:

Proof 1: we use the Aubin-Nitsche lemma and estimate

$$\begin{aligned} \left| \int_{\Omega} g(u - u_h) \right| &\leq \|g\|_{L^2(\Omega)} \|u - u_h\|_{L^2(\Omega)} \\ &\leq \|g\|_{L^2(\Omega)} Ch^2 \|u\|_{H^2(\Omega)} \leq Ch^2 \|g\|_{L^2(\Omega)} \|f\|_{L^2(\Omega)}. \end{aligned}$$

Proof 2: We let $z \in H^2(\Omega)$ be the unique weak solution of

$$\begin{aligned} -\Delta z &= g & \text{in } \Omega \\ z &= 0 & \text{on } \partial\Omega. \end{aligned} \tag{3}$$

Let z_h be the finite element approximation to that problem. Then we observe

$$\begin{aligned} \int_{\Omega} g(u - u_h) dx &= \int_{\Omega} \nabla z \nabla(u - u_h) dx \\ &= \int_{\Omega} \nabla(z - z_h) \nabla(u - u_h) dx. \end{aligned}$$

Hence

$$\left| \int_{\Omega} g(u - u_h) \right| \leq \|\nabla(u - u_h)\|_{L^2(\Omega)} \|\nabla(z - z_h)\|_{L^2(\Omega)}.$$

The proof now follows with two estimates

$$\begin{aligned}\|\nabla(u - u_h)\|_{L^2(\Omega)} &\leq Ch\|u\|_{H^2(\Omega)} \leq Ch\|f\|_{L^2(\Omega)}, \\ \|\nabla(z - z_h)\|_{L^2(\Omega)} &\leq Ch\|z\|_{H^2(\Omega)} \leq Ch\|g\|_{L^2(\Omega)}.\end{aligned}$$

This completes the proof of the estimate.

In the case that $g = 1$, this tells us that the average converges faster than the H^1 error.

Exercise 3. Let Ω be a domain in \mathbb{R}^2 and consider diffusion-convection-reaction problem:

$$\begin{aligned}-\epsilon\Delta u + \mathbf{b} \cdot \nabla u + cu &= f \text{ over } \Omega, \\ u &= 0 \text{ along } \Gamma_D, \\ \nabla u \cdot \mathbf{n} &= 0 \text{ along } \Gamma_N\end{aligned}$$

where we use the boundary partition $\partial\Omega = \Gamma_D \cup \Gamma_N$ into a Dirichlet and Neumann boundary part, $\Gamma_D \cap \Gamma_N = \emptyset$. Here, we have used the outward pointing unit normal \mathbf{n} . We assume that

$$\begin{aligned}c - \frac{1}{2} \operatorname{div} \mathbf{b} &\geq 0, \\ \mathbf{b} \cdot \mathbf{n} &\geq 0 \text{ along } \Gamma_N.\end{aligned}$$

State the weak formulation of this problem. Find the continuity and coercivity constants of the bilinear form.

Solution:

The weak formulation is:

$$a(u, v) = \int_{\Omega} \epsilon \nabla u \nabla v + \mathbf{b} \nabla u \cdot v + cuv = \int_{\Omega} fv.$$

We estimate the continuity constant in the usual manner:

$$\begin{aligned}|a(u, v)| &\leq \int_{\Omega} \epsilon |\nabla u| \cdot |\nabla v| + |\mathbf{b}| |\nabla u| \cdot |v| + |c| |u| |v| \\ &\leq (\epsilon + \|\mathbf{b}\|_{\infty} + \|c\|_{\infty}) \|u\|_{H^1} \|v\|_{H^1}.\end{aligned}$$

We estimate the coercivity constant as follows.

$$a(u, u) = \int_{\Omega} \epsilon |\nabla u|^2 + \mathbf{b} \nabla u \cdot u + cu^2 = \int_{\Omega} \epsilon |\nabla u|^2 + cu^2 + \int_{\Omega} \mathbf{b} \nabla u \cdot u.$$

Now we find that

$$\int_{\Omega} \mathbf{b} \nabla u \cdot u = \frac{1}{2} \int_{\Omega} \mathbf{b} \nabla (u^2) = \frac{1}{2} \int_{\Omega} \operatorname{div} (\mathbf{b} u^2) - \frac{1}{2} \int_{\Omega} \operatorname{div} \mathbf{b} \cdot u^2.$$

We use the divergence theorem, together with boundary conditions along Γ_D and the outflow condition along Γ_N :

$$\int_{\Omega} \operatorname{div} (\mathbf{b} u^2) = \int_{\partial\Omega} \mathbf{b} \cdot \mathbf{n} u^2 = \underbrace{\int_{\Gamma_D} \mathbf{b} \cdot \mathbf{n} \cdot u^2}_{u|_{\Gamma_D}=0} + \underbrace{\int_{\Gamma_N} \mathbf{b} \cdot \mathbf{n} \cdot u^2}_{\mathbf{b} \cdot \mathbf{n} \geq 0} \geq 0.$$

Consequently,

$$a(u, u) \geq \int_{\Omega} \epsilon |\nabla u|^2 + \left(c - \frac{1}{2} \operatorname{div} \mathbf{b} \right) u^2 \geq \int_{\Omega} \epsilon |\nabla u|^2.$$

We thus find

$$a(u, u) \geq \frac{\epsilon}{1 + C_F^2} \|u\|_{H^1}.$$

This shows the desired estimates.

Exercise 4. The goal of this exercise is to prove a discrete maximum principle for \mathbb{P}_1 finite elements in two dimensions $d = 2$.

1. A real square matrix $A = (a_{ij})_{1 \leq i, j \leq n}$ is called an M-matrix if the following is true:

- The diagonal elements are positive: $a_{ii} > 0$ for all i .
- The sum of elements in each row is positive: $\sum_{k=1}^n a_{ik} > 0$ for all i .
- The off-diagonal elements are non-positive: $a_{ij} \leq 0$ for all $i \neq j$.

Show that A is invertible and that all the coefficients of its inverse are non-negative.

2. Consider the numerical solution u_h of the Poisson-Dirichlet problem (1) using \mathbb{P}_1 finite elements method on a triangulation mesh where all triangle angles are at most $\pi/2$. Show that if $f \geq 0$ then $u_h \geq 0$ in Ω .

Hint: For 1, consider a pair of vectors (x, y) in \mathbb{R}^n such that $Ax = y$ and $y \geq 0$ (meaning that all the components of the vector y are non-negative), prove that $x \geq 0$ and conclude that A is injective. For 2, consider the stiffness matrix A_h associated with this system and show that for every $\epsilon > 0$, the matrix $A_h + \epsilon I$ is an M-matrix, and consequently, A_h^{-1} has non-negative elements.

Solution:

1. Let A be an M-matrix and consider a vector $x \in \mathbb{R}^n$ such that $Ax = y \geq 0$. Define the index i_0 as

$$x_{i_0} = \min_{1 \leq i \leq n} x_i. \quad (4)$$

we can write:

$$a_{i_0 i_0} x_{i_0} + \sum_{j \neq i_0} a_{i_0 j} x_j = y_{i_0} \geq 0. \quad (5)$$

Rearranging this equation, we obtain:

$$\left(\sum_{j=1}^n a_{i_0 j} \right) x_{i_0} \geq \sum_{j \neq i_0} a_{i_0 j} (x_{i_0} - x_j). \quad (6)$$

By the definition of i_0 , we have $x_{i_0} \leq x_j$ for all j , and since the off-diagonal elements satisfy $a_{i_0 j} \leq 0$, it follows that:

$$x_{i_0} \geq 0. \quad (7)$$

Thus, since x_{i_0} is the smallest component of x , we conclude that $x \geq 0$.

Now, suppose for some $x \in \mathbb{R}^n$ we have $Ax = 0$. This implies that $x = 0$ since $x \geq 0$ and $-x \geq 0$. We deduce that A is invertible because injective. Furthermore, since $Ax = y \geq 0$ implies $x \geq 0$ and $x = A^{-1}y$, we can take y as an arbitrary vector from the canonical basis of \mathbb{R}^n , and we obtain $A_{ij}^{-1} = x_i \geq 0$ for all $1 \leq i, j \leq n$.

2. First, the diagonal elements of A_h are positive:

$$(A_h)_{ii} = \int_{\Omega} |\nabla \varphi_i|^2 > 0. \quad (8)$$

Consider two distinct nodes v_i and v_j sharing a common triangle K in the mesh. The basis function φ_i has trace zero on the edge opposite to the vertex v_i of K , same holds for φ_j . It follows that the gradients $\nabla \varphi_i$ and $\nabla \varphi_j$ are orthogonal to the corresponding opposite edge to each vertex.

Now, let α be the angle formed by $\nabla \varphi_i$ and $\nabla \varphi_j$, and let β be the angle at the third vertex of K , other than v_i and v_j . We have then $\beta = \pi - \alpha$. Since we assume that all triangle angles are at most $\pi/2$, then $\beta \geq \pi/2$, implying:

$$\nabla \varphi_i \cdot \nabla \varphi_j \leq 0. \quad (9)$$

Integrating over the domain Ω , we obtain:

$$(A_h)_{ij} = \int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j, dx \leq 0, \quad \forall i \neq j. \quad (10)$$

Let N the total number of nodes and N_0 be the number of interior nodes, so that we have the nodes $\{v_i\}_{N_0 < i \leq N}$ at the boundary $\partial\Omega$ and the matrix A_h is of shape $N_0 \times N_0$. Using the partition of unity property of \mathbb{P}_1 finite elements basis:

$$1 = \sum_{j=1}^N \varphi_j, \quad (11)$$

and take the gradient for every $1 \leq i \leq N_0$:

$$\sum_{j=1}^{N_0} \int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j, dx = - \sum_{j=N_0+1}^N \int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j, dx. \quad (12)$$

using (10), we deduce:

$$\sum_{i=1}^{N_0} (A_h)_{ii} \geq 0. \quad (13)$$

From properties (8), (10) and (13), it follows that $A_h + \varepsilon I$ is an M -matrix for some $\varepsilon > 0$ and $(A_h + \varepsilon I)^{-1}$ has non-negative entries according to question 1. The inverse application being continuous on the set of invertible matrices, we deduce by taking the limit $\varepsilon \rightarrow 0$ that A_h^{-1} has also non-negative entries which concludes the proof.