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Figure 1: Domain and boundary conditions for exercise 1.

Exercise 1. Consider the equation −∆u = 0, with domain Ω and boundary conditions as in
Figure 1.

1. Compute α ∈ R+ such that u = ρα sin

(
π

β
θ

)
is a solution of the problem.

2. Determine a condition on β ∈ (0, 2π) such that u ∈ H1(Ω) and a condition on β ∈ (0, 2π)
such that u ∈ H2(Ω).

3. Complete the provided template code 06 01 template.py to perform a refinement
study of the FEM approximation of the problem for β = π/2 and β = 3π/2. Check the
convergence orders. What do you conclude ?

Hint: switch to polar coordinates, compute the analytic form of u, and then check the integra-
bility of both (∂xu)

2 + (∂yu)
2 and (∂xxu)

2 + 2(∂xyu)
2 + (∂yyu)

2. Recall that polar coordinates
read {

x = ρ cos θ

y = ρ sin θ
i.e.

{
ρ =

√
x2 + y2 ,

θ = arctan
(y
x

)
.

Moreover, the following identities hold:

∆u =
1

ρ
∂ρu+ ∂ρρu+

1

ρ2
∂θθu ,

|∇u|2 = (∂ρu)
2 +

1

ρ2
(∂θu)

2 ,

(∂xxu)
2 + 2(∂xyu)

2 + (∂yyu)
2 = (∂ρρu)

2 + 2

(
∂ρ

(
1

ρ
∂θu

))2

+

(
1

ρ2
∂θθu+

1

ρ
∂ρu

)2

.
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Note that, for the sake of readability, here we simply write ∂xu instead of the more complete
∂xu(ρ(x, y), θ(x, y))

∣∣
ρ,θ

, and so on. Recall also that here we have∫
Ω
f(x, y) dxdy =

∫ 1

0

∫ β

0
f(x(ρ, θ), y(ρ, θ))ρ dθdρ .

Solution:
1. Note that u = ρα sin

(
π

β
θ

)
fulfils the boundary conditions for every α ∈ R+. Thus, we

only need to enforce ∆u = 0. For the Laplacian of u, we compute that

∆u =
1

ρ
αρα−1 sin

(
π

β
θ

)
+ α(α− 1)ρα−2 sin

(
π

β
θ

)
− 1

ρ2
ρα

π2

β2
sin

(
π

β
θ

)
=

(
α+ α(α− 1)− π2

β2

)
ρα−2 sin

(
π

β
θ

)
.

Consequently, u solves the PDE in Ω if and only if α =
π

β
. In that case the solution

reads u = ρ
π
β sin

(
π

β
θ

)
= ρα sin(αθ).

2. It holds that:

• ∂ρu = αρ(α−1) sin(αθ)

• ∂ρρu = α(α− 1)ρ(α−2) sin(αθ)

• ∂θu = ραα cos(αθ)

• ∂θθu = −ραα2 sin(αθ)

• ∂ρθu = α2ρ(α−1) cos(αθ)

First, we check that u ∈ H1(Ω):∫
Ω
|∇u|2dxdy =

∫ 1

0

∫ β

0

(
(∂ρu)

2 +
1

ρ2
(∂θu)

2

)
ρ dθ dρ

=

∫ 1

0

∫ β

0

(
α2ρ2α−2 sin2(αθ) +

1

ρ2
ρ2αα2 cos2(αθ)

)
ρ dθ dρ

= πα

∫ 1

0
ρ2α−1 dρ ,

which is integrable, if 2α − 1 > −1, i.e. α = π
β > 0. Thus u ∈ H1(Ω) for every

β ∈ (0, 2π) and ∥∇u∥2L2(Ω) =
π
2 .

Using the same arguments as above, we check the H2 semi-norm and find

|u|2H2(Ω) =

∫
Ω

(
(∂xxu)

2 + 2(∂xyu)
2 + (∂yyu)

2
)
dx dy

=

∫ 1

0

∫ β

0

(
(∂ρρu)

2 + 2
(
∂ρ(ρ

−1∂θu)
)2

+
(
ρ−2∂θθu+ ρ−1∂ρu

)2)
ρ dθ dρ

= 2πα(α− 1)2
∫ 1

0
ρ2α−3 dρ .
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Consequently, the H2 semi-norm is finite, if ρ2α−3 is integrable or if α = 1. That is,
u ∈ H2(Ω), if

2α− 3 > −1 ∨ α = 1 ⇔ α =
π

β
≥ 1 ⇔ β ≤ π .

In other words, the domain Ω has to be convex.

3. The solution script is provided on Moodle.

Exercise 2. Assume that Ω ⊆ Rn is a domain with a sequence of triangulations Th indexed
over h > 0. The sequence of triangulations is shape-regular and quasi-uniform. Suppose that
the Poisson problem

−∆u = f in Ω,
u = 0 on ∂Ω,

(1)

has a weak solution u ∈ H2(Ω) for any f ∈ L2(Ω) and that

∥u∥H2(Ω) ≤ C∥f∥L2(Ω). (2)

Let uh be the Galerkin solution using piecewise linear finite elements. Show that for any
g ∈ L2(Ω), we have the convergence estimate∣∣∣∣∫

Ω
g(u− uh)

∣∣∣∣ ≤ Ch2∥g∥L2(Ω)∥f∥L2(Ω).

You can use a technique similar as in the proof of the Aubin-Nitsche lemma.
Lastly, interpret the result in the case g = 1.

Solution:
Proof 1: we use the Aubin-Nitsche lemma and estimate∣∣∣∣∫

Ω
g(u− uh)

∣∣∣∣ ≤ ∥g∥L2(Ω)∥u− uh∥L2(Ω)

≤ ∥g∥L2(Ω)Ch2∥u∥H2(Ω) ≤ Ch2∥g∥L2(Ω)∥f∥L2(Ω).

Proof 2: We let z ∈ H2(Ω) be the unique weak solution of

−∆z = g in Ω
z = 0 on ∂Ω.

(3)

Let zh be the finite element approximation to that problem. Then we observe∫
Ω
g(u− uh)dx =

∫
Ω
∇z∇(u− uh)dx

=

∫
Ω
∇(z − zh)∇(u− uh)dx.

Hence ∣∣∣∣∫
Ω
g(u− uh)

∣∣∣∣ ≤ ∥∇(u− uh)∥L2(Ω)∥∇(z − zh)∥L2(Ω).
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The proof now follows with two estimates

∥∇(u− uh)∥L2(Ω) ≤ Ch∥u∥H2(Ω) ≤ Ch∥f∥L2(Ω),

∥∇(z − zh)∥L2(Ω) ≤ Ch∥z∥H2(Ω) ≤ Ch∥g∥L2(Ω).

This completes the proof of the estimate.
In the case that g = 1, this tells us that the average converges faster than the H1 error.

Exercise 3. Let Ω be a domain in R2 and consider diffusion-convection-reaction problem:

−ϵ∆u+ b · ∇u+ cu = f over Ω,

u = 0 along ΓD,

∇u · n = 0 along ΓN

where we use the boundary partition ∂Ω = ΓD ∪ΓN into a Dirichlet and Neumann boundary
part, ΓD ∩ ΓN = ∅. Here, we have used the outward pointing unit normal n.
We assume that

c− 1

2
div b ≥ 0,

b · n ≥ 0 along ΓN .

State the weak formulation of this problem. Find the continuity and coercivity constants of
the bilinear form.

Solution:
The weak formulation is:

a(u, v) =

∫
Ω
ϵ∇u∇v + b∇u · v + cuv =

∫
Ω
fv.

We estimate the continuity constant in the usual manner:

|a(u, v)| ≤
∫
Ω
ϵ|∇u| · |∇v|+ |b||∇u| · |v|+ |c||u||v|

≤ (ϵ+ ∥b∥∞ + ∥c∥∞) ∥u∥H1∥v∥H1 .

We estimate the coercivity constant as follows.

a(u, u) =

∫
Ω
ϵ|∇u|2 + b∇u · u+ cu2 =

∫
Ω
ϵ|∇u|2 + cu2 +

∫
Ω
b∇u · u.

Now we find that∫
Ω
b∇u · u =

1

2

∫
Ω
b∇(u2) =

1

2

∫
Ω
div

(
bu2

)
− 1

2

∫
Ω
divb · u2.

We use the divergence theorem, together with boundary conditions along ΓD and the outflow
condition along ΓN :∫

Ω
div

(
bu2

)
=

∫
∂Ω

b · nu2 =
∫
ΓD

b · n · u2︸ ︷︷ ︸
u|ΓD

=0

+

∫
ΓN

b · n · u2︸ ︷︷ ︸
b·n≥0

≥ 0.
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Consequently,

a(u, u) ≥
∫
Ω
ϵ|∇u|2 +

(
c− 1

2
divb

)
u2 ≥

∫
Ω
ϵ|∇u|2.

We thus find

a(u, u) ≥ ϵ

1 + C2
F

∥u∥H1 .

This shows the desired estimates.

Exercise 4. The goal of this exercise is to prove a discrete maximum principle for P1 finite
elements in two dimensions d = 2.

1. A real square matrix A = (aij)1≤i,j≤n is called an M-matrix if the following is true:

• The diagonal elements are positive: aii > 0 for all i.

• The sum of elements in each row is positive:
∑n

k=1 aik > 0 for all i.

• The off-diagonal elements are non-positive: aij ≤ 0 for all i ̸= j.

Show that A is invertible and that all the coefficients of its inverse are non-negative.

2. Consider the numerical solution uh of the Poisson-Dirichlet problem (1) using P1 finite
elements method on a triangulation mesh where all triangle angles are at most π/2.
Show that if f ≥ 0 then uh ≥ 0 in Ω.

Hint : For 1, consider a pair of vectors (x, y) in Rn such that Ax = y and y ≥ 0 (meaning that
all the components of the vector y are non-negative), prove that x ≥ 0 and conclude that A is
injective. For 2, consider the stiffness matrix Ah associated with this system and show that
for every ε > 0, the matrix Ah + εI is an M-matrix, and consequently, A−1

h has non-negative
elements.

Solution:
1. Let A be an M-matrix and consider a vector x ∈ Rn such that Ax = y ≥ 0. Define the

index i0 as
xi0 = min

1≤i≤n
xi. (4)

we can write:
ai0i0xi0 +

∑
j ̸=i0

ai0jxj = yi0 ≥ 0. (5)

Rearranging this equation, we obtain: n∑
j=1

ai0j

xi0 ≥
∑
j ̸=i0

ai0j(xi0 − xj). (6)

By the definition of i0, we have xi0 ≤ xj for all j, and since the off-diagonal elements
satisfy ai0j ≤ 0, it follows that:

xi0 ≥ 0. (7)
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Thus, since xi0 is the smallest component of x, we conclude that x ≥ 0.

Now, suppose for some x ∈ Rn we have Ax = 0. This implies that x = 0 since x ≥ 0
and −x ≥ 0. We deduce that A is invertible because injective. Furthermore, since
Ax = y ≥ 0 implies x ≥ 0 and x = A−1y, we can take y as an arbitrary vector from the
canonical basis of Rn, and we obtain A−1

ij = xi ≥ 0 for all 1 ≤ i, j ≤ n.

2. First, the diagonal elements of Ah are positive:

(Ah)ii =

∫
Ω
|∇φi|2 > 0. (8)

Consider two distinct nodes vi and vj sharing a common triangle K in the mesh. The
basis function φi has trace zero on the edge opposite to the vertex vi of K, same holds
for φj. It follows that the gradients ∇φi and ∇φj are orthogonal to the corresponding
opposite edge to each vertex.

Now, let α be the angle formed by ∇φi and ∇φj, and let β be the angle at the third
vertex of K, other than vi and vj. We have then β = π − α. Since we assume that all
triangle angles are at most π/2, then β ≥ π/2, implying:

∇φi · ∇φj ≤ 0. (9)

Integrating over the domain Ω, we obtain:

(Ah)ij =

∫
Ω
∇φi · ∇φj , dx ≤ 0, ∀i ̸= j. (10)

Let N the total number of nodes and N0 be the number of interior nodes, so that we
have the nodes {vi}N0<i≤N at the boundary ∂Ω and the matrix Ah is of shape N0 ×N0.
Using the partition of unity property of P1 finite elements basis:

1 =
N∑
j=1

φj , (11)

and take the gradient for every 1 ≤ i ≤ N0:

N0∑
j=1

∫
Ω
∇φi · ∇φj , dx = −

N∑
j=N0+1

∫
Ω
∇φi · ∇φj , dx. (12)

using (10), we deduce:
N0∑
i=1

(Ah)ij ≥ 0. (13)

From properties (8), (10) and (13), it follows that Ah + εI is an M-matrix for some
ε > 0 and (Ah + εI)−1 has non-negative entries according to question 1. The inverse
application being continuous on the set of invertible matrices, we deduce by taking the
limit ε → 0 that A−1

h has also non-negative entries which concludes the proof.
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