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Figure 1: Domain and boundary conditions for exercise 1.

Exercise 1. Consider the equation —Awu = 0, with domain €2 and boundary conditions as in
Figure

1. Compute o € R such that u = p®sin <g€> is a solution of the problem.

2. Determine a condition on 3 € (0,27) such that v € H'(2) and a condition on 3 € (0, 27)
such that u € H%(Q).

3. Complete the provided template code 06_01_template.py to perform a refinement
study of the FEM approximation of the problem for 8 = 7/2 and 8 = 37/2. Check the
convergence orders. What do you conclude ?

Hint: switch to polar coordinates, compute the analytic form of u, and then check the integra-
bility of both (Oyu)? + (9yu)? and (Dppu)? + 2(Opyu)? + (Oyyu)?. Recall that polar coordinates

read
{:L' =pcosf {P = a2+ y?,
i.e.

# = arctan (Q) .

y = psinf .

Moreover, the following identities hold:
1 1
Au = ;apu + 0ppu + ?aggu,
1
Vul> = (9pu)® + = (9pu)?,

p
2 2 2 2 1 ? 1 1 ?
(Ozatr)” + 2(Opyu)” + (Oyyu)” = (Oppu)” +2( 0, ;agu + ?899u+ ;apu .
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Note that, for the sake of readability, here we simply write O,u instead of the more complete
Ozu(p(x,y), G(x,y))’pg, and so on. Recall also that here we have

/fw y dwdy—/ / f(x(p,0 ,0))pdodp .
Solution:

1. Note that u = p®sin (g@) fulfils the boundary conditions for every o € RT. Thus, we

only need to enforce Au = 0. For the Laplacian of u, we compute that
1 s m 1 w2 s
Au= ~ap* tsin <9> + ala —1)p* 2sin <9> — —p%—sin <9>
, g’) retem s G0) = e

= <a +ala—1)— ;) p® 2 sin (g&) .

Consequently, u solves the PDE in Q if and only if o = % In that case the solution
reads u = ,0% sin <29> = p“sin(ad).
2. It holds that:

e 0,u = ap®Vsin(al)

e 0ppu = afa—1)pl@= D sin(ab)
e Jyu = p“acos(ab)

o Ogou = —p“a?sin(af)

o Jppu = a?pl@=V cos(ah)

First, we check that v € H'(Q):

/yvu\ dmdy—/ / (au (&)U) )pd@dp
1
/ / < 2 20— 281n2(a9) p2p 02 cos (aﬁ))pdﬁd,o
:71'0(/ 20— ldp,
0

which is integrable, if 2a — 1 > —1, i.e. a =
B € (0,2m) and HVUH%Q(Q) =Z.

> 0. Thus u € HY(Q) for every

@

Using the same arguments as above, we check the H? semi-norm and find
022 = / (Boat)? + 2(Buyt)? + (Byy)?) dady
/ / Dpput)® + 2(0,(p _lﬁgu))2 + (p—2899u + p_lapu)2>pd9 dp
= 2o — 1) /0 2a=3dp

2



Consequently, the H? semi-norm is finite, if p**—3

u € H3(Q), if

is integrable or if a = 1. That is,

20—3>-1Va=1 & a=-=->1 & (g<7.

=2

In other words, the domain € has to be conver.

3. The solution script is provided on Moodle.

Exercise 2. Assume that {2 C R” is a domain with a sequence of triangulations 73 indexed
over h > 0. The sequence of triangulations is shape-regular and quasi-uniform. Suppose that
the Poisson problem

—Au = f inQ,
u =0 on 0f, (1)

has a weak solution u € H?(Q) for any f € L?(2) and that

lull 2) < Cllflz2e)- (2)

Let up be the Galerkin solution using piecewise linear finite elements. Show that for any
g € L?(2), we have the convergence estimate

/Qg(u — up)

You can use a technique similar as in the proof of the Aubin-Nitsche lemma.
Lastly, interpret the result in the case g = 1.

< CR?|lgll 21 f Il 2

Solution:
Proof 1: we use the Aubin-Nitsche lemma and estimate

'/Qg(u—uh)

Proof 2: We let z € H*(Q) be the unique weak solution of

< lgllzz@yllu — unll2(a)

< HgHL2(Q)Ch2HuHH2(Q) < Ch2||g||L2(Q)||f”L2(Q)-

Az =g nQ
z =0 ond. (3)

Let zp, be the finite element approximation to that problem. Then we observe
/ g(u —up)dr = / V2V (u — up)dz
Q Q
- / V(z = zp)V(u — up)dz.
Q

Hence

<|[V(u —un)l 2@ IV (2 = 2n) | L2 () -

'/Qg(u—uh)




The proof now follows with two estimates

IV (u—up)|l2@) < Chllullg20) < ChIl fllL2(q),
V(2 = zn)llz2() < Chllzllg2@) < Chllgllrz(q)-

This completes the proof of the estimate.
In the case that g = 1, this tells us that the average converges faster than the H' error.

Exercise 3. Let Q be a domain in R? and consider diffusion-convection-reaction problem:

—eAu+b-Vu+cu= f over €,
u = 0 along I'p,
Vu-n =0 along I'y

where we use the boundary partition 02 = I'p U into a Dirichlet and Neumann boundary
part, 'p NT'y = (). Here, we have used the outward pointing unit normal n.
We assume that

1
C—ilebZO,
b-n > 0 along I'y.

State the weak formulation of this problem. Find the continuity and coercivity constants of
the bilinear form.

Solution:
The weak formulation is:

a(u,v) = / eVuVv +bVu - v+ cuv = / fu.
Q Q
We estimate the continuity constant in the usual manner:
la(u, v)| < /QG\VUI Vol + o[Vl - [v] + [ef[ullv]
< (e+ [Iblloc + llelloo) lull 0]l g1
We estimate the coercivity constant as follows.
a(u,u) = / e|Vul> + bVu - u + cu? = / e|Vul?> 4 cu® + / bVu - u.
Q Q Q

Now we find that

1 1 1
/bvu-u:/bwﬂ):/div(buQ)—/divb-uQ.
Q 2 Jo 2 Ja 2 Jo

We use the divergence theorem, together with boundary conditions along I'p and the outflow
condition along 'y :

/div(buQ):/ b-nu2:/ b-n-u2+/ b-n-u?>0.
Q o0 I'p I'n

N

ujr, =0 bn>0



Consequently,

1
a(u,u) > / €| Vul* + (C— divb> u? > / €| Vul?
0 2 0
We thus find

(1) > ———ul|
a(u,u) 2 ——=||u .
1+ ¢z

This shows the desired estimates.

Exercise 4. The goal of this exercise is to prove a discrete maximum principle for IP; finite
elements in two dimensions d = 2.

1. A real square matrix A = (a;;)1<i j<n is called an M-matrix if the following is true:

e The diagonal elements are positive: a; > 0 for all 4.
e The sum of elements in each row is positive: > ;_; a;; > 0 for all 4.

e The off-diagonal elements are non-positive: a;; <0 for all ¢ # j.
Show that A is invertible and that all the coefficients of its inverse are non-negative.

2. Consider the numerical solution wuy of the Poisson-Dirichlet problem using P; finite
elements method on a triangulation mesh where all triangle angles are at most m/2.
Show that if f > 0 then uy, > 0 in .

Hint: For 1, consider a pair of vectors (x,y) in R" such that Az = y and y > 0 (meaning that
all the components of the vector y are non-negative), prove that z > 0 and conclude that A is
injective. For 2, consider the stiffness matrix Aj associated with this system and show that
for every € > 0, the matrix Ay + eI is an M-matrix, and consequently, A,:l has non-negative
elements.

Solution:
1. Let A be an M-matriz and consider a vector x € R™ such that Ax =y > 0. Define the
ndex 19 as
Tiy = 1I%lii%ln ;. (4)
we can write:
QigioTig + Z Qg Tj = Yig = 0. (5)
J#io

Rearranging this equation, we obtain:

D iy | @iy =Y aigj(wiy — ;). (6)
j=1

J#io0

By the definition of ig, we have x;; < x; for all j, and since the off-diagonal elements
satisfy a;; < 0, it follows that:
Tig Z 0. (7)



Thus, since x;, is the smallest component of x, we conclude that x > 0.

Now, suppose for some x € R™ we have Az = 0. This implies that x = 0 since x > 0
and —x > 0. We deduce that A is invertible because injective. Furthermore, since
Ax =y > 0 implies x > 0 and x = A~ 'y, we can take y as an arbitrary vector from the
canonical basis of R™, and we obtain Ai_jl =x; >0 foralll <i,j <n.

. First, the diagonal elements of Ay, are positive:
(A= [ 196 >0 (8)
Q

Consider two distinct nodes v; and vj sharing a common triangle K in the mesh. The
basis function ; has trace zero on the edge opposite to the vertex v; of K, same holds
for ;. It follows that the gradients V; and V; are orthogonal to the corresponding
opposite edge to each vertex.

Now, let a be the angle formed by V; and V;, and let 3 be the angle at the third
vertex of K, other than v; and vj. We have then f = m — a. Since we assume that all
triangle angles are at most w/2, then 8 > w/2, implying:

Vi - Vp; <0. (9)
Integrating over the domain ), we obtain:

(An)y = / Ve, Vi, de <0, Vi . (10)
Q

Let N the total number of nodes and Ny be the number of interior nodes, so that we
have the nodes {v;}n,<i<n at the boundary 02 and the matriz Ay, is of shape No x Ny.
Using the partition of unity property of P1 finite elements basis:

N
j=1

and take the gradient for every 1 <i < Np:

No N
Z/ Vi -V, de = — Z / Vi - Vj,dz. (12)
oe Q

Jj=No+1

using (10)), we deduce:
No

> (An)ij = 0. (13)

=1

From properties , and , it follows that Ay, + €l is an M-matriz for some
e > 0 and (A + eI)™! has non-negative entries according to question 1. The inverse
application being continuous on the set of invertible matrices, we deduce by taking the
limit € — 0 that A,:l has also non-negative entries which concludes the proof.



