
Numerical Approximation of PDEs

Spring Semester 2025

Lecturer: Prof. Annalisa Buffa Assistant: Mohamed Ben Abdelouahab

Session 5: March 27, 2025

Exercise 1. Consider a regular N -simplex K with vertices {vi}1≤i≤N+1.

1. Show that the quadrature formulas∫
K
p(x) dx ≈ |K|p(v0),

where |K| denotes the volume of K and

v0 =
1

N + 1

N+1∑
i=1

vi,

is the barycenter of K, and ∫
K
p(x) dx ≈ |K|

N + 1

N+1∑
i=1

p(vi)

are exact for all linear polynomials p ∈ P1(K).

2. Consider now {vi}1≤i≤I a set points in the N -simplex K and {ωi}1≤i≤I real weights.
Suppose we have a quadrature formula

∫
K
φ(x) dx ≈ |K|

I∑
i=1

ωiφ(vi)

which is exact for p ∈ Pk(K) (polynomials of maximum degree k). Show that for a
sufficiently smooth function φ, we have

1

|K|

∫
K
φ(x) dx =

I∑
i=1

ωiφ(vi) +O(hk+1),

where h is the diameter of K.

Hint: For 1, express p(x) in terms of the barycentric coordinates {λi(x)}1≤i≤N+1 on K and
use their integral properties over the simplex. For 2, use Taylor expansion for φ and the
Taylor-Lagrange inequality.

1

Solution:
1. Let p(x) be a polynomial of degree 1. Since the vertices vi define the simplex, we can

express p(x) in terms of barycentric coordinates as

p(x) =
N+1∑
i=1

λi(x)p(vi).

We integrate both sides over K:

∫
K
p(x) dx =

N+1∑
i=1

p(ai)

∫
K
λi(x) dx.

Using the known integral property of barycentric coordinates,∫
K
λi(x) dx =

|K|
N + 1

,

we obtain

∫
K
p(x) dx =

|K|
N + 1

N+1∑
i=1

p(vi).

This proves the exactness of the second quadrature formula for linear functions.

For the second quadrature formula, recall that v0 satisfies

v0 =
1

N + 1

N+1∑
i=1

vi.

Since p(x) is affine, evaluating at v0 gives

p(v0) =
1

N + 1

N+1∑
i=1

p(vi).

Multiplying by |K| on both sides, we conclude∫
K
p(x) dx = |K|p(v0),

which proves the exactness of the first quadrature formula.

2. Let φ be a function of class Ck+1. By performing a Taylor expansion, there exists a
constant C such that for any point x0, there exists a polynomial Tx0 depending on φ, of
degree at most k, such that

|φ(x)− Tx0(x− x0)| ≤ C|x− x0|k+1 ∀x ∈ RN .

2

We integrate the previous inequality over x ∈ K, x0 is chosen such that x0 − x ∈ K (in
particular, |x− x0| < h), we obtain∣∣∣∣∫

K
φdx−

∫
K
Tx0(x− x0) dx

∣∣∣∣ ≤ C|K|hk+1.

Since the quadrature formula is exact for polynomials of degree at most k, we deduce∣∣∣∣∣
∫
K
φdx− |K|

∑
i

ωiTx0(vi − x0)

∣∣∣∣∣ ≤ C|K|hk+1.

Now, for any vi, we use the Taylor expansion of φ at x0,

|φ(vi)− Tx0(vi − x0)| ≤ Chk+1

and we conclude using the triangle inequality∣∣∣∣∣
∫
K
φdx− |K|

∑
i

ωiφ(vi)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
K
φdx− |K|

∑
i

ωiTx0(vi − x0)

∣∣∣∣∣+ |K|
∑
i

ωi |Tx0(vi − x0)− φ(vi)|

≤ 2C|K|hk+1.

which completes the proof.

Exercise 2. [First Strang Lemma] The use of quadrature instead of exact integration intro-
duces an error in the bilinear and linear forms a(· , ·) and F (·).
We may denote the approximated forms by ah(· , ·) and Fh(·), respectively. Assume that
the quadrature is accurate enough to retain uniform coercivity of ah(· , ·) over the discrete
space Vh × Vh for all h > 0. Then there exists a constant α∗ such that

ah(vh, vh) ≥ α∗∥vh∥2 ∀vh ∈ Vh (1)

and the unique solution uh of ah(uh, vh) = F (vh), ∀vh ∈ Vh satisfies

∥uh∥ ≤ 1

α∗ sup
vh∈Vh,∥vh∥≠0

Fh(vh)

∥vh∥
. (2)

Let u be the solution to a(u, v) = F (v), ∀v ∈ V (the continuous problem). Show that

∥u− uh∥ ≤ inf
wh∈Vh

[
(
1 +

γ

α∗

)
∥u− wh∥+

1

α∗ sup
vh∈Vh,∥vh∥≠0

|a(wh, vh)− ah(wh, vh)|
∥vh∥

]

+
1

α∗ sup
vh∈Vh,∥vh∥≠0

|F (vh)− Fh(vh))|
∥vh∥

, (3)

where γ > 0 is the continuity constant that satisfies |a(v, w)| ≤ γ∥v∥∥w∥, ∀v, w ∈ V.

3

Solution:
Let wh ∈ Vh be arbitrary. Set σh = uh − wh. Using (1), we get

α∗∥σh∥2 ≤ ah(σh, σh) = a(u− wh, σh) + a(wh, σh)− ah(wh, σh) + Fh(σh)− F (σh).

We assume σh ̸= 0 and divide both side by σh ̸= 0 and use the definition of γ to find

α∗∥σh∥ ≤ γ∥u− wh∥+
|a(wh, σh)− ah(wh, σh)|

∥σh∥
+

|F (σh)− Fh(σh)|
∥σh∥

≤ γ∥u− wh∥+ sup
vh∈Vh,∥vh∥≠0

|a(wh, vh)− ah(wh, vh)|
∥vh∥

+ sup
vh∈Vh,∥vh∥≠0

|F (vh)− Fh(vh)|
∥vh∥

. (4)

Note that the above also holds for σh = 0. Combining the above with the triangle inequality
∥u−uh∥ ≤ ∥u−wh∥+∥σh∥ and taking the infimum with respect to wh ∈ Vh, the result follows.

Exercise 3. Last week we learned how to assemble the mass and stiffness matrices along
with the load vector which enabled us to solve basic elliptic PDEs subject to pure Dirichlet
data. This week, we will consider a problem with mixed Dirichlet / Neumann boundary
conditions

−∆u+ u = 1 in Ω

u = 0 on ∂ΩD

∂nu = g on ∂ΩN , (5)

where Ω = (0, 1)2 while ∂ΩN = [0, 1], i.e., the bottom part of ∂Ω and ∂ΩD = ∂Ω \ ∂Ωn and
g ∈ L2(∂ΩN).

1. Derive the weak form of (4) and derive an expression for the additional right hand side
vector that arises as a result of the Neumann condition.

2. Utilize the provided template script code05 3 template.py to write a FEM code for
the problem with g = 1. The template contains a function assemble neumann rhs

which takes as input the mesh, the neuman data g (here: g = 1) and a boolean mask
of shape (mesh.lines.shape[0],) indicating whether the ‘i‘-th boundary line is part
of the Neumann boundary. As such, the function reaction diffusion requires you to
additionally find this boolean mask. Note that the local Neumann load vector only has
length two.

The template contains the same functions as last week’s template and requires
you to fill in exactly one additional line of code!

Solution:
Find the solution script on Moodle.

Exercise 4. [Non-constant coefficients]
Consider the following problem in Ω = (0, 1)2{

−∇ · (a(x, y)∇u(x, y)) + r(x, y)u(x, y) = f(x, y) in Ω,
∂nu(x, y) = 0 on ∂Ω

(6)

4

with coefficients and right-hand side

a(x, y) = 1 + x, r(x, y) = 4π2(1 + x)

f(x, y) = 2π cos(2πy)[sin(2πx) + 6π(1 + x) cos(2πx)].

In this exercise, we compute the entries of the stiffness matrix, the mass matrix, and the
right-hand side. As we have seen in lecture, we need to compute integrals over single ele-
ments. While we have computed the integrals exactly last week, this exercise lets you explore
the use of quadrature formulas.

You are given auxiliary files and template codes in Python: mesh.py contains the code for
mesh management. quad.py contains a Python class for quadrature formulas. util.py pro-
vides utility functions. The file integrate template.py contains a function solve problem 3

that you can complete.

1. Discuss why or under what circumstances you would use a quadrature formula in the
first place instead of trying to compute the integrals exactly.

2. Implement a function shape2D LFE which takes in an Np-by-2 array of points in the
reference triangle and returns an array Np-by-3 array which contains in column i the
evaluation of the reference Lagrange basis function φ̂i at points x, i = 1, 2, 3.

3. Implement a function grad shape2D LFE which takes in an Np-by-2 array of points in
the reference triangle and returns an Np-by-3-by-2 array which contains in entry [i,

j, k] the k-th entry of the gradient of φ̂j evaluated in the i-th quadrature point.

4. Implement a function mass with reaction iter which takes as input the triangulation,
a quadrature formula, and (optionally) a reaction term coefficient function, and which
computes the mass matrix with a given reaction term.

5. Implement a function stiffness with diffusivity iter which takes as input the tri-
angulation, a quadrature formula, and (optionally) a diffusion term coefficient function,
and which computes the stiffness matrix with a given diffusion term.

6. Implement the function poisson rhs iter which takes as input the triangulation, a
quadrature formula, and a callable function, and which computes the right-hand side
in the linear system of equations.

7. Solve problem (5) using a piecewise linear finite element method. Note that the true
solution is given by u(x, y) = cos(2πx) cos(2πy). You can use the seven-point Gaussian
quadrature rule that is already provided.

CHALLENGE YOURSELF BY USING NUMPY VECTORISATION

Solution:
The solution files are provided on Moodle.

5

