Numerical Approximation of PDEs

Spring Semester 2025
Lecturer: Prof. Annalisa Buffa Assistant: Mohamed Ben Abdelouahab

Session 4: March 20, 2025

Exercise 1. Suppose that 7 is a triangulation of a domain Q C R? and that V}, € H'(Q) is
the first-order finite element space with respect to that triangulation. Show that there exists
a constant C' > 0 such that for every vertex x of the triangulation and every v € Vj:

v(z)] < Ch™ o]l 2(q)-
Here, h is the maximum diameter of the cells.

Solution:
Let K be any triangle in T that includes the vertex x. We let K be the reference triangle, so

~

that K = Fg(K), and suppose that & = Fgl(x) is the corresponding vertex of the reference
triangle. Then we see

v(z) = 0(2), (1)

where 0 = vo Fi is the transformation of v onto the reference triangle. Furthermore, we have
by a change of variable

) il _
19 726) < det(Bi")2[|v]lr2(0) < Chl|v]lr2(o)- (2)

That completes the proof.
In ([2)), we have made use of the fact that |0()| < CH@HLz(Q) for some ¢ < 1 that can be found

by taking v(x) =0 on all other vertices.

Exercise 2. The so-called barycentric coordinates are a popular tool in finite element
methods. Consider the reference triangle K with vertices o9 = (0,07, & = (1,0)T and
d3 = (0,1)7, as sketched in the lecture / lecture notes. The barycentric coordinates are linear
functions 5\0, 5\1, 5\2 that satisfy

Ai(vj) = 0ij-
(In other words, they coincide with the hat functions.)

1. Check that Ag =l-z—y, M =z, and Ay = y on the reference triangle. Show that for
any point © € K we have

b= Ao(v)Do + A1 (v) D1 + Ao(v)Do.
(This is why they are called ”coordinates”.)
2. Show that a basis of Py(K) is given by

5\05\07 5\05\17 5‘O/A\27 ;\15\17 5\15\27 5\25\2-

Solution:
1. We can easily the values at the vertices of the reference triangle. Moreover, if v = (Z,9)
in Fuclidean coordinates, then

Ao (v)do + A1 (v)y +
=(1-2-19)(0,0)

2. Since we have sixz proposed basis shape functions and the space is siz-dimensional, we
only need to show linear independence. In what follows, we write
P = coorodo + Co1hor + cododa + 11 A AL + c12di e + et . (3)
We outline three different approaches to solving this problem.

o We can rewrite this in terms of the standard monomial basis. We have

p= 00 M0N0 + Co1 Ao + coadoda + et At A + ciadi Ag + cazdo o
=coo(l —z —y)? + co1(1 — z — y)z + coo(l — x — y)y + cr1x? + croxy + cooy®
= coo(1+ 2% + 9> — 2 — 22 — 2y) + cor (& — 2 — zy) + coa(y — 2y — ¥°) + cux® + crowy + coay’
= (—co0) + (co1 — 2c00) + (co2 — 2c00)y
+ (€11 + coo — co1)z* + (c12 — co2 — co1)zy + (ca2 + cop — co2)y>.
If we write p in terms of the standard basis,

P = ago + a107 + an1y + azr? + an1wy + agey?, (4)

then the transformation between the coefficients can be expressed by the system

-1 0 0 0 0 0 Co0 ano
—2 1 0 0 00 Co1 aio
—2 0 1 0 0 0 Co2 . apil
1 —1 0 1 00 C11 o a0
0 -1 -1 0 1 0 C12 ail
1 0 -1 0 0 1 C29 ap2

The matrix is triangular with invertible diagonal entries. Hence it is invertible. If
p equals zero, then all the coefficients in the monomial basis are zero, and then
all coefficients in the proposed barycentric basis are zero. Hence the the linear
independence follows.

o A different approach: suppose that p = 0. We take the trace on the edge withy =0
and find

p(2,0) = copAoAo + corAoA1 + cridi A (5)
= cpo(1 —x)2+001(1 —x):n—i—cnxz. (6)

We know that p = 0. We can easily check that the polynomials (1 —)%, (1 — z)z,
22 are linearly independent, so that cog = co1 = c11 = 0 follows. Similarly, we take
the trace on the edge with x = 0 and derive cogg = co2 = coo = 0. Lastly, we must

have p = c1a A1 A2 = c122y.

o Alternatively, you compute the values at the siz nodal points. For each barycentric
monomial 5\1'5\]'; you get a vector of six point values. You can then show that the
siz vectors are linearly independent and argue with the unisolvency of the point
evaluations (no details here).

Exercise 3. A general definition of the p-th order polynomial space Pp(f() over K is the
space of p-th order polynomials with canonical basis {2%97|i + j < p}, where we define
N, :=dim P,(K). Let X = (0, %, %, ce %, 1). A particularly useful FEM basis for this space
is the basis {1, .. .,(in} that satisfies ¢;(p;) = 6;j, where p; € {(#,9) € X x X |2+ < 1}.

: 2 2+3p+2
1. Show that Nj, := dim P,(K) = B2,

2. Derive a linear system of equations to find the weights {a;} of b; = > ik @ik #IgF given
that (ﬁz(ﬁ]) = 51]

3. On moodle you will fine the python template code_04_03_template.py which you can
use to implement an algorithm capable of finding the a;; of each ¢;.

Solution:
1. From the definition of P,(K) we see that, clearly, N, satisfies

N, = dim{(i, j) € (2=° x Z=°) | i+ j < p}.

Let us consider the regular lattice of points (i,j) with i,j € {0,...,p}. The lattice has

P

(p+1)2 points in it and the dimension of P,(K) is the number of lattice points in the bot-

tom left block including the diagonal running from the point (p,0) to (0,p). The diagonal

(p+1)%—(p+1)
2

itself has p+1 points. Therefore, the strictly bottom left part has points in it.

(p+1)2+p+l _ p243p+2
2 = 2 -

We add to that p+ 1 points of the diagonal and we acquire N, =

2. Let pj = (£4,9;). We define the N, x N, matriz M with

1 & ¢ & . 9

1 @2 G2 ZobGo ... U
M = .
1 3 N S P

&N, N, INON, - O,

Note that the choice of the ordering of the columns is not unique (i.e., we are assigning
a particular global index to the multi-index (i,7)).

Then, the vector a; with entries a; = (aoo,alo,am,an,...,agp)T solves the equation
Ma = e;, where e; is the i-th unit vector of length Np.

3. The python code can be found in Listing[1]

Listing 1: Python code
import numpy as np

from <tertools import product

def compute_polynomial_weights_local_Lagrange(p: int) -> np.ndarray:
mmun

Given the polynomial order p >= 1, compute the weights with respect

to the canonical basis {1, vy, v*2, ..., yv'p, X, XY,, X'p} of
P_p (Khat)

for each basis function phi_i with phi_i(p_7j) = \delta 1ij.

Here, the p_j are the points (x, y) \in X \times X, with X = {0,
1/p, 2/, oo., 1)

and x + y <= 1.

Paramters
p : ‘int'
The polynomial order.

Returns

weights : np.ndarray
A matrix of shape N_p x N_p whose i-th column contains the
polynomial weights of \phi_1

in the canonical python ordering (a_00, a_ 01, a 02, ... a_0Op,
a 10, a_ 11, ... a_p0)
assert (p := int(p)) >= 1

Np = (p**2 + 3 x p + 2) // 2

create an array of multi-indices whose L-th row contains the multi
index (i, 7)

representing the polynomial powers x*i y”j in the canonical python
ordering.

product (range (p+1), range(p+1)) creates the pairs:

for 1 in range (p+1):

for j in range(p+1):

pair = (i, 7)

multi_indices = np.stack([multi_indez for multi_indez in
product (range (p+1), range(p+1)) if sum(multi_indezx) <=
pl).astype(int)

create an array containing as rows the p_j = (x_j, y_Jj) of the
triangle.
P = multi_indices / p

create a matrix M containing as L-th column the L-th canonical
polynomial of P_p(Khat) evaluated in the P_j

M = np.empty ((Np, Np), dtype=float)

iterate simultaneously over the L-th column index and the
corresponding multi index
for L, (i, 7) in enumerate(multi_indices):
M[:, L] = P[:, 0] ** ¢ * P[:, 1] **x j

create the right hand side matrix whose L-th column corresponds to
the right hand side of the L-th nodal basis function.
Rhs = np.eye(Np)

np.linalg.solve accepts several right hand sides as a matrix
return np.linalg.solve(M, Rhs)

if name__ == ’__main i

for p in (1, 2, 3, 4):

round to 7 figures for better formatting.
myweights = np.round (compute_polynomial_weights_local_Lagrange(p), 7)

create multi indices corresponding to order p in canonical python
ordering

multi_indices = tuple(multi_index for multi_indez in
product (range (p+1), range(p+1)) if sum(multi_indez) <= p)

print to stdout
print (’With respect to the canonical polynomial basis with
powers\n\n {},\n\n”’
‘the weights of the nodal basts functions of order {} are
given by: \n\n{t.\n\n’.format (str(multi_tndices)[1:-1], p,
‘\n\n’.join(map (str, myweights.T))))

Exercise 4. [Building local stiffness and mass matrices] We use reference transformations to
compute the local matrices over triangles.

1. Compute the local stiffness matrix for an arbitrary triangle K

(Azoc,K>ij:/Kvwv<pjdzdy, i,j=1,2,3

where ¢;, ¢; are the P; Lagrange basis functions in 2D.
Hint: derive expressions for the linear map
Fg: K — K

Tz +— BgZ+bg

where K is the reference element and Bx € R**? and bxg € R**1. Then compute the
local matriz A by recasting the integral over the reference element, as discussed in
the lecture. Note that the ¢; and their local counterparts have a constant gradient !

2. Compute the local mass matrix for an arbitrary triangle K

(MZOC,K)' = / pip;j dx dy, i,j=1,2,3
K

7’7]

where ¢;, ¢; are the Lagrange basis functions, by recasting the integral over the refer-
ence element.

3. Implement this as a Python code to assemble the full matrices. On Moodle, you find
Python codes mesh.py and code_04_04_template.py. The file mesh.py provides you
with a ready-to-go mesh class that you can use. E| The file code_04_04_template.py

!This library relies on pygmsh, which should be easy to install with the command pip install pygmsh.
To use the code you do not need to understand the mesh.py, util.py and solve.py files in detail.
Everything is explained in the template script. Once you have finalised your implementation, you may
run the script and it will plot a mesh and the solution of reaction-diffusion benchmark problem for you making
use of the implemented matrices.

provides you two functions: stiffness matrix and mass matrix. You can complete
these functions. These take a mesh as input and produce the respective matrices.

4. In the file code_04_04_template.py you also find the method load vector. Implement
this function to compute the load vector in the case of a piecewise constant right hand
side. The function takes as input: the mesh, and the constant value F' of the right-hand
side.

Solution:
1. Given an arbitrary triangle K with the vertices {a = (a1,a2), b= (b1,b2), ¢ = (c1,¢2)},
the mapping Fx of the reference triangle can be obtained by

a1 - _|a
BK_|:b2—a2 Cg—a2:|’ bK_|:CLQ:|'

Recall that the reference shape functions have the constant gradients
@Qél = (_17 _1>7 @(ﬁ? = (170)7 @()53 = (07 1)

We have ; = p; o Fii'. By the chain rule, Vi(z) = BI_{T@@(FIQI(QC)). Substituting
x = Fg(Z) in the integral leads to

(Aloc,K> — / VSOZ . v@j dr = / (Bk—T@(Z)l> . (BIC—T@Q%J> |det BK’ dz.
i, K K
2. Using the substitution to the reference element we derive
(artoer) / i3 dudy — | det B / pipi didy
i, K K
1 pl—g
= | det BK|/ / Pipi dzdy
0 Jo

which results in

2 11
11 2

3. The implementation can be found on Moodle.
4. The local load vector is computed as

det B

Ll-:/ ngdm:F/ | det Bi|di = F
K K

for F constant. An implementation of the local load vector can be found on Moodle.

