
Numerical Approximation of PDEs

Spring Semester 2025

Lecturer: Prof. Annalisa Buffa Assistant: Mohamed Ben Abdelouahab

Session 4: March 20, 2025

Exercise 1. Suppose that T is a triangulation of a domain Ω ⊆ R2 and that Vh ⊂ H1(Ω) is
the first-order finite element space with respect to that triangulation. Show that there exists
a constant C > 0 such that for every vertex x of the triangulation and every v ∈ Vh:

|v(x)| ≤ Ch−1∥v∥L2(Ω).

Here, h is the maximum diameter of the cells.

Solution:
Let K be any triangle in T that includes the vertex x. We let K̂ be the reference triangle, so

that K = FK(K̂), and suppose that x̂ = F−1
K (x) is the corresponding vertex of the reference

triangle. Then we see

v(x) = v̂(x̂), (1)

where v̂ = v ◦FK is the transformation of v onto the reference triangle. Furthermore, we have
by a change of variable

∥v̂∥L2(Ω̂) ≤ det(B−1
K)

1
2 ∥v∥L2(Ω) ≤ Ch−1

K ∥v∥L2(Ω). (2)

That completes the proof.
In (2), we have made use of the fact that |v̂(x̂)| ≤ c∥v̂∥L2(Ω̂) for some c < 1 that can be found

by taking v(x) = 0 on all other vertices.

Exercise 2. The so-called barycentric coordinates are a popular tool in finite element
methods. Consider the reference triangle K̂ with vertices v̂0 = (0, 0)T , v̂1 = (1, 0)T and
v̂3 = (0, 1)T , as sketched in the lecture / lecture notes. The barycentric coordinates are linear
functions λ̂0, λ̂1, λ̂2 that satisfy

λ̂i(vj) = δij .

(In other words, they coincide with the hat functions.)

1. Check that λ̂0 = 1− x− y, λ̂1 = x, and λ̂2 = y on the reference triangle. Show that for
any point v̂ ∈ K̂ we have

v̂ = λ̂0(v)v̂0 + λ̂1(v)v̂1 + λ̂2(v)v̂2.

(This is why they are called ”coordinates”.)

2. Show that a basis of P2(K̂) is given by

λ̂0λ̂0, λ̂0λ̂1, λ̂0λ̂2, λ̂1λ̂1, λ̂1λ̂2, λ̂2λ̂2.

1

Solution:
1. We can easily the values at the vertices of the reference triangle. Moreover, if v̂ = (x̂, ŷ)

in Euclidean coordinates, then

λ̂0(v)v̂0 + λ̂1(v)v̂1 + λ̂2(v)v̂2

= (1− x̂− ŷ)(0, 0) + x̂(1, 0) + ŷ(0, 1) = v̂.

2. Since we have six proposed basis shape functions and the space is six-dimensional, we
only need to show linear independence. In what follows, we write

p = c00λ̂0λ̂0 + c01λ̂0λ̂1 + c02λ̂0λ̂2 + c11λ̂1λ̂1 + c12λ̂1λ̂2 + c22λ̂2λ̂2. (3)

We outline three different approaches to solving this problem.

• We can rewrite this in terms of the standard monomial basis. We have

p = c00λ̂0λ̂0 + c01λ̂0λ̂1 + c02λ̂0λ̂2 + c11λ̂1λ̂1 + c12λ̂1λ̂2 + c22λ̂2λ̂2

= c00(1− x− y)2 + c01(1− x− y)x+ c02(1− x− y)y + c11x
2 + c12xy + c22y

2

= c00(1 + x2 + y2 − 2− 2x− 2y) + c01(x− x2 − xy) + c02(y − xy − y2) + c11x
2 + c12xy + c22y

2

= (−c00) + (c01 − 2c00)x+ (c02 − 2c00)y

+ (c11 + c00 − c01)x
2 + (c12 − c02 − c01)xy + (c22 + c00 − c02)y

2.

If we write p in terms of the standard basis,

p = a00 + a10x+ a01y + a20x
2 + a11xy + a02y

2, (4)

then the transformation between the coefficients can be expressed by the system

−1 0 0 0 0 0
−2 1 0 0 0 0
−2 0 1 0 0 0
1 −1 0 1 0 0
0 −1 −1 0 1 0
1 0 −1 0 0 1





c00
c01
c02
c11
c12
c22

 =



a00
a10
a01
a20
a11
a02


The matrix is triangular with invertible diagonal entries. Hence it is invertible. If
p equals zero, then all the coefficients (4) in the monomial basis are zero, and then
all coefficients (3) in the proposed barycentric basis are zero. Hence the the linear
independence follows.

• A different approach: suppose that p = 0. We take the trace on the edge with y = 0
and find

p(x, 0) = c00λ̂0λ̂0 + c01λ̂0λ̂1 + c11λ̂1λ̂1 (5)

= c00(1− x)2 + c01(1− x)x+ c11x
2. (6)

We know that p = 0. We can easily check that the polynomials (1− x)2, (1− x)x,
x2 are linearly independent, so that c00 = c01 = c11 = 0 follows. Similarly, we take
the trace on the edge with x = 0 and derive c00 = c02 = c22 = 0. Lastly, we must
have p = c12λ̂1λ̂2 = c12xy.

2

• Alternatively, you compute the values at the six nodal points. For each barycentric
monomial λ̂iλ̂j, you get a vector of six point values. You can then show that the
six vectors are linearly independent and argue with the unisolvency of the point
evaluations (no details here).

Exercise 3. A general definition of the p-th order polynomial space Pp(K̂) over K̂ is the
space of p-th order polynomials with canonical basis {x̂iŷj | i + j ≤ p}, where we define
Np := dimPp(K̂). Let X̂ = (0, 1p ,

2
p , . . . ,

p−1
p , 1). A particularly useful FEM basis for this space

is the basis {ϕ̂1, . . . , ϕ̂Np} that satisfies ϕ̂i(p̂j) = δij , where p̂j ∈ {(x̂, ŷ) ∈ X̂ × X̂ | x̂+ ŷ ≤ 1}.

1. Show that Np := dimPp(K̂) = p2+3p+2
2 .

2. Derive a linear system of equations to find the weights {ajk} of ϕ̂i =
∑

j,k ajk x̂
j ŷk given

that ϕ̂i(p̂j) = δij .

3. On moodle you will fine the python template code 04 03 template.py which you can
use to implement an algorithm capable of finding the ajk of each ϕ̂i.

Solution:
1. From the definition of Pp(K̂) we see that, clearly, Np satisfies

Np = dim{(i, j) ∈ (Z≥0 × Z≥0) | i+ j ≤ p}.

Let us consider the regular lattice of points (i, j) with i, j ∈ {0, . . . , p}. The lattice has
(p+1)2 points in it and the dimension of Pp(K̂) is the number of lattice points in the bot-
tom left block including the diagonal running from the point (p, 0) to (0, p). The diagonal

itself has p+1 points. Therefore, the strictly bottom left part has (p+1)2−(p+1)
2 points in it.

We add to that p+1 points of the diagonal and we acquire Np =
(p+1)2+p+1

2 = p2+3p+2
2 .

2. Let p̂j = (x̂j , ŷj). We define the Np ×Np matrix M with

M =


1 x̂1 ŷ1 x̂1ŷ1 . . . ŷp1
1 x̂2 ŷ2 x̂2ŷ2 . . . ŷp2
...

...
1 x̂Np ŷNp x̂Np ŷNp . . . ŷpNp

 .

Note that the choice of the ordering of the columns is not unique (i.e., we are assigning
a particular global index to the multi-index (i, j)).
Then, the vector ai with entries ai = (a00, a10, a01, a11, . . . , a0p)

T solves the equation
Ma = ei, where ei is the i-th unit vector of length Np.

3. The python code can be found in Listing 1.

Listing 1: Python code

import numpy as np

from itertools import product

def compute_polynomial_weights_local_Lagrange(p: int) -> np.ndarray:

"""

3

Given the polynomial order p >= 1, compute the weights with respect
to the canonical basis {1, y, y^2, ..., y^p, x, xy,, x^p} of

P_p(Khat)
for each basis function phi_i with phi_i(p_j) = \delta_ij.
Here, the p_j are the points (x, y) \in X \times X, with X = {0,

1/p, 2/p, ..., 1}
and x + y <= 1.

Paramters
−−−−−−−−−
p : ‘int‘
The polynomial order.

Returns
−−−−−−−

weights : np.ndarray
A matrix of shape N_p x N_p whose i−th column contains the

polynomial weights of \phi_i
in the canonical python ordering (a_00, a_01, a_02, ... a_0p,

a_10, a_11, ... a_p0)
"""

assert (p := int(p)) >= 1

Np = (p**2 + 3 * p + 2) // 2

create an array of multi−indices whose L−th row contains the multi
index (i, j)

representing the polynomial powers x^i y^j in the canonical python
ordering.

product(range(p+1), range(p+1)) creates the pairs:
for i in range(p+1):
for j in range(p+1):
pair = (i, j)
multi_indices = np.stack([multi_index for multi_index in

product(range(p+1), range(p+1)) i f sum(multi_index) <=

p]).astype(int)

create an array containing as rows the p_j = (x_j, y_j) of the
triangle.

P = multi_indices / p

create a matrix M containing as L−th column the L−th canonical
polynomial of P_p(Khat) evaluated in the P_j

M = np.empty((Np , Np), dtype=float)

iterate simultaneously over the L−th column index and the
corresponding multi index

for L, (i, j) in enumerate(multi_indices):

M[:, L] = P[:, 0] ** i * P[:, 1] ** j

create the right hand side matrix whose L−th column corresponds to
the right hand side of the L−th nodal basis function.

Rhs = np.eye(Np)

4

np.linalg.solve accepts several right hand sides as a matrix
return np.linalg.solve(M, Rhs)

i f __name__ == ’__main__ ’:

for p in (1, 2, 3, 4):

round to 7 figures for better formatting.
myweights = np.round(compute_polynomial_weights_local_Lagrange(p), 7)

create multi indices corresponding to order p in canonical python
ordering

multi_indices = tuple(multi_index for multi_index in
product(range(p+1), range(p+1)) i f sum(multi_index) <= p)

print to stdout
print(’With respect to the canonical polynomial basis with

powers\n\n {},\n\n’

’the weights of the nodal basis functions of order {} are

given by: \n\n{}.\n\n’.format(str(multi_indices)[1:-1], p,

’\n\n’.join(map(str , myweights.T))))

Exercise 4. [Building local stiffness and mass matrices] We use reference transformations to
compute the local matrices over triangles.

1. Compute the local stiffness matrix for an arbitrary triangle K(
Aloc,K

)
i,j

=

∫
K
∇φi · ∇φj dx dy, i, j = 1, 2, 3

where φi, φj are the P1 Lagrange basis functions in 2D.
Hint: derive expressions for the linear map

FK : K̂ → K
x̂ 7→ BK x̂+ bK

where K̂ is the reference element and BK ∈ R2×2 and bK ∈ R2×1. Then compute the
local matrix Aloc,K by recasting the integral over the reference element, as discussed in
the lecture. Note that the ϕi and their local counterparts have a constant gradient !

2. Compute the local mass matrix for an arbitrary triangle K(
M loc,K

)
i,j

=

∫
K
φiφj dx dy, i, j = 1, 2, 3

where φi, φj are the Lagrange basis functions, by recasting the integral over the refer-
ence element.

3. Implement this as a Python code to assemble the full matrices. On Moodle, you find
Python codes mesh.py and code 04 04 template.py. The file mesh.py provides you
with a ready-to-go mesh class that you can use. 1 The file code 04 04 template.py

1This library relies on pygmsh, which should be easy to install with the command pip install pygmsh.
To use the code you do not need to understand the mesh.py, util.py and solve.py files in detail.
Everything is explained in the template script. Once you have finalised your implementation, you may
run the script and it will plot a mesh and the solution of reaction-diffusion benchmark problem for you making
use of the implemented matrices.

5

provides you two functions: stiffness matrix and mass matrix. You can complete
these functions. These take a mesh as input and produce the respective matrices.

4. In the file code 04 04 template.py you also find the method load vector. Implement
this function to compute the load vector in the case of a piecewise constant right hand
side. The function takes as input: the mesh, and the constant value F of the right-hand
side.

Solution:
1. Given an arbitrary triangle K with the vertices {a = (a1, a2), b = (b1, b2), c = (c1, c2)},

the mapping FK of the reference triangle can be obtained by

BK =

[
b1 − a1 c1 − a1
b2 − a2 c2 − a2

]
, bK =

[
a1
a2

]
.

Recall that the reference shape functions have the constant gradients

∇̂φ̂1 = (−1,−1), ∇̂φ̂2 = (1, 0), ∇̂φ̂3 = (0, 1).

We have φi = φ̂i ◦ F−1
K . By the chain rule, ∇̂φi(x) = B−T

K ∇̂φ̂i(F
−1
K (x)). Substituting

x = FK(x̂) in the integral leads to(
Aloc,K

)
i,j

=

∫
K
∇φi · ∇φj dx =

∫
K̂

(
B−T

k ∇̂ϕ̂i

)
·
(
B−T

k ∇̂ϕ̂j

)
|detBK | dx̂.

2. Using the substitution to the reference element we derive(
M loc,K

)
i,j

=

∫
K
φiφj dxdy = |detBK |

∫
K̂
φ̂iφ̂i dx̂dŷ

= |detBK |
∫ 1

0

∫ 1−ŷ

0
φ̂iφ̂i dx̂dŷ

which results in

M loc,K =
| detBK |

24

2 1 1
1 2 1
1 1 2

 .

3. The implementation can be found on Moodle.

4. The local load vector is computed as

Li =

∫
K
Fφdx = F

∫
K̂
φ̂|detBK |dx̂ = F

detBK

6

for F constant. An implementation of the local load vector can be found on Moodle.

6

