
Numerical Approximation of PDEs

Spring Semester 2025

Lecturer: Prof. Annalisa Buffa Assistant: Mohamed Ben Abdelouahab

Session 3: March 13, 2025

Exercise 1. [The reference element] Let K be a positively-oriented triangle. We consider a
reference transformation FK : K̂ → K with BK as defined in the lecture.

(1a) Show that detBK relates to the surface area |K| of the triangle K as follows:

detBK = 2|K|.

(Note that there is a mistake in the lecture notes, erroneously claiming that detBK = 1
2 |K|).

(1b) Proof that the following two estimates hold

∥BK∥ ≤ hK
ρ̂

,
∥∥B−1

K

∥∥ ≤ ĥ

ρK
, (1)

where ρ̂ and ĥ are the inner and outer diameters of the reference triangle K̂ while ρK and
hK denote the inner and outer diameters of the triangle K.

Deduce that there exists C0, C1 > 0 independent of K such that :

C0ρK ≤ ∥BK∥ ≤ C1hK , and C2
ρK
hk

≤ ∥BK∥∥B−1
K ∥ ≤ C3

hK
ρK

. (2)

(1c) The quantity hK/ρK is often called aspect ratio in the literature.1 Someone proposes
instead to measure the quality of a triangle by the ratio of the longest edge and the shortest
edge. Is that a good idea?

Solution:
(1a) The matrix BK has columns v0 := b− a and v1 := c− a, where {a,b, c} ⊂ R2 denote
the vertices of K in counter-clockwise ordering.
A basic result from geometry is that the surface area of the parallelogram P with edges repre-
sented by the vectors v0 and v1 is given by

|P | = ∥v0∥∥v1∥| sin(ϕ)|,

with ϕ the angle between v0 and v1.
We also know that the cross product

c :=

[
v0

0

]
×
[
v1

0

]
,

1Different authors use different definitions.

1

i.e., taking the vi as vectors in R3, only has a non-vanishing z-component. Therefore∥∥∥∥[v0

0

]
×
[
v1

0

]∥∥∥∥ = ∥v0∥∥v1∥| sin(ϕ)| = cz,

where cz is the z-component of the cross product. A straightforward computation shows that
cz = detBK . Since the surface area of K satisfies |P | = 2|K|, we have

detBK = 2|K|,

which is what had to be shown.
(1b) For any r > 0, we may write

∥BK∥ = sup
ξ∈R2, ξ ̸=0

∥BKξ∥
∥ξ∥

=
1

r
sup

ξ∈R2, ∥ξ∥=r

∥BKξ∥,

in particular for r = ρ̂, i.e.,

∥BK∥ =
1

ρ̂
sup

ξ∈R2, ∥ξ∥=ρ̂

∥BKξ∥. (3)

Now, for each ξ with ∥ξ∥ = ρ̂ we can find a pair of points x̂, ŷ ∈ K̂ such that ξ = ŷ− x̂. Let
FK(ξ) := a + BKξ be the map to the triangle K with root vertex a ∈ R2. The map satisfies
FK(ξ) = FK(ŷ)− FK(x̂). Since the distance ∥FK(ŷ)− FK(x̂)∥ = ∥BK(x̂− ŷ)∥ = ∥y− x∥ is
bounded by hK , where x = FK(x̂) and y = FK(ŷ), we find ∥BKξ∥ ≤ hK , which proves the
first inequality. The second inequality is derived by exchanging the roles of K̂ and K.
Now by definition of the spectral norm, we have

∥BkB
−1
K ∥ ≤ ∥Bk∥∥B−1

K ∥,

and using the two previous inequalities we get:

ρK

ĥ
≤ ∥Bk∥ ≤ hK

ρ̂
,

ρ̂

hK
≤ ∥B−1

k ∥ ≤ ĥ

ρK
, (4)

Finally, the result holds for C0 = 1/ĥ, C1 = 1/ρ̂. C2 = ρ̂/ĥ and C3 = ĥ/ρ̂.

(1c) No, it is not. We can easily construct a triangle whose longest edge has length 1 and
whose other two edges have length 1/2 + ϵ for any ϵ > 0. As ϵ goes to zero, the triangle gets
flatter and flatter, but the ratio of longest and shortest edge converges to 2.

Exercise 2. [Finite Element Method in 1D] Consider Poisson’s equation with a non-constant
diffusion coefficient k(x) ∈ C0([a, b]), where k(x) > 0 for all x ∈ (a, b):{

−(k(x)u′(x))′ = f(x), x ∈ (a, b),

u(a) = ga, u(b) = gb.
(5)

(2a) Use the midpoint quadrature formula to derive the stiffness matrix A with entries

Ai,j =

∫ b

a
k(x)ϕ′

i(x)ϕ
′
j(x)dx

2

and right hand side for a piecewise linear finite element approximation of the solution of sys-
tem (5) with ga = gb = 0, when using a uniform grid, and compare it to the stiffness matrix
that arises when using a second-order accurate finite difference approximation.

(2b) Implement the finite element approximation derived in (2a) for a = 0, b = 1, ga = 0 and
gb = 0. Here, the diffusion coefficient and the right hand side are defined as

k(x) =

{
0.5 + x, x ≤ 1/2

1.5− x, x > 1/2

f(x) =

{
0.5π sin(πx) + πx sin(πx)− cos(πx), x ≤ 1/2

1.5π sin(πx)− πx sin(πx) + cos(πx), x > 1/2.

Note that the exact solution is given by u(x) = 1
π sin(πx).

(2c) Derive a piecewise linear finite element approximation of problem (5) with k(x) = k =
constant and non-homogeneous Dirichlet boundary conditions u(a) = ga and u(b) = gb.
Hint: Write the solution as a linear combination of the basis functions (ϕ0, . . . , ϕN) and split

uh = u0h + gh, where u0h(x) is zero on the boundary, while gh = gaϕ0 + gbϕN . (6)

Note that this essentially eliminates two unknowns from the problem!

Solution:
(2a) Multiplying the given differential equation by a test function v, integrating by part, and
using the homogeneous Dirichlet boundary conditions (BCs) we obtain∫ b

a
k(x)u′(x)v′(x) dx =

∫ b

a
f(x)v(x) dx. (7)

Let

h =
b− a

N
, xi = a+ ih, i = 0, . . . , N,Ki = [xi−1, xi], i = 1, . . . , N. (8)

Moreover, we define the basis functions {φj}N−1
j=1 as

φi(x) =


x− xi−1

h
x ∈ Ki

xi+1 − x

h
x ∈ Ki+1

0 otherwise

We then approximate the solution u by

uh(x) =
N−1∑
j=1

ujφj(x). (9)

Note that due to the homogeneous Dirichlet BCs, we have u0 = uN = 0. Now we plug this
into the weak form (7), set v = φi, and see that

N−1∑
j=1

uj

∫ b

a
k(x)φ′

j(x)φ
′
i(x) dx︸ ︷︷ ︸

Ai,j

=

∫ b

a
f(x)φi(x) dx, i = 1, . . . , N − 1. (10)

3

This results in a (N − 1)× (N − 1) system of equations to solve. Now, we focus on Ai,j. For
the derivatives of the basis functions, we immediately see that

φ′
i(x) =


1

h
x ∈ Ki

−1

h
x ∈ Ki+1

0 otherwise

Clearly, when |i − j| > 1, it follows that Ai,j = 0 due to the compact support of the basis
functions. Moreover,

Ai,i−1 =

∫ b

a
k(x)φ′

i−1(x)φ
′
i(x) dx =

∫
Ki

k(x)φ′
i−1(x)φ

′
i(x) dx ≈ hk(xi−1/2)

−1

h2
=

−k(xi−1/2)

h
.

Similarly, for Ai,i+1, we have

Ai,i+1 =

∫ b

a
k(x)φ′

i(x)φ
′
i+1(x) dx =

∫
Ki+1

k(x)φ′
i(x)φ

′
i+1(x) dx ≈ hk(xi+1/2)

−1

h2
=

−k(xi+1/2)

h
.

The entry Ai,i is also given by

Ai,i =

∫ b

a
k(x)φ′

i(x)φ
′
i(x) dx =

∫
Ki

k(x)φ′
i(x)φ

′
i(x) dx+

∫
Ki+1

k(x)φ′
i(x)φ

′
i(x) dx

≈ h
(
k(xi−1/2) + k(xi+1/2)

) 1

h2
=

k(xi−1/2) + k(xi+1/2)

h

The right hand side of the weak form (10) may also be approximated by the midpoint rule or
the right rectangular rule as follows∫ b

a
f(x)φi(x) dx =

∫
Ki

f(x)φi(x) dx+

∫
Ki+1

f(x)φi(x) dx ≈ hf(xi).

This leads to the following system of equations

−1

h

(
k(xi−1/2)ui−1 −

(
k(xi−1/2) + k(xi+1/2)

)
ui + k(xi+1/2)ui+1

)
= hf(xi), i = 1, . . . N − 1,

together with the boundary conditions u0 = uN = 0. On the other hand, a centred finite
difference approximation of the original equation gives

−
(
k(x)u′(x)

)′
(xi) = −

(
ki+1/2u

′(xi+1/2)− ki−1/2u
′(xi−1/2)

h

)
+O(h2)

≈ −
(
ki+1/2

ui+1 − ui
h2

− ki−1/2
ui − ui−1

h2

)
= − 1

h2
(
ki+1/2ui+1 −

(
ki+1/2 + ki−1/2

)
ui + ki−1/2ui−1

)
= f(xi),

which is precisely the same linear system as the finite element discretization rescaled by 1/h.

4

(2b) The Python code for this Exercise can be found in Listing 1.
(2c) Let Kj := [xj−1, xj], hj := xj − xj−1, j = 1, . . . , N , with a = x0 < x1 < . . . < xN =
b. We define the basis functions {φj}Nj=0 as

φ0(x) =


x1 − x

h1
, x ∈ K1

0, otherwise ,

φN (x) =


x− xN−1

hN
, x ∈ KN

0, otherwise ,

and for j = 1, . . . , N − 1

φj(x) =


x− xj−1

hj
, x ∈ Kj

xj+1 − x

hj+1
, x ∈ Kj+1

0, otherwise ,

To derive a finite element approximation, we plug u0h(x) into the differential equation, multiply
the equation by a test function φj, where j ∈ {1, 2, . . . , N −1} is a fixed integer, and integrate
by parts to see that

N−1∑
i=1

∫ b

a
kφ′

i(x)φ
′
j(x) dx︸ ︷︷ ︸

Aij

u0i =

∫ b

a
fφj(x) dx︸ ︷︷ ︸

Fj

−
∫ b

a
kg′h(x)φ

′
j(x) dx︸ ︷︷ ︸

Gj

. (11)

Note that the boundary terms vanish since φj(a) = φj(b) = 0, for all j = 1, . . . , N − 1. The
derivatives of the basis functions are given by

φ′
j(x) =


1

hj
x ∈ Kj

−1

hj+1
x ∈ Kj+1

0 otherwise

Clearly, Aij = 0 if |i− j| > 1. Moreover,

Aj,j−1 =

∫ b

a
kφ′

j−1(x)φ
′
j(x) dx =

∫
Kj

kφ′
j−1(x)φ

′
j(x) dx ≈ hjk

−1

h2j
=

−k

hj
.

Similarly, for Aj,j+1, we have

Aj,j+1 =

∫ b

a
kφ′

j(x)φ
′
j+1(x) dx =

∫
Kj+1

kφ′
j(x)φ

′
j+1(x) dx ≈ hj+1k

−1

h2j+1

=
−k

hj+1
.

The entry Aj,j is also given by

Aj,j =

∫ b

a
kφ′

j(x)φ
′
j(x) dx =

∫
Kj

kφ′
j(x)φ

′
j(x) dx+

∫
Kj+1

kφ′
j(x)φ

′
j(x) dx

5

≈ hjk
1

h2j
+ hj+1k

1

h2j+1

= k

(
1

hj
+

1

hj+1

)
The term Fj in the right hand side of the weak form (11) may be approximated as∫ b

a
f(x)φj(x) dx =

∫
Kj

f(x)φj(x) dx+

∫
Kj+1

f(x)φj(x) dx ≈ hjf(xj).

Finally,

Gj = −
(∫ b

a
kg′h(x)φ

′
j(x) dx

)
= −

(∫ b

a
k (gaφ0(x) + gbφN (x))′ φ′

j(x) dx

)
= −k

(∫ b

a
gaφ

′
0(x)φ

′
j(x) dx+

∫ b

a
gbφ

′
N (x)φ′

j(x) dx

)
= −k

(
gah1δ1,j

−1

h21
+ gbhNδj,N−1

−1

h2N

)
= k

(
δ1,j

ga
h1

+ δj,N−1
gb
hN

)
,

hence Gj is nonzero only for j = 1 and j = N − 1. In particular, in the case of a uniform
grid hj = h,∀j, we obtain the system

k

h


2 −1

−1
. . .

. . .
. . . 2




u01
...
...

u0N−1

 =


hf(x1) + kga/h

hf(x2)
...

hf(xN−2)
hf(xN−1) + kgb/h


which, once again, coincides with a centred second order finite difference approximation.

Listing 1: Python code

#!/usr/bin/python3

"""
@author: Jochen Hinz
"""

import numpy as np

from matplotlib import pyplot as plt

from scipy import sparse

from scipy.sparse import linalg as splinalg

def main(N=21):

""" N: number of grid points. """

step size
h = 1 / (N - 1)

6

grid point coordinates
x = np.arange(0, 1+h, h)

the x_{i + 1/2}
x_12 = x[:-1] + h/2

we utilise the np.piecewise function to define the diffusivity and the rhs
k12 = np.piecewise(x_12 , [x_12 <= .5, x_12 > .5], [lambda x: .5 + x, lambda

x: 1.5 - x])

create the rhs function in the relevant points by using, again, the
np.piecewise function

rhs = h * np.piecewise(x, [x <= .5, x > .5],

[lambda x: .5 * np.pi * np.sin(np.pi * x) +

np.pi * x * np.sin(np.pi * x) - np.cos(np.pi

* x),

lambda x: 1.5 * np.pi * np.sin(np.pi * x) -

np.pi * x * np.sin(np.pi * x) + np.cos(np.pi

* x)])

tridiagonal sparse matrix with off−diagonal entries −k12[1:−1]
and diagonal entries k12[:−1] + k12[1:]
(scaled by 1/h)
A = 1 / h * sparse.diags(diagonals =[-k12[1:-1], k12[:-1] + k12[1:],

-k12[1:-1]],

offsets =[-1, 0, 1],

format=’csr’

)

sol = [0, inner gridpoint solution, 0]
sol = np.array([0, *splinalg.spsolve(A, rhs [1: -1]), 0])

plot the solution
fig , ax = plt.subplots ()

plot the approximate solution
ax.plot(x, sol , ’-o’, c=’b’, label=’approximate solution ’)

plot the exact solution for comparison
xi = np.linspace(0, 1, 1001)

ax.plot(xi , 1 / np.pi * np.sin(np.pi * xi), c=’r’, label=’exact solution ’)

ax.legend ()

ax.grid(True , which=’both’, axis=’both’, color=’gray’, linestyle=’--’,

linewidth =0.5)

ax.set_title(r"Numerical solution of −(k(x)u′(x))′ = f(x)")
ax.set_xlabel("x")

plt.show()

i f __name__ == ’__main__ ’:

main()

7

