

Numerical Approximation of PDEs

Spring Semester 2025

Lecturer: Prof. Annalisa Buffa

Assistant: Mohamed Ben Abdelouahab

Session 3: March 13, 2025

Exercise 1. [The reference element] Let K be a positively-oriented triangle. We consider a reference transformation $F_K : \hat{K} \rightarrow K$ with B_K as defined in the lecture.

(1a) Show that $\det B_K$ relates to the surface area $|K|$ of the triangle K as follows:

$$\det B_K = 2|K|.$$

(Note that there is a mistake in the lecture notes, erroneously claiming that $\det B_K = \frac{1}{2}|K|$).

(1b) Proof that the following two estimates hold

$$\|B_K\| \leq \frac{h_K}{\hat{\rho}}, \quad \|B_K^{-1}\| \leq \frac{\hat{h}}{\rho_K}, \quad (1)$$

where $\hat{\rho}$ and \hat{h} are the inner and outer diameters of the reference triangle \hat{K} while ρ_K and h_K denote the inner and outer diameters of the triangle K .

Deduce that there exists $C_0, C_1 > 0$ independent of K such that :

$$C_0 \rho_K \leq \|B_K\| \leq C_1 h_K, \quad \text{and} \quad C_2 \frac{\rho_K}{h_K} \leq \|B_K\| \|B_K^{-1}\| \leq C_3 \frac{h_K}{\rho_K}. \quad (2)$$

(1c) The quantity h_K/ρ_K is often called aspect ratio in the literature.¹ Someone proposes instead to measure the quality of a triangle by the ratio of the longest edge and the shortest edge. Is that a good idea?

Solution:

(1a) The matrix B_K has columns $\mathbf{v}_0 := \mathbf{b} - \mathbf{a}$ and $\mathbf{v}_1 := \mathbf{c} - \mathbf{a}$, where $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\} \subset \mathbb{R}^2$ denote the vertices of K in counter-clockwise ordering.

A basic result from geometry is that the surface area of the parallelogram P with edges represented by the vectors \mathbf{v}_0 and \mathbf{v}_1 is given by

$$|P| = \|\mathbf{v}_0\| \|\mathbf{v}_1\| |\sin(\phi)|,$$

with ϕ the angle between \mathbf{v}_0 and \mathbf{v}_1 .

We also know that the cross product

$$\mathbf{c} := \begin{bmatrix} \mathbf{v}_0 \\ 0 \end{bmatrix} \times \begin{bmatrix} \mathbf{v}_1 \\ 0 \end{bmatrix},$$

¹Different authors use different definitions.

i.e., taking the \mathbf{v}_i as vectors in \mathbb{R}^3 , only has a non-vanishing z -component. Therefore

$$\left\| \begin{bmatrix} \mathbf{v}_0 \\ 0 \end{bmatrix} \times \begin{bmatrix} \mathbf{v}_1 \\ 0 \end{bmatrix} \right\| = \|\mathbf{v}_0\| \|\mathbf{v}_1\| |\sin(\phi)| = c_z,$$

where c_z is the z -component of the cross product. A straightforward computation shows that $c_z = \det B_K$. Since the surface area of K satisfies $|P| = 2|K|$, we have

$$\det B_K = 2|K|,$$

which is what had to be shown.

(1b) For any $r > 0$, we may write

$$\|B_K\| = \sup_{\xi \in \mathbb{R}^2, \xi \neq 0} \frac{\|B_K \xi\|}{\|\xi\|} = \frac{1}{r} \sup_{\xi \in \mathbb{R}^2, \|\xi\|=r} \|B_K \xi\|,$$

in particular for $r = \hat{\rho}$, i.e.,

$$\|B_K\| = \frac{1}{\hat{\rho}} \sup_{\xi \in \mathbb{R}^2, \|\xi\|=\hat{\rho}} \|B_K \xi\|. \quad (3)$$

Now, for each ξ with $\|\xi\| = \hat{\rho}$ we can find a pair of points $\hat{\mathbf{x}}, \hat{\mathbf{y}} \in \hat{K}$ such that $\xi = \hat{\mathbf{y}} - \hat{\mathbf{x}}$. Let $F_K(\xi) := \mathbf{a} + B_K \xi$ be the map to the triangle K with root vertex $\mathbf{a} \in \mathbb{R}^2$. The map satisfies $F_K(\xi) = F_K(\hat{\mathbf{y}}) - F_K(\hat{\mathbf{x}})$. Since the distance $\|F_K(\hat{\mathbf{y}}) - F_K(\hat{\mathbf{x}})\| = \|B_K(\hat{\mathbf{x}} - \hat{\mathbf{y}})\| = \|\mathbf{y} - \mathbf{x}\|$ is bounded by h_K , where $\mathbf{x} = F_K(\hat{\mathbf{x}})$ and $\mathbf{y} = F_K(\hat{\mathbf{y}})$, we find $\|B_K \xi\| \leq h_K$, which proves the first inequality. The second inequality is derived by exchanging the roles of \hat{K} and K .

Now by definition of the spectral norm, we have

$$\|B_k B_K^{-1}\| \leq \|B_k\| \|B_K^{-1}\|,$$

and using the two previous inequalities we get:

$$\frac{\rho_K}{\hat{h}} \leq \|B_k\| \leq \frac{h_K}{\hat{\rho}}, \quad \frac{\hat{\rho}}{h_K} \leq \|B_k^{-1}\| \leq \frac{\hat{h}}{\rho_K}, \quad (4)$$

Finally, the result holds for $C_0 = 1/\hat{h}$, $C_1 = 1/\hat{\rho}$, $C_2 = \hat{\rho}/\hat{h}$ and $C_3 = \hat{h}/\hat{\rho}$.

(1c) No, it is not. We can easily construct a triangle whose longest edge has length 1 and whose other two edges have length $1/2 + \epsilon$ for any $\epsilon > 0$. As ϵ goes to zero, the triangle gets flatter and flatter, but the ratio of longest and shortest edge converges to 2.

Exercise 2. [Finite Element Method in 1D] Consider Poisson's equation with a non-constant diffusion coefficient $k(x) \in C^0([a, b])$, where $k(x) > 0$ for all $x \in (a, b)$:

$$\begin{cases} -(k(x)u'(x))' = f(x), & x \in (a, b), \\ u(a) = g_a, \quad u(b) = g_b. \end{cases} \quad (5)$$

(2a) Use the midpoint quadrature formula to derive the stiffness matrix A with entries

$$A_{i,j} = \int_a^b k(x) \phi_i'(x) \phi_j'(x) dx$$

and right hand side for a piecewise linear finite element approximation of the solution of system (5) with $g_a = g_b = 0$, when using a uniform grid, and compare it to the stiffness matrix that arises when using a second-order accurate finite difference approximation.

(2b) Implement the finite element approximation derived in **(2a)** for $a = 0, b = 1, g_a = 0$ and $g_b = 0$. Here, the diffusion coefficient and the right hand side are defined as

$$k(x) = \begin{cases} 0.5 + x, & x \leq 1/2 \\ 1.5 - x, & x > 1/2 \end{cases}$$

$$f(x) = \begin{cases} 0.5\pi \sin(\pi x) + \pi x \sin(\pi x) - \cos(\pi x), & x \leq 1/2 \\ 1.5\pi \sin(\pi x) - \pi x \sin(\pi x) + \cos(\pi x), & x > 1/2. \end{cases}$$

Note that the exact solution is given by $u(x) = \frac{1}{\pi} \sin(\pi x)$.

(2c) Derive a piecewise linear finite element approximation of problem (5) with $k(x) = k = \text{constant}$ and non-homogeneous Dirichlet boundary conditions $u(a) = g_a$ and $u(b) = g_b$.

Hint: Write the solution as a linear combination of the basis functions (ϕ_0, \dots, ϕ_N) and split

$$u_h = u_h^0 + g_h, \text{ where } u_h^0(x) \text{ is zero on the boundary, while } g_h = g_a \phi_0 + g_b \phi_N. \quad (6)$$

Note that this essentially eliminates two unknowns from the problem!

Solution:

(2a) Multiplying the given differential equation by a test function v , integrating by part, and using the homogeneous Dirichlet boundary conditions (BCs) we obtain

$$\int_a^b k(x) u'(x) v'(x) dx = \int_a^b f(x) v(x) dx. \quad (7)$$

Let

$$h = \frac{b - a}{N}, \quad x_i = a + ih, \quad i = 0, \dots, N, K_i = [x_{i-1}, x_i], \quad i = 1, \dots, N. \quad (8)$$

Moreover, we define the basis functions $\{\varphi_j\}_{j=1}^{N-1}$ as

$$\varphi_i(x) = \begin{cases} \frac{x - x_{i-1}}{h} & x \in K_i \\ \frac{x_{i+1} - x}{h} & x \in K_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

We then approximate the solution u by

$$u_h(x) = \sum_{j=1}^{N-1} u_j \varphi_j(x). \quad (9)$$

Note that due to the homogeneous Dirichlet BCs, we have $u_0 = u_N = 0$. Now we plug this into the weak form (7), set $v = \varphi_i$, and see that

$$\sum_{j=1}^{N-1} u_j \underbrace{\int_a^b k(x) \varphi'_j(x) \varphi'_i(x) dx}_{A_{i,j}} = \int_a^b f(x) \varphi_i(x) dx, \quad i = 1, \dots, N-1. \quad (10)$$

This results in a $(N - 1) \times (N - 1)$ system of equations to solve. Now, we focus on $A_{i,j}$. For the derivatives of the basis functions, we immediately see that

$$\varphi'_i(x) = \begin{cases} \frac{1}{h} & x \in K_i \\ \frac{-1}{h} & x \in K_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

Clearly, when $|i - j| > 1$, it follows that $A_{i,j} = 0$ due to the compact support of the basis functions. Moreover,

$$A_{i,i-1} = \int_a^b k(x)\varphi'_{i-1}(x)\varphi'_i(x) dx = \int_{K_i} k(x)\varphi'_{i-1}(x)\varphi'_i(x) dx \approx hk(x_{i-1/2})\frac{-1}{h^2} = \frac{-k(x_{i-1/2})}{h}.$$

Similarly, for $A_{i,i+1}$, we have

$$A_{i,i+1} = \int_a^b k(x)\varphi'_i(x)\varphi'_{i+1}(x) dx = \int_{K_{i+1}} k(x)\varphi'_i(x)\varphi'_{i+1}(x) dx \approx hk(x_{i+1/2})\frac{-1}{h^2} = \frac{-k(x_{i+1/2})}{h}.$$

The entry $A_{i,i}$ is also given by

$$\begin{aligned} A_{i,i} &= \int_a^b k(x)\varphi'_i(x)\varphi'_i(x) dx = \int_{K_i} k(x)\varphi'_i(x)\varphi'_i(x) dx + \int_{K_{i+1}} k(x)\varphi'_i(x)\varphi'_i(x) dx \\ &\approx h(k(x_{i-1/2}) + k(x_{i+1/2}))\frac{1}{h^2} = \frac{k(x_{i-1/2}) + k(x_{i+1/2})}{h} \end{aligned}$$

The right hand side of the weak form (10) may also be approximated by the midpoint rule or the right rectangular rule as follows

$$\int_a^b f(x)\varphi_i(x) dx = \int_{K_i} f(x)\varphi_i(x) dx + \int_{K_{i+1}} f(x)\varphi_i(x) dx \approx hf(x_i).$$

This leads to the following system of equations

$$-\frac{1}{h} (k(x_{i-1/2})u_{i-1} - (k(x_{i-1/2}) + k(x_{i+1/2}))u_i + k(x_{i+1/2})u_{i+1}) = hf(x_i), \quad i = 1, \dots, N-1,$$

together with the boundary conditions $u_0 = u_N = 0$. On the other hand, a centred finite difference approximation of the original equation gives

$$\begin{aligned} -(k(x)u'(x))'(x_i) &= -\left(\frac{k_{i+1/2}u'(x_{i+1/2}) - k_{i-1/2}u'(x_{i-1/2})}{h}\right) + O(h^2) \\ &\approx -\left(k_{i+1/2}\frac{u_{i+1} - u_i}{h^2} - k_{i-1/2}\frac{u_i - u_{i-1}}{h^2}\right) \\ &= -\frac{1}{h^2} (k_{i+1/2}u_{i+1} - (k_{i+1/2} + k_{i-1/2})u_i + k_{i-1/2}u_{i-1}) = f(x_i), \end{aligned}$$

which is precisely the same linear system as the finite element discretization rescaled by $1/h$.

(2b) The Python code for this Exercise can be found in Listing 1.

(2c) Let $K_j := [x_{j-1}, x_j]$, $h_j := x_j - x_{j-1}$, $j = 1, \dots, N$, with $a = x_0 < x_1 < \dots < x_N = b$. We define the basis functions $\{\varphi_j\}_{j=0}^N$ as

$$\varphi_0(x) = \begin{cases} \frac{x_1 - x}{h_1}, & x \in K_1 \\ 0, & \text{otherwise} \end{cases}$$

$$\varphi_N(x) = \begin{cases} \frac{x - x_{N-1}}{h_N}, & x \in K_N \\ 0, & \text{otherwise} \end{cases}$$

and for $j = 1, \dots, N-1$

$$\varphi_j(x) = \begin{cases} \frac{x - x_{j-1}}{h_j}, & x \in K_j \\ \frac{x_{j+1} - x}{h_{j+1}}, & x \in K_{j+1} \\ 0, & \text{otherwise} \end{cases}$$

To derive a finite element approximation, we plug $u_h^0(x)$ into the differential equation, multiply the equation by a test function φ_j , where $j \in \{1, 2, \dots, N-1\}$ is a fixed integer, and integrate by parts to see that

$$\sum_{i=1}^{N-1} \underbrace{\int_a^b k\varphi'_i(x)\varphi'_j(x) dx}_{A_{ij}} u_i^0 = \underbrace{\int_a^b f\varphi_j(x) dx}_{F_j} - \underbrace{\int_a^b kg'_h(x)\varphi'_j(x) dx}_{G_j}. \quad (11)$$

Note that the boundary terms vanish since $\varphi_j(a) = \varphi_j(b) = 0$, for all $j = 1, \dots, N-1$. The derivatives of the basis functions are given by

$$\varphi'_j(x) = \begin{cases} \frac{1}{h_j} & x \in K_j \\ \frac{-1}{h_{j+1}} & x \in K_{j+1} \\ 0 & \text{otherwise} \end{cases}$$

Clearly, $A_{ij} = 0$ if $|i - j| > 1$. Moreover,

$$A_{j,j-1} = \int_a^b k\varphi'_{j-1}(x)\varphi'_j(x) dx = \int_{K_j} k\varphi'_{j-1}(x)\varphi'_j(x) dx \approx h_j k \frac{-1}{h_j^2} = \frac{-k}{h_j}.$$

Similarly, for $A_{j,j+1}$, we have

$$A_{j,j+1} = \int_a^b k\varphi'_j(x)\varphi'_{j+1}(x) dx = \int_{K_{j+1}} k\varphi'_j(x)\varphi'_{j+1}(x) dx \approx h_{j+1} k \frac{-1}{h_{j+1}^2} = \frac{-k}{h_{j+1}}.$$

The entry $A_{j,j}$ is also given by

$$A_{j,j} = \int_a^b k\varphi'_j(x)\varphi'_j(x) dx = \int_{K_j} k\varphi'_j(x)\varphi'_j(x) dx + \int_{K_{j+1}} k\varphi'_j(x)\varphi'_j(x) dx$$

$$\approx h_j k \frac{1}{h_j^2} + h_{j+1} k \frac{1}{h_{j+1}^2} = k \left(\frac{1}{h_j} + \frac{1}{h_{j+1}} \right)$$

The term F_j in the right hand side of the weak form (11) may be approximated as

$$\int_a^b f(x) \varphi_j(x) dx = \int_{K_j} f(x) \varphi_j(x) dx + \int_{K_{j+1}} f(x) \varphi_j(x) dx \approx h_j f(x_j).$$

Finally,

$$\begin{aligned} G_j &= - \left(\int_a^b k g'_h(x) \varphi'_j(x) dx \right) \\ &= - \left(\int_a^b k (g_a \varphi_0(x) + g_b \varphi_N(x))' \varphi'_j(x) dx \right) \\ &= -k \left(\int_a^b g_a \varphi'_0(x) \varphi'_j(x) dx + \int_a^b g_b \varphi'_N(x) \varphi'_j(x) dx \right) \\ &= -k \left(g_a h_1 \delta_{1,j} \frac{-1}{h_1^2} + g_b h_N \delta_{j,N-1} \frac{-1}{h_N^2} \right) \\ &= k \left(\delta_{1,j} \frac{g_a}{h_1} + \delta_{j,N-1} \frac{g_b}{h_N} \right), \end{aligned}$$

hence G_j is nonzero only for $j = 1$ and $j = N - 1$. In particular, in the case of a uniform grid $h_j = h, \forall j$, we obtain the system

$$\frac{k}{h} \begin{bmatrix} 2 & -1 & & \\ -1 & \ddots & \ddots & \\ & \ddots & 2 & \\ & & & \ddots \end{bmatrix} \begin{bmatrix} u_1^0 \\ \vdots \\ u_{N-1}^0 \end{bmatrix} = \begin{bmatrix} hf(x_1) + kg_a/h \\ hf(x_2) \\ \vdots \\ hf(x_{N-2}) \\ hf(x_{N-1}) + kg_b/h \end{bmatrix}$$

which, once again, coincides with a centred second order finite difference approximation.

Listing 1: Python code

```
#!/usr/bin/python3

"""
@author: Jochen Hinz
"""

import numpy as np
from matplotlib import pyplot as plt
from scipy import sparse
from scipy.sparse import linalg as splinalg

def main(N=21):
    """ N: number of grid points. """
    # step size
    h = 1 / (N - 1)
```

```

# grid point coordinates
x = np.arange(0, 1+h, h)

# the  $x_{i + 1/2}$ 
x_12 = x[:-1] + h/2

# we utilise the np.piecewise function to define the diffusivity and the rhs
k12 = np.piecewise(x_12, [x_12 <= .5, x_12 > .5], [lambda x: .5 + x, lambda
x: 1.5 - x])

# create the rhs function in the relevant points by using, again, the
# np.piecewise function
rhs = h * np.piecewise(x, [x <= .5, x > .5],
[lambda x: .5 * np.pi * np.sin(np.pi * x) +
np.pi * x * np.sin(np.pi * x) - np.cos(np.pi
* x),
lambda x: 1.5 * np.pi * np.sin(np.pi * x) -
np.pi * x * np.sin(np.pi * x) + np.cos(np.pi
* x)] )

# tridiagonal sparse matrix with off-diagonal entries  $-k12[1:-1]$ 
# and diagonal entries  $k12[:-1] + k12[1:]$ 
# (scaled by  $1/h$ )
A = 1 / h * sparse.diags( diagonals=[-k12[1:-1], k12[:-1] + k12[1:],
-k12[1:-1]],
offsets=[-1, 0, 1],
format='csr'
)

# sol = [0, inner gridpoint solution, 0]
sol = np.array([0, *splinalg.spsolve(A, rhs[1:-1]), 0])

# plot the solution
fig, ax = plt.subplots()

# plot the approximate solution
ax.plot(x, sol, '-o', c='b', label='approximate solution')

# plot the exact solution for comparison
xi = np.linspace(0, 1, 1001)
ax.plot(xi, 1 / np.pi * np.sin(np.pi * xi), c='r', label='exact solution')

ax.legend()
ax.grid(True, which='both', axis='both', color='gray', linestyle='--',
 linewidth=0.5)

ax.set_title(r"Numerical solution of  $-(k(x)u'(x))' = f(x)$ ")
ax.set_xlabel("x")

plt.show()

if __name__ == '__main__':
main()

```