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Exercise 1. [The reference element] Let K be a positively-oriented triangle. We consider a
reference transformation Fy : K — K with By as defined in the lecture.

(1a) Show that det Bx relates to the surface area | K| of the triangle K as follows:
det BK = 2|K’
(Note that there is a mistake in the lecture notes, erroneously claiming that det Bx = 1|K|).

(1b) Proof that the following two estimates hold
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where p and h are the inner and outer diameters of the reference triangle K while px and
hx denote the inner and outer diameters of the triangle K.

Deduce that there exists Cy, C7 > 0 independent of K such that :
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(1c) The quantity hx/pk is often called aspect ratio in the literaturel'| Someone proposes
instead to measure the quality of a triangle by the ratio of the longest edge and the shortest
edge. Is that a good idea?

Solution:

(1a) The matriz Bi has columns vo := b — a and vy := ¢ — a, where {a,b,c} C R? denote
the vertices of K in counter-clockwise ordering.

A basic result from geometry is that the surface area of the parallelogram P with edges repre-
sented by the vectors vy and vy is given by

[Pl = l[vollllvillsin(¢)];

with ¢ the angle between vg and vy.
We also know that the cross product
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!Different authors use different definitions.




i.e., taking the v; as vectors in R3, only has a non-vanishing z-component. Therefore
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X
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where ¢, is the z-component of the cross product. A straightforward computation shows that

¢, = det Bi. Since the surface area of K satisfies |P| = 2| K|, we have

] — Ivollvillsin(6)| = ez,

det BK = 2|K’,
which is what had to be shown.
(1b) For any r > 0, we may write
Bgé 1
Bl = IBreel 1 sy Bl
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in particular for r = p, i.e.,
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P ecr?, ||€|l=p

Now, for each & with ||€|| = p we can find a pair of points X,y € K such that & =y —%. Let
Fr (&) := a+ Bg€ be the map to the triangle K with root verter a € R2. The map satisfies
Fg(§) = Fr(¥) — Fx(X). Since the distance |[Fr(y) — Frx(X)|| = [ Bx(X = §)| = [ly — x| is
bounded by hy, where x = Fi(X) andy = Fk(¥), we find | Bk&| < hg, which proves the
first inequality. The second inequality is derived by exchanging the roles ofk and K.

Now by definition of the spectral norm, we have

IBrBE | < 1Bl B,

and using the two previous inequalities we get:
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Finally, the result holds for Co = 1/h, Cy = 1/p. Cy = p/h and Cs3 = h/p.

(1c) No, it is not. We can easily construct a triangle whose longest edge has length 1 and
whose other two edges have length 1/2 + € for any € > 0. As € goes to zero, the triangle gets
flatter and flatter, but the ratio of longest and shortest edge converges to 2.

Exercise 2. [Finite Element Method in 1D] Consider Poisson’s equation with a non-constant
diffusion coefficient k(x) € C°([a, b]), where k(z) > 0 for all z € (a, b):

{—(k(:i)u’(x))’Zfiw)a z € (a,b), (5)
u(a) = g, u(b) = go.

(2a) Use the midpoint quadrature formula to derive the stiffness matrix A with entries



and right hand side for a piecewise linear finite element approximation of the solution of sys-
tem with g, = g, = 0, when using a uniform grid, and compare it to the stiffness matrix
that arises when using a second-order accurate finite difference approximation.

(2b) Implement the finite element approximation derived in (2a) for a = 0,0 = 1, g, = 0 and
gp = 0. Here, the diffusion coefficient and the right hand side are defined as

k(z) = {0.5+x, x<1/2
15—z, x>1/2
fla) = 0.57sin(mx) + wasin(wx) — cos(mzx), = <1/2
| L5msin(rz) — masin(rz) + cos(nz), x> 1/2.

Note that the exact solution is given by u(z) = X sin(rz).

(2¢) Derive a piecewise linear finite element approximation of problem with k(z) =k =
constant and non-homogeneous Dirichlet boundary conditions u(a) = g, and u(b) = gs.
Hint: Write the solution as a linear combination of the basis functions (¢o, . .., ¢xn) and split

up, = uy + gn, where uy(x) is zero on the boundary, while g, = gado + gpdn- (6)

Note that this essentially eliminates two unknowns from the problem!

Solution:
(2a) Multiplying the given differential equation by a test function v, integrating by part, and
using the homogeneous Dirichlet boundary conditions (BCs) we obtain

b b
/ k(z)u' (z)v' (x) do :/ f(z)v(x) du. (7)

Let b
h = ];“, zi=a+ih, i=0,...,N,Ki=|zi1,2:], i=1...,N. (8)
Moreover, we define the basis functions {p; jN:_ll as
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We then approximate the solution u by
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Note that due to the homogeneous Dirichlet BCs, we have ug = uy = 0. Now we plug this
into the weak form , set v = ;, and see that

Zu]/ goj )i (x dx—/f Yoi(z) de, i=1,...,N —1. (10)
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This results in a (N —1) x (N —1) system of equations to solve. Now, we focus on A; ;. For
the derivatives of the basis functions, we immediately see that

1
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pi(x) = — @€ Kin
0 otherwise

Clearly, when |i — j| > 1, it follows that A; ; = 0 due to the compact support of the basis
functions. Moreover,

b -1 —k(@i1)2)
At = [ K@) a@elle) do= [ Kol a(@)ella) do = b a) g7 = — L2,
Similarly, for A;;+1, we have
b —1 k(zit1/2)
At = [ @)@t do = [ Ko)gla)dta @) do ~ k(e 7z = — 32,
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The entry A;; is also given by

/ (@) do = | M)A )e() do + /. @)
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The right hand side of the weak form may also be approximated by the midpoint rule or
the right rectangular rule as follows

b
[ ey ie = [ f@ee des [ @) dox b,

This leads to the following system of equations

1 .
~% (k(zi—12)uio1 — (k(xi—1/2) + k(2iq12)) wi + k(i1 2)uiv1) = hf(2), i=1,...N -1,

together with the boundary conditions ug = uy = 0. On the other hand, a centred finite
difference approximation of the original equation gives

ki / i _ ki— / i

— (k‘(l‘)u’(:c))/ (z;) = — < +1/2U (v +1/2) - 1/2U (x 1/2)>
Uit1 Uj—1

~ = <ki+l/2+h2 — ki 1/2h>

1
=72 (ki+1/2ui+l - (k?z'+1/2 + ki—1/2) u; + ki—l/zui—l) = f(z:),

+ O(h?)

which is precisely the same linear system as the finite element discretization rescaled by 1/h.



(2b) The Python code for this Exercise can be found in Listing .

(2¢c) Let K := [xj_1,%j], hj:=zj—zj—1, j=1,....N,witha=z9<z1<...<zay=

b. We define the basis functions {goj}j-vzo as

-
! , €Ky
po(z) =9 M
0, otherwise ,
T —TN_
$’ r€ Ky
on(z) = h
0, otherwise
and for j=1,...,N —1
xr — $j_1
—, z€Kj
x; hj— x
pj(z) = L, € Kjn
hjt1
0, otherwise

To derive a finite element approzimation, we plug u?L(:U) into the differential equation, multiply
the equation by a test function ypj, where j € {1,2,..., N —1} is a fized integer, and integrate

by parts to see that

N-1 . b b
> [ k@@ doad = [ fei@) do ~ [ hoi@)gl o) da.
i=1 a a P a
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Note that the boundary terms vanish since ;(a) = ¢;(b) =0, for all j =1,...,N —1. The

derivatives of the basis functions are given by

1
hfj T € Kj
_ -1
QOQ(.Z') o S Kj+1
j+1
0 otherwise

Clearly, A;j =0 if |i — j| > 1. Moreover,

b
L
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Similarly, for Aj i1, we have
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The entry A; ; is also given by

b
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The term F; in the right hand side of the weak form may be approximated as
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hence G is nonzero only for j = 1 and j = N — 1. In particular, in the case of a uniform
grid hj = h,Vj, we obtain the system

Finally,

! [ hf(x1) + kga/h ]
" 2 -1 : hf(zz2)
2 o hf(zn—2)

UN-1 |hf(zn_1) + kgy/h ]

which, once again, coincides with a centred second order finite difference approximation.

Listing 1: Python code
#!/usr/bin/python3

mmrn

@author: Jochen Hinz
mmrn

import numpy as np

from matplotl<id import pyplot as plt

from scipy import sparse

from scipy.sparse import linalg as splinalg

def main (N=21) :
"mrmoN: number of grid points. """

# step size
h=1/ 0 -1)



# grid point coordinates
z = np.arange (0, 1+h, h)

# the x {1 + 1/2}
z_12 = z[:-1] + h/2

# we utilise the np.piecewise function to define the diffusivity and the rhs
k12 = np.piecewise(z_12, [xz_12 <= .5, z_12 > .5], [lambda z: .5 + z, lambda
z: 1.5 - z])

# create the rhs function in the relevant points by using, again, the
np.piecewise function

rhs = h * np.piecewise(z, [z <= .5, z > .5],
[lambda z: .5 * np.pi * np.sin(np.pt * z) +
np.pt * T * np.sin(np.pi * ) - np.cos(np.p<
* z),

lambda z: 1.5 * np.pi * np.sin(np.pi * xz) -
np.pt * ¢ * np.sin(np.pi * x) + np.cos(np.pt

* )] )

# tridiagonal sparse matrix with off-diagonal entries —-k12[1:-1]

# and diagonal entries k12[:-1] + k12[1:]

# (scaled by 1/h)

A =1/ h * sparse.diags( diagonals=[-k12[1:-1], ki12[:-1] + k12[1:],

-k12/[1:-177,
offsets=[-1, 0, 1],
format=’csr’
)
# sol = [0, inner gridpoint solution, 0]

sol = np.array ([0, *splinalg.spsolve(4, rhs[1:-1]), 0])

# plot the solution
fig, axr = plt.subplots ()

# plot the approximate solution
az.plot (z, sol, ’-0’, ¢=’b’, label=’approzimate solution’)

# plot the exact solution for comparison
zi = np.linspace(0, 1, 1001)
az.plot(zi, 1 / np.pt * np.sin(np.pt * zi), c=’r’, label=’exact solution’)

az. legend ()
az.grid (True, which=’both’, azis=’both’, color=’gray’, linestyle=’--7,

linewidth=0.5)

az.set_title(r"Numerical solution of —(k(z)u'(z)) = f(z)")
az.set_zlabel ("z")

plt.show()

if __nmame__ == ’__main__":
main ()



