
Numerical Approximation of PDEs

Spring Semester 2025

Lecturer: Prof. Annalisa Buffa Assistant: Mohamed Ben Abdelouahab

Session 2: March 6, 2025

Exercise 1. Let I = [0, 1]. Discuss whether the function

f : I → R, x 7→ x5/4

is a member of L2(I) or H1(I). Is f ′ a member of H1(I)?

Solution:
We compute the derivatives:

f ′(x) =
5

4
x1/4, f ′′(x) =

5

16
x−3/4.

We square them, which gives

f(x)2 = x5/2, f ′(x)2 =
25

16
x1/2, f ′′(x)2 =

25

256
x−3/2.

Now we integrate and calculate ∫
I
f(x)2dx =

2

7
,∫

I
f ′(x)2dx =

25

24∫
I
f ′′(x)2dx =

25

128
x−1/2

∣∣1
0
= ∞.

We conclude that f ∈ L2(I) and f ′ ∈ L2(I), so that f ∈ H1(I). However, f ′′ /∈ L2(I) and so
f ′ /∈ H1(I).

Exercise 2. Consider the open half unit ball in R2, denoted by B = {x ∈ R2 : |x| < 1}∩R+.
Show that the function u(x) = |log (|x|/2)|λ belongs to the space H1(B) for 0 < λ < 1

2 , but
is not bounded in any neighborhood of the origin.
Hint: Use the polar coordinate transformation to compute the integrals, and note that ∇|x| =
x
|x| for any x ̸= 0.

NB. This is to see that in higher dimensions d ≥ 2, a member of H1(Ω) is not necessarily
continuous. As a result, we can only refer to the value of a function u ∈ H1(Ω) ”almost ev-
erywhere” in Ω rather than in the usual pointwise sense. Because of this, it’s not immediately
clear how to define the ”value at the boundary”, or restriction of u on ∂Ω, since ∂Ω is negligi-
ble set with respect to the d-dimensional Lebesgue measure. However, there is a way to define
the trace u|∂Ω of an H1(Ω) function. This result is formally established by the trace theorem.

1

Solution:
It’s clear that u is not bounded in the neighborhood of the origin. However u ∈ L2(B) since:

∥u∥2L2(B) =

∫
B
|u|2 dx = π

∫ 1

0
|log(r/2)|2λ rdr < +∞, for 0 < 2λ < 1.

Using the identity ∇|x| = x
|x| , we compute the classical derivative of u in B\{0}:

∇u =
λx

|x|2
|log (|x|/2)|λ−2 log (|x|/2) = w.

We now prove that w ∈ L2(B)2:

∫
B
|w|2 dx = λ2

∫
B

1

|x|2
|log (|x|/2)|2(λ−1) dx = λ2π

∫ 1

0

|log (r/2)|2(λ−1)

r
dr,

= − λ2π

2λ− 1
|log (r/2)|2λ−1

∣∣∣∣1
0

< ∞

Next, we prove that the weak derivative of u corresponds to w in B. For simplicity, we show
that w is the weak derivative of u in the unit ball B0 = {x ∈ R2 : |x| < 1} and assume that
u ∈ H1(B0) and w ∈ L2(B0)

2 (can be justified by same computations above.).

Let ϕ ∈ C∞
c (B0). For any ε > 0, using integration by parts, we write:∫
B
u∇ϕdx =

∫
{ε<|x|<1}

u∇ϕdx+

∫
{|x|<ε}

u∇ϕdx

= −
∫
{ε<|x|<1}

wϕ+

∫
{|x|=ε}

uϕ ds+

∫
{|x|<ε}

u∇ϕdx,

= −
∫
{ε<|x|<1}

wϕ+ |log(ε/2)|λ
∫
{|x|=ε}

ϕds+

∫
{|x|<ε}

u∇ϕdx

Now, we estimate the boundary term:

|log(ε/2)|λ
∫
{|x|=ε}

ϕds ≤ |log(ε/2)|λ
∫ 2π

0
ε sup
{|x|=ε}

|ϕ(x)| dθ

= 2πε |log(ε/2)|λ sup
{|x|=ε}

|ϕ(x)| −→ε→0 0.

For the last integral, we use Cauchy-Schwarz and note tha ∇ϕ is bounded,∣∣∣∣∣
∫
{|x|<ε}

u∇ϕdx

∣∣∣∣∣ ≤ ∥u∥2L2(B0)

∣∣∣∣∣
∫
{|x|<ε}

|∇ϕ|2 dx

∣∣∣∣∣ −→ε→0 0.

Thus, we obtain by taking the limit:∫
B0

u∇ϕdx = −
∫
B0

wϕdx, ∀ϕ ∈ C∞
c (B0).

In particular since u ∈ H1(B):∫
B
u∇ϕdx = −

∫
B
wϕdx, ∀ϕ ∈ C∞

c (B).

2

Exercise 3. [Poisson equation with mixed boundary conditions]
Let Ω ⊂ Rd (d = 2, 3) be a bounded Lipschitz domain whose boundary ∂Ω can be split into
two (essentially) disjoint parts: ∂Ω = ΓD ∪ ΓN .
Let f ∈ L2(Ω) and gN ∈ L2(ΓN). Let gD ∈ H1/2(ΓD), so that there exists G ∈ H1(Ω)
satisfying γ|ΓD

(G) = gD. In other words, the trace of G on ΓD is gD.
We consider the Poisson equation

−∆u(x) = f(x) in Ω,
u(x) = gD(x) on ΓD,

∂nu(x) = gN (x) on ΓN ,

Define the sets

VgD =
{
v ∈ H1(Ω) : γ|ΓD

(v) = gD
}
,

V0 = H1
0,ΓD

(Ω) =
{
v ∈ H1(Ω) : γ|ΓD

(v) = 0
}

1. Suppose that u solves the Poisson problem. Show that u0 = u − G belongs to V0 and
satisfies an equation of the form

a(u0, v) = F (v), ∀v ∈ V0. (1)

Give the explicit expressions of a and F .

Hint: Multiply by a test function in V0 and perform integration by parts.

2. Show that the conditions of the Lax-Milgram lemma are satisfied and use it to show
that Problem (1) is well-posed in V0, i.e., there exists a unique u0 ∈ V0 such that

a(u0, v) = F (v), ∀v ∈ V0.

Hint: The Poincaré inequality holds also in V0 : ∀v ∈ V0, ∥v∥L2(Ω) ≤ CF ∥∇v∥L2(Ω).

3. Show there exists a unique u ∈ VgD that is the solution of the original weak formulation.

4. Explain why we cannot apply the Lax-Milgram lemma directly to the set VgD .

Solution:
We first derive a weak formulation from the strong formulation. We multiply by v ∈ V0,
integrate over Ω, and performing integration by parts. Thus∫

Ω
fv = −

∫
Ω
(∆u)v = −

∫
Ω
(div∇u)v

= −
∫
Ω
div(∇u · v) +

∫
Ω
∇u · ∇v

= −
∫
∂Ω

v · (∇u · n⃗) +
∫
Ω
∇u · ∇v

= −
∮
∂Ω

v · ∂nu+

∫
Ω
∇u · ∇v = −

∮
ΓN

vgN +

∫
Ω
∇u · ∇v.

In other words, ∫
Ω
∇u · ∇v =

∫
Ω
fv +

∫
ΓN

gNv, ∀v ∈ V0. (2)

3

We have that u0 ∈ V0 since by construction

γΓD
u0 = γΓD

u− γΓD
G = gD − gD = 0.

Now, if we plug u = u0 +G into Problem (2), we obtain∫
Ω
∇u · ∇v =

∫
Ω
∇u0 · ∇v +

∫
Ω
∇G · ∇v

∫
Ω
∇u0 · ∇v =

∫
Ω
fv +

∫
ΓN

gNv −
∫
Ω
∇G · ∇v, ∀v ∈ V0.

Then we can define the bilinear form a : V0 × V0 → R and the linear form F : V0 → R by

a(w, v) =

∫
Ω
∇w · ∇v, F (v) =

∫
Ω
fv +

∫
ΓN

gNv −
∫
Ω
∇G · ∇v.

Next, we verify the assumptions of Lax-Milgram lemma:

1. The space V0 equipped with the semi-norm ∥∇ · ∥L2(Ω) is an Hilbert space since V0 is a
subspace of H1(Ω) and the norm ∥∇ · ∥L2(Ω) is equivalent to the H1 norm thanks to the
Friedrichs’ inequality.

2. a is clearly bilinear, continuous and coercive (see lecture).

3. F is linear. Continuity can be proven in the following way :

|F (v)| ≤
∣∣∣∣∫

Ω
fv

∣∣∣∣+ ∣∣∣∣∫
ΓN

gNv

∣∣∣∣+ ∣∣∣∣∫
Ω
∇G · ∇v

∣∣∣∣
≤ ∥f∥L2(Ω)∥v∥L2(Ω) + ∥gN∥L2(ΓN)∥v∥L2(ΓN) + ∥∇G∥L2(Ω)∥∇v∥L2(Ω)

≤ ∥f∥L2(Ω)∥v∥H1(Ω) + Cγ∥gN∥L2(ΓN)∥v∥H1(ΓN) + ∥∇G∥L2(Ω)∥v∥H1(Ω),

where we use Cauchy-Schwarz inequality, the trace inequality, and the properties of G.
We give more details for the second term. We have

∥gN∥L2(ΓN)∥v∥L2(ΓN) ≤ ∥gN∥L2(ΓN)∥v∥L2(∂Ω).

By the trace inequality applied to ∥v∥L2(∂Ω), we have

∥gN∥L2(ΓN)∥v∥L2(ΓN) ≤ ∥gN∥L2(ΓN)CT ∥v∥H1(Ω). (3)

We set u = u0 + G. By construction, u ∈ VgD and satisfies (2). The uniqueness is a
consequence of the uniqueness of u0 ∈ V0 that is solution to (1). Indeed if u1, u2 are two
distinct solutions to (2), then u1 −G ∈ V0 and u2 −G ∈ V0 are two distinct solutions to (1),
that is a contradiction.
We cannot directly apply the Lax-Milgram lemma to the set VgD because, for example, it is
generally not a linear subspace. Unless gD = 0, the sum of two members of VgD is not in VgD

again.

4

Exercise 4. [Equivalence of hat functions with the space of piecewise linears]
Denote the discretization parameter by h = 1

N , where N ∈ N∗ and consider a uniform subdi-
vision Eh of [a, b]: Eh = {x0 = a, x1, x2, . . . , xN−1, xN = b} such that h = xi+1 − xi.

Consider the space

Vh :=
{
v ∈ C0(Ω) : v(a) = v(b) = 0 and v|Ii ∈ P1

}
,

where Ii = [xi, xi+1] are the subintervals forming the partition of [a, b] with N elements and
P1 = {p | p(x) = ax+ b, (a, b) ∈ R} is the space of linear polynomials.
Next, consider the space

Wh = span {λ1, . . . , λN−1} ,

where the λi are the hat functions (see figure 1) defined by:

∀i ∈ [0 . . . N] ∀xj ∈ Eh λi ∈ Vh and λi(xj) = δij .

Prove that Vh = Wh.

h

0

1

λi−1 λi λi+1

xi−1 xi xi+1

Figure 1: Basis hat functions λi.

Solution:
Suppose vh ∈ Vh with vh(xi) = ci. Take the function wh =

∑
i ciλi. Clearly, wh ∈ Wh. We

have
(vh − wh)(xi) = 0, ∀xi.

However, since both Vh and Wh are piecewise linear spaces, this is only possible if vh−wh = 0,
=⇒ wh = vh and therefore vh ∈ Wh.
Conversely, let wh =

∑
i ciλi. Then wh ∈ Vh trivially because each λi ∈ Vh.

Exercise 5. [Assembly of the mass matrix with nonconstant reaction term in 1D]
Let Ω = (0, 1), we are considering the so-called mass matrix with a nonconstant reactivity
C∞(Ω) ∋ c(x) > 0 which has the following entries:

Mi,j =

∫
Ω
c(x)λi(x)λj(x)dx. (4)

5

The assembly iterates over all elements and then looks up which functions are nonzero on
the element. The integral from (4) is split into its contributions from each element and then
added to a sparse matrix at the right position.
Since c(x) can be anything, the only way of computing the entries numerically is using a
quadrature formula over the element (xi, xi+1). Use the provided script as a starting point
to implement the assembly of this matrix for general c(x) and then assemble M for c(x) =
1+ 1

2 sin(πx). The script provides a function for acquiring various Gauss quadrature formulas
and for the midpoint rule.
YOU DO NOT HAVE TO USE NUMPY VECTORISATION YET

Listing 1: Python code

Solution:
#!/usr/bin/python3

"""
@author: Jochen Hinz
"""

import numpy as np

from scipy import sparse

from numbers import Number

from typing import Callable , Tuple

from functools import partial

def gauss_quadrature(a: Number , b: Number , order: int = 3) ->

Tuple[np.ndarray , np.ndarray]:

""" Given the element boundaries ‘(a, b)‘, return the weights and
evaluation points
corresponding to a gaussian quadrature scheme of order ‘order‘.

Parameters
−−−−−−−−−−

a : ‘float‘
the left boundary of the element

b : ‘float‘
the right boundary of the element

order : ‘int‘
the order of the Gaussian quadrature scheme

Returns
−−−−−−−

weights : ‘np.ndarray‘
the weights of the quadrature scheme

points : ‘np.ndarray‘
the points (abscissae) over (a, b)

"""
assert b > a

points , weights = np.polynomial.legendre.leggauss(order)

points = (points + 1) / 2

return (b - a) / 2 * weights , a + points * (b - a)

6

gauss1 = partial(gauss_quadrature , order =1)

gauss2 = partial(gauss_quadrature , order =2)

gauss3 = partial(gauss_quadrature , order =3)

gauss4 = partial(gauss_quadrature , order =4)

and so on ...

def midpoint_rule(a: Number , b: Number) -> Tuple[np.ndarray , np.ndarray]:

""" Same as ‘gauss_quadrature‘ but without the ‘order‘ argument. """
assert b > a

return np.array ([(b - a)]), np.array ([a + b]) / 2

def assemble(nelems: int , c: Callable = None , quadrule: Callable = gauss3) ->

sparse.csr_matrix:

"""
Given the number of elements, the reactivity c and the quadrule, assemble
Mi,j with Mi,j =

∫
Ω
c(x)λi(x)λj(x)dx.

>>> c = lambda x: 1 + x ** 2
>>> quadrule = gauss3
>>> M = assemble(10, c=c, quadrule=gauss3)

"""

if the reaction term is not passed, take it constant one
i f c i s None:

c = lambda x: np.ones_like(x)

the mesh’s nodes are uniformly distributed over [0, 1]
nodes = np.linspace(0, 1, nelems + 1)

the left and right boundaries of the i−th element are given by
elem_boundaries[i]

elem_boundaries = np.stack ([nodes [:-1], nodes [1:]] , axis =1)

the number of hat functions equals len(nodes)
ndofs = len(nodes)

make an empty sparse matrix of shape (ndofs, ndofs) in lil−format
the lil−format can be directly assigned to

M = sparse.lil_matrix ((ndofs , ndofs))

iterate in parallel over the index of the element, the element boundaries
as well as the weights and the points on each element

for ielem , ((a, b), (weights , points)) in enumerate(zip(elem_boundaries ,

map(quadrule , *elem_boundaries.T))):

the active dofs on the i−th element are simply given by (i, i+1)
dofs = np.array([ielem , ielem +1])

create an empty matrix of shape (2, 2)
where m_loc[i, j] contains the integral of c lambda_{dofs[i]}

lambda_{dofs[j]} over the i−th element
m_loc = np.empty((2, 2), dtype=float)

fill the local matrix of shape (2, 2)
lambda0 , lambda1 = 1 - (points - a) / (b - a), (points - a) / (b - a)

7

for i, lam0 in enumerate ([lambda0 , lambda1]):

for j, lam1 in enumerate ([lambda0 , lambda1]):

m_loc[i, j] = (weights * c(points) * lam0 * lam1).sum()

add the contribution to the correct position in M
np.ix_(dofs, dofs) returns the entries we need.
M[np.ix_(dofs , dofs)] += m_loc

return the M matrix in csr format
return M.tocsr ()

def main():

nelems = 10

c = lambda x: 1 + .5 * np.sin(np.pi * x)

generate three matrices with different quadratule rules
M3 = assemble(nelems , c=c, quadrule=gauss3)

M4 = assemble(nelems , c=c, quadrule=gauss4)

Mmidpoint = assemble(nelems , c=c, quadrule=midpoint_rule)

print the outcomes:

for i, mat in enumerate ((M3, M4, Mmidpoint), 1):

print(f"Matrix number {i}: \n", mat.todense (), ’\n’)

i f __name__ == ’__main__ ’:

main()

8

