Numerical Approximation of PDEs

Spring Semester 2025
Lecturer: Prof. Annalisa Buffa Assistant: Mohamed Ben Abdelouahab

Session 2: March 6, 2025

Exercise 1. Let I = [0,1]. Discuss whether the function
f:I—R, x> /4
is a member of L2(I) or H*(I). Is f" a member of H'(I)?

Solution:
We compute the derivatives:

) 5
/ _ 2,.1/4 " _ 2 .—3/4
We square them, which gives
25 25
2 _,.5/2 1(\2 — 29 ,..1/2 1" N\2 —3/2

Now we integrate and calculate

2

27 _

/If(ﬂr)daf—7,

)2y = 22

/If(ac)dac—24

1" 25 _
/If(if)2dif=128f'3 2y = oo

We conclude that f € L*(I) and f' € L*(I), so that f € H'(I). However, f" ¢ L*(I) and so
fre Hi(I).

Exercise 2. Consider the open half unit ball in R?, denoted by B = {z € R? : |z| < 1} NR™.
Show that the function u(z) = [log (|z|/2)|* belongs to the space H(B) for 0 < A < %, but
is not bounded in any neighborhood of the origin.

Hint: Use the polar coordinate transformation to compute the integrals, and note that V|z| =
X

i for any x # 0.

]

NB. This is to see that in higher dimensions d > 2, a member of H () is not necessarily
continuous. As a result, we can only refer to the value of a function u € HY(Q) ”almost ev-
erywhere” in) rather than in the usual pointwise sense. Because of this, it’s not immediately
clear how to define the "value at the boundary”, or restriction of u on 9%, since 9N is negligi-
ble set with respect to the d-dimensional Lebesgue measure. However, there is a way to define
the trace ulgqn of an HY () function. This result is formally established by the trace theorem.

Solution:
It’s clear that u is not bounded in the neighborhood of the origin. However u € L?(B) since:

1
||uH%2(B) = / lu|? dz = 77/ llog(r/2)|** rdr < +oo, for 0<2Xx< 1.
B 0
Using the identity V|z| = ﬁ, we compute the classical derivative of u in B\{0}:
Vu = ‘ FE 5 llog (|1/2)]* 2 log (||/2) = w.
We now prove that w € L*(B)?:

-1
/|w\2dx—/\2/ ‘ |2 |10g(’$|/2)| 2(A-1) dr = N2 / |10g T'/i” dr,

1

< 00
0

. A 221
=~ llog (r/2)

Next, we prove that the weak derivative of u corresponds to w in B. For simplicity, we show
that w is the weak derivative of u in the unit ball By = {x € R? : |z| < 1} and assume that
u € HY(By) and w € L*(By)? (can be justified by same computations above.).

Let ¢ € CX(By). For any € > 0, using integration by parts, we write:

/uV¢da¢:/ uV(;Sda:—i—/ uVodz
B {e<|z|<1} {|z|<e}
:—/ wgb—l—/ u¢ds+/ uVodz,
{e<lz|<1} {l|=e} {lz[<e}

= —/ wo + \log(€/2)]>‘/ ods —|—/ uVedx
{e<|e|<1} {lel=e} {lz|<e}

Now, we estimate the boundary term:

2m
llog(e/2)| / pds < [log(e/2)* / € sup |p(x)| db
{lz|=e
= 27¢ [log(/2)|} {|s‘up]qﬁ(m)] —e0 0.

For the last integral, we use Cauchy-Schwarz and note tha V¢ is bounded,

/ uV¢ da / V| da
{lzl<e} {|lz|<e}

Thus, we obtain by taking the limit:

/ uVodr = —/ wao dz, Vo € C°(By).
Bo BO

< [[ull22 s 0 0.

In particular since u € H'(B):

/ uVodr = —/ wao dz, Vo € C°(B).
B B

2

Exercise 3. [Poisson equation with mixed boundary conditions]

Let Q ¢ R? (d = 2,3) be a bounded Lipschitz domain whose boundary 9 can be split into
two (essentially) disjoint parts: 90Q =T'p UT'y.

Let f € L?(Q) and gy € L?>(T'y). Let gp € H/>(I'p), so that there exists G € H'(Q)
satisfying v|r, (G) = gp. In other words, the trace of G on I'p is gp.

We consider the Poisson equation

—Au(z) = f(x) inQ,
u(r) = gp(z) onIp,
Ohu(z) = gn(x) on Ty,

Define the sets

Vop = {v € HI(Q) 2Y[rp (v) = 9D}7
Vo = Hr,,(Q) = {v € H(Q) :9lr,, (v) = 0}

1. Suppose that u solves the Poisson problem. Show that ug = u — G belongs to Vy and
satisfies an equation of the form

a(ug,v) = F(v), Yvel. (1)

Give the explicit expressions of a and F.

Hint: Multiply by a test function in Vjy and perform integration by parts.

2. Show that the conditions of the Lax-Milgram lemma are satisfied and use it to show
that Problem is well-posed in 1y, i.e., there exists a unique ug € Vj such that

a(up,v) = F(v), Yvel.
Hint: The Poincaré inequality holds also in Vg : Vv € Vo, [|v][z2(0) < CF|[Vv| 12(0)-
3. Show there exists a unique u € Vj,, that is the solution of the original weak formulation.
4. Explain why we cannot apply the Lax-Milgram lemma directly to the set V.

Solution:
We first derive a weak formulation from the strong formulation. We multiply by v € Vp,
integrate over), and performing integration by parts. Thus

/Q fo=— /Q (Auyo = — /Q (divVu)o
:—/Qdiv(Vu-v)%—/QVu-Vv
:—/mfu-(Vu'ﬁ)—l—/QVu-VU

:—7{ v-@nu—i—/Vu-Vv:—f vgN—l—/Vu-Vv.
a0 Q I'n Q

/Vu-Vv:/fv—i-/ gnv, Yve . (2)
Q Q I'n

3

In other words,

We have that ug € Vy since by construction
rpuo = rpt —wrpG =gp —gp = 0.

Now, if we plug u = ug + G into Problem , we obtain

/Vu-Vv:/Vuo-Vv—l—/VG-Vv
Q Q Q

/Vuo-Vv:/fv—i—/ ng—/VG-Vv, Yv € V.
Q Q Tn Q

Then we can define the bilinear form a : Vo x Vo — R and the linear form F : Vo — R by

a(w,v):/QVw-Vv, F(v):/ﬂfw/F ng—/QVG.w.

Next, we verify the assumptions of Laz-Milgram lemma:

1. The space Vo equipped with the semi-norm ||V - || 12(q) is an Hilbert space since Vo is a
subspace of H'(Q) and the norm ||V - || 12(q) is equivalent to the H' norm thanks to the
Friedrichs’ inequality.

2. a is clearly bilinear, continuous and coercive (see lecture).

3. F is linear. Continuity can be proven in the following way :

\F(v)IS‘/va /FNng JRCRE

< |[fllzz@llvlliz2() + llgn 2@y ol L2 y) + IVG L2 [[VV| L2 (0
<N fllzllvlar@) + Cyllan 2oVl ar gy + VG 2@ 10l 21 0)

+ +

where we use Cauchy-Schwarz inequality, the trace inequality, and the properties of G.
We give more details for the second term. We have

lgn L2y lvll L2y < llan iz vl 2 a0)-
By the trace inequality applied to [|v||12(50), we have

lgnllLe@py IVl 22 yy < llgn 2@ Ol Fr) (3)

We set u = ug + G. By construction, u € Vg, and satisfies . The uniqueness is a
consequence of the uniqueness of ug € Vy that is solution to . Indeed if uq,us are two
distinct solutions to , then uy — G € Vy and ug — G € Vi are two distinct solutions to ,
that is a contradiction.

We cannot directly apply the Laz-Milgram lemma to the set Vg, because, for example, it is
generally not a linear subspace. Unless gp = 0, the sum of two members of Vg, is not in Vg,
again.

Exercise 4. [Equivalence of hat functions with the space of piecewise linears|

Denote the discretization parameter by h = %, where N € N* and consider a uniform subdi-

vision &, of [a,b]: &, = {xg = a,z1,29,...,xN_1,2Nn = b} such that h = x;41 — ;.

Consider the space
Vi ={vel’(Q): wv(a)=v(b)=0 and vl €Pi},

where I; = [z;,x;41] are the subintervals forming the partition of [a,b] with N elements and
Py = {p|p(z) = ax + b, (a,b) € R} is the space of linear polynomials.
Next, consider the space

Wy, =span{Ai,...,An_1},

where the \; are the hat functions (see figure [1)) defined by:
Vi € [0. . N] V.%'j €& MNeV, and)\Z(.%']) = (SZ]

Prove that V, = W),

Xi—1 i Ait1
1 —
1 1 1
0
Ti—1 Xy Ti+1
—
h

Figure 1: Basis hat functions \;.

Solution:
Suppose vy, € Vi, with vy (z;) = ¢;. Take the function wy, = Y, ¢;Ai. Clearly, wy, € Wy,. We
have

(’Uh — wh)(xi) = 0, Vl'i.

Howewver, since both Vi, and Wy, are piecewise linear spaces, this is only possible if vy, —wp = 0,
= wy, = vy, and therefore vy, € W,
Conversely, let wy, =, cihi. Then wy, € V3, trivially because each \; € Vi,

Exercise 5. [Assembly of the mass matrix with nonconstant reaction term in 1D]
Let Q = (0,1), we are considering the so-called mass matrix with a nonconstant reactivity
C*(2) > ¢(x) > 0 which has the following entries:

M; ; :/Qc(a:))\i(x))\j(as)dx. (4)

5

The assembly iterates over all elements and then looks up which functions are nonzero on
the element. The integral from is split into its contributions from each element and then
added to a sparse matrix at the right position.

Since c(x) can be anything, the only way of computing the entries numerically is using a
quadrature formula over the element (x;,z;+1). Use the provided script as a starting point
to implement the assembly of this matrix for general c¢(x) and then assemble M for c(z) =
1+ % sin(mzx). The script provides a function for acquiring various Gauss quadrature formulas
and for the midpoint rule.

YOU DO NOT HAVE TO USE NUMPY VECTORISATION YET

Listing 1: Python code

Solution:
#!/usr/bin/python3

mmrn

@author: Jochen Hinz
mmn

import numpy as np

from scipy import sparse

from numbers import Number

from typing import Callable, Tuple

from functools import partial

def gauss_quadrature (a: Number, b: Number, order: int = 3) ->
Tuple[np.ndarray, np.ndarrayl]:
""" Given the element boundaries ‘(a, b) ', return the weights and
evaluation points
corresponding to a gaussian quadrature scheme of order ‘order’.

Parameters

a : ‘float'
the left boundary of the element
b : ‘float'
the right boundary of the element
order : ‘int'
the order of the Gaussian quadrature scheme

Returns
weights : ‘np.ndarray’

the weights of the quadrature scheme
points : ‘np.ndarray’

the points (abscissae) over (a, b)
mmn
assert b > a
points, weights = np.polynomial.legendre.leggauss (order)
points = (points + 1) / 2
return (b - a) / 2 * weights, a + points * (b - a)

gaussl = partial (gauss_quadrature, order=1)

gauss2 = partial (gauss_quadrature, order=2)
gauss3 = partial (gauss_quadrature, order=3)
gauss4 = partial (gauss_quadrature, order=4)

and so on

def midpoint_rule(a: Number, b: Number) -> Tuple[np.ndarray, np.ndarrayl:
"rroSame as ‘gauss_quadrature' but without the ‘order' argument. """
assert b > a
return np.array ([(b - a)]), np.array([a + b]) / 2

def assemble(nelems: int, c: Callable = Nome, quadrule: Callable = gauss3) ->
sparse.csr_matriz:
Given the number of elements, the reactivity c¢ and the quadrule, assemble
M;; with M ;= [, c(z)Xi(2)X;(z)dx.

>>> ¢ = Jambda x: 1 + x #* 2
>>> quadrule = gauss3
>>> M = assemble (10, c=c, quadrule=gauss3)

mmn

1f the reaction term is not passed, take it constant one
if ¢ is None:
¢ = lambda z: np.ones_like (z)

the mesh’s nodes are uniformly distributed over [0, 1]
nodes = np.linspace (0, 1, nelems + 1)

the left and right boundaries of the i-th element are given by
elem boundaries[i]
elem_boundaries = np.stack([nodes[:-1], nodes([1:]], azis=1)

the number of hat functions equals len (nodes)
ndofs = len(nodes)

make an empty sparse matrix of shape (ndofs, ndofs) in lil-format
the 1il-format can be directly assigned to

M = sparse.lil_matriz ((ndofs, ndofs))

iterate in parallel over the index of the element, the element boundaries
as well as the weights and the points on each element

for <ielem, ((a, b), (weights, points)) in enumerate(zip(elem_boundaries,
map (quadrule, *elem_boundaries.T))):

the active dofs on the i-th element are simply given by (i, 1i+1)
dofs = np.array([ielem, delem+1])

create an empty matrix of shape (2, 2)

where m_loc[i, 7j] contains the integral of ¢ lambda_{dofs[i]}
lambda_{dofs[j]} over the i-th element

m_loc = np.empty((2, 2), dtype=float)

fill the local matrix of shape (2, 2)
lambda0, lambdal = 1 - (points - a) / (b - a), (points - a) / (b - a)

for 4, lam0O in enumerate ([lambdaO, lambdall]) :
for j, laml in enumerate ([lambda0O, lambdall]):
m_locl[i, j] = (weights * c(points) * lamO * laml).sum()

add the contribution to the correct position in M
np.ix_(dofs, dofs) returns the entries we need.

M[np.<iz_(dofs, dofs)] += m_loc

return the M matrix in csr format
return M. tocsr ()

def main () :
nelems = 10

¢ = lambda z: 1 + .5 * np.sin(np.pi * x)

generate three matrices with different quadratule rules

M3 = assemble(nelems, c=c, quadrule=gauss3)
M4 = assemble(nelems, c=c, quadrule=gaussi)
Mmidpoint = assemble(nelems, c=c, quadrule=midpoint_rule)

print the outcomes:

for <, mat in enumerate ((M3, M4, Mmidpoint), 1):
print (f"Matriz number {i}: \n", mat.todense(), ’\n’)

if name__ == ’__main__

main ()

2 .

