

Numerical Approximation of PDEs

Spring Semester 2025

Lecturer: Prof. Annalisa Buffa

Assistant: Mohamed Ben Abdelouahab

Session 1: February 27, 2025

1 Ellipticity

(1a) Show that the quadratic form

$$\langle L\mathbf{u}, \mathbf{v} \rangle = v_1 (1 + x_1 x_2) u_1 + x_1 v_1 u_2 + x_2 v_2 u_1 + v_2 u_2 \quad (1)$$

is coercive in $\Omega = \{x \in \mathbb{R}^2 \mid 0 < x_1 < \frac{1}{2}, 0 < x_2 < 1\}$.

(1b) Show that the quadratic form $\langle L\mathbf{u}, \mathbf{v} \rangle = \sum_{i,j=1}^3 u_i (a_{ij} v_j)$, with

$$\{a_{ij}\} = \begin{pmatrix} 1 & -x_3 & x_2 \\ x_3 & 1 + x_1^2 & x_1 \\ -x_2 & x_2 & 1 + x_3^2 \end{pmatrix} \quad (2)$$

is coercive in $\Omega = \{x \in \mathbb{R}^3 \mid |x| < 1\}$.

HINT for both exercises: We call a quadratic form $\langle L\mathbf{u}, \mathbf{v} \rangle = \mathbf{v}^T A\mathbf{u}$ coercive if $\langle L\mathbf{u}, \mathbf{u} \rangle > 0$ for $\mathbf{u} \neq \mathbf{0}$. First show that a matrix A is positive definite if and only if all eigenvalues of $\frac{A+A^T}{2}$ are strictly positive.

Solution:

Note that:

$$\left(v, \frac{A+A^T}{2} v \right) = \frac{1}{2} (v, Av) + \frac{1}{2} (v, A^T v) = \frac{1}{2} (v, Av) + \frac{1}{2} (Av, v) = (v, Av).$$

Furthermore, note that $\frac{A+A^T}{2}$ is symmetric and hence positive definite if and only if all eigenvalues are strictly positive.

(1a) We have

$$A = \begin{pmatrix} 1 + x_1 x_2 & x_1 \\ x_2 & 1 \end{pmatrix}$$

and hence

$$\frac{A+A^T}{2} = \begin{pmatrix} 1 + x_1 x_2 & \frac{1}{2}(x_1 + x_2) \\ \frac{1}{2}(x_1 + x_2) & 1 \end{pmatrix}.$$

The smallest eigenvalue satisfies

$$\lambda_{min} = \frac{1}{2} \left(2 + x_1 x_2 - \sqrt{x_1^2 x_2^2 + (x_1 + x_2)^2} \right).$$

For $a \geq 0$ and $b \geq 0$, we have $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$ and thus

$$\lambda_{min} \geq 1 - \frac{x_1 + x_2}{2} \geq \frac{1}{4}, \quad \text{for } x \in \bar{\Omega}.$$

(1b) We have

$$\frac{A + A^T}{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 + x_1^2 & \frac{1}{2}(x_1 + x_2) \\ 0 & \frac{1}{2}(x_1 + x_2) & 1 + x_3^2 \end{pmatrix}.$$

Hence, one of the eigenvalues equals one, while the minimum of the other two is given by

$$\lambda_{min} = \frac{1}{2} \left(2 + x_1^2 + x_3^2 - \sqrt{(x_1^2 - x_3^2)^2 + (x_1 + x_2)^2} \right).$$

Using $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$ again, we find

$$\lambda_{min} \geq \frac{1}{2} (2 + x_1^2 + x_3^2 - |x_1^2 - x_3^2| - |x_1 + x_2|) \geq \frac{1}{2} (2 - |x_1 + x_2|) \geq 1 - \frac{\sqrt{2}}{2}, \quad \text{for } x \in \bar{\Omega}.$$

2 Reaction-diffusion equation in 1D

Consider the elliptic boundary value problem that reads:

$$- (K(x)u'(x))' + c(x)u(x) = f(x), \quad x \in \Omega \quad (3)$$

subject to

$$u(0) = u(1) = 0. \quad (4)$$

where:

- $\Omega = (0, 1)$.
- $K(x)$ is bounded and strictly positive scalar function on Ω .
- $c(x)$ is a bounded scalar function on Ω .
- $f \in L^2(\Omega)$ is a given function.

Derive the weak formulation and give a sufficient condition on $c(x)$ to obtain the existence and uniqueness of the weak solution.

Solution:

As seen in class, the resulting weak formulation is:

$$\text{Find } u \in H_0^1(\Omega) \text{ such that } a(u, v) = L(v), \quad \forall v \in H_0^1(\Omega). \quad (5)$$

where

$$a(u, v) = \int_{\Omega} (Ku'v' + cuv) dx, \quad (6)$$

$$L(v) = \int_{\Omega} fv dx. \quad (7)$$

It is easy to see that the linear form $L(\cdot)$ is continuous on $H_0^1(\Omega)$. We now verify the assumptions of the Lax-Milgram theorem for the bilinear form $(u, v) \rightarrow a(u, v)$ in $H_0^1(\Omega) \times H_0^1(\Omega)$.

- Continuity:

$$\begin{aligned} a(u, v) &\leq \|Ku'\|_{L^2(\Omega)} \|v'\|_{L^2(\Omega)} + \|cu\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)}, \quad (\text{Cauchy-Schwartz}) \\ &\leq \|K\|_{L^\infty(\Omega)} \|v\|_{H^1(\Omega)} \|u\|_{H^1(\Omega)} + \|c\|_{L^\infty(\Omega)} \|u\|_{H^1(\Omega)} \|v\|_{H^1(\Omega)}, \\ &= (\|K\|_{L^\infty(\Omega)} + \|c\|_{L^\infty(\Omega)}) \|u\|_{H^1(\Omega)} \|v\|_{H^1(\Omega)}. \end{aligned}$$

- Coercivity: Denote $K_0 = \min_{x \in \Omega} K(x)$ and $c_0 = \min_{x \in \Omega} c(x)$. Using the Poincaré inequality, we obtain

$$\begin{aligned} a(u, u) &= \int_{\Omega} (K(u')^2 + cu^2) dx \\ &\geq K_0 \|u'\|_{L^2(\Omega)}^2 + c_0 \|u\|_{L^2(\Omega)}^2 \\ &\geq \frac{K_0}{C_p^2 + 1} \|u\|_{H^1(\Omega)}^2 + c_0 \|u\|_{L^2(\Omega)}^2 \end{aligned}$$

This leads to two possible cases:

Case 1: If $c_0 \geq 0$, then

$$a(u, u) \geq \min \left(\frac{K_0}{C_p^2 + 1}, c_0 \right) \|u\|_{H^1(\Omega)}^2.$$

Case 2: If $c_0 < 0$, then

$$a(u, u) \geq \left(\frac{K_0}{C_p^2 + 1} + c_0 \right) \|u\|_{H^1(\Omega)}^2.$$

A sufficient condition for coercivity is

$$c_0 > -\frac{K_0}{C_p^2 + 1}.$$

3 Reaction-diffusion equation in 2D (bonus)

Consider the elliptic boundary value problem that reads:

$$-\nabla \cdot (A(x)\nabla u(x)) + c(x)u(x) = f(x), \quad x \in \Omega \quad (8)$$

subject to

$$u(x) = 0, \quad \text{on } \partial\Omega \quad (9)$$

where:

- $\Omega \subset \mathbb{R}^2$ is a bounded open domain with a Lipschitz boundary $\partial\Omega$.
- $A(x)$ is bounded, symmetric and positive definite.
- $c(x) \geq 0$ is a bounded scalar function on Ω .
- $f \in L^2(\Omega)$ is a given function.

(2a)

Derive the weak form of the given boundary value problem.

Hint: As in 1D, multiply by a test function and integrate over the domain. In two spatial dimensions, the product rule reads:

$$\phi \nabla \cdot \mathbf{F} = -\nabla \phi \cdot \mathbf{F} + \nabla \cdot (\phi \mathbf{F}). \quad (10)$$

(2b)

Define the bilinear form $a(u, v)$ and the linear form $L(v)$ based on the weak formulation.

(2c)

Verify that $a(u, v)$ and $L(v)$ satisfy the boundedness and coercivity conditions necessary for the Lax-Milgram lemma.

(2d)

Use the Lax-Milgram Lemma to argue the existence and uniqueness of the solution to the weak formulation.

(2e)

Explore how the solution's properties might change if $c(x)$ is allowed to take negative values in parts of Ω . Derive a lower bound on $c(x)$ in terms of the smallest eigenvalue of $A(x)$ such that Lax-Milgram remains applicable.

Hint: You can use the Poincaré inequality to derive a lower bound.

Solution:

(2a)

We multiply by $v \in H_0^1(\Omega)$ and integrate over the domain:

$$\int_{\Omega} -v \nabla \cdot (A \nabla u) + v c u \, d\Omega = \int_{\Omega} v f \, d\Omega. \quad (11)$$

We use the product rule with $\phi = v$ and $\mathbf{F} = A\nabla u$ to derive

$$\int_{\Omega} -v \nabla \cdot (A \nabla u) + v c u \, d\Omega = \int_{\Omega} \nabla v \cdot (A \nabla u) - \nabla \cdot (v A \nabla u) + v c u \, d\Omega. \quad (12)$$

Using the divergence theorem on the second integrand, we obtain

$$\int_{\Omega} \nabla v \cdot (A \nabla u) - \nabla \cdot (v A \nabla u) + v c u \, d\Omega = \int_{\Omega} \nabla v \cdot (A \nabla u) + v c u \, d\Omega - \int_{\partial\Omega} v A \nabla u \cdot \mathbf{n} \, d\Gamma. \quad (13)$$

Since $v = 0$ on $\partial\Omega$, the last term vanishes and we are left with the weak form:

$$\int_{\Omega} \nabla v \cdot (A \nabla u) + c v u \, d\Omega = \int_{\Omega} v f \, d\Omega, \quad \forall v \in H_0^1(\Omega). \quad (14)$$

(2b)

We write the forms $a(u, v)$ and $L(v)$ concisely as:

$$\begin{aligned} a(u, v) &= (\nabla v, A \nabla u)_{\Omega} + (v, c u)_{\Omega} \\ L(v) &= (f, v)_{\Omega}. \end{aligned} \quad (15)$$

(2c)

We have

$$\begin{aligned} a(u, v) &= \int_{\Omega} \nabla v \cdot (A \nabla u) + c v u \, d\Omega \\ &\leq \|\nabla v\|_{L^2(\Omega)} \|A \nabla u\|_{L^2(\Omega)} + \|c u\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)} \\ &\leq \|A\|_{L^\infty(\Omega)} \|v\|_{H^1(\Omega)} \|u\|_{H^1(\Omega)} + \|c\|_{L^\infty(\Omega)} \|u\|_{H^1(\Omega)} \|v\|_{H^1(\Omega)} \\ &= (\|A\|_{L^\infty(\Omega)} + \|c\|_{L^\infty(\Omega)}) \|u\|_{H^1(\Omega)} \|v\|_{H^1(\Omega)}. \end{aligned} \quad (16)$$

Furthermore, we utilise the Poincaré inequality to bound $a(u, u)$ from below:

$$\begin{aligned} a(u, u) &= \int_{\Omega} \nabla u \cdot (A \nabla u) + \underbrace{c u^2}_{>0} \, d\Omega \\ &\geq \int_{\Omega} \nabla u \cdot (A \nabla u) \, d\Omega \\ &\geq \lambda_{\min}(A) \int_{\Omega} \|\nabla u\|^2 \, d\Omega \quad (\lambda_{\min} \text{ is the smallest eigenvalue}) \\ &\geq \frac{\lambda_{\min}(A)}{C_p^2 + 1} \|u\|_{H^1(\Omega)}^2. \end{aligned} \quad (17)$$

As for $L(v)$, we have directly by Cauchy-Schwartz

$$L(v) = \int_{\Omega} f v \, d\Omega \leq \|f\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)}. \quad (18)$$

(2d)

The solution of (2c) demonstrates that all conditions for applying the Lax-Milgram theorem are satisfied which means that the weak form admits a unique solution $u \in V$, with $V = H_0^1(\Omega)$.

(2e)

$$a(u, v) = (\nabla u, A \nabla v)_\Omega + (u, cv)_\Omega$$

We have:

$$(\nabla u, A \nabla u)_\Omega \geq \frac{\lambda_{\min}(A)}{C_p^2 + 1} \|u\|_{H^1(\Omega)}^2.$$

Let $c_{\min} := \min_{x \in \Omega} c(x) < 0$. We have

$$(u, cu) \geq c_{\min} \|u\|_{L^2(\Omega)}^2 \geq c_{\min} \|u\|_{H^1(\Omega)}^2 < 0.$$

Therefore:

$$a(u, u) \geq \underbrace{\left(\frac{\lambda_{\min}(A)}{C_p^2 + 1} + c_{\min} \right)}_{\text{must be } > 0} \|u\|_{H^1(\Omega)}^2$$

Therefore, a sufficient condition is:

$$c_{\min} > -\frac{\lambda_{\min}(A)}{C_p^2 + 1}.$$

4 Coding warmup

Consider the Heron method for computing square roots: starting with an initial guess $x_0 > 0$ and a number $S > 0$, we recursively define:

$$x_{n+1} = \frac{S + x_n^2}{2x_n}. \quad (19)$$

The iterates x_n converge to the square root \sqrt{S} .

Implement this method and plot the errors $e_i = x_i - \sqrt{S}$ of the iterates x_0, x_1, \dots, x_{10} when $S = 10000$ and $x_0 = 20000$. For plotting, you can use Matplotlib in Python.

Solution:

The solution can be found in a separate .py file.