Numerical Approximation of PDEs

Spring Semester 2025

Lecturer: Prof. Annalisa Buffa Assistant: Mohamed Ben Abdelouahab

Session 1: February 27, 2025

1 Ellipticity

(1a) Show that the quadratic form

(Lu,v) = v1 (1 + z122) U1 + x101U2 + T2v2U1 + VoU (1)

is coercive in Q@ = {z € R? | 0 < 21 < 3,0 < zp < 1}.

(1b) Show that the quadratic form (Lu,v) = Y22 u; (a;;v;), with

i,j=1
1 —XI3 )
{agy = =3 1427 = (2)

—Z2 T3 1+ x%
is coercive in Q = {z € R? | |z| < 1}.
HINT for both exercises: We call a quadratic form (Lu,v) = vI Au coercive if (Lu, u) > 0

for u # 0. First show that a matrix A is positive definite if and only if all eigenvalues of
% are strictly positive.

Solution:
Note that:

A+ AT 1 1 1 1
(U, +2 v> =3 (v, Av) + 5 (v, ATv) = 3 (v, Av) + 5 (Av,v) = (v, Av).

Furthermore, note that # is symmetric and hence positive definite if and only if all eigen-
values are strictly positive.

(1a) We have
A (1 + x129 x1>
i) 1

A+AT o 14+ 2129 %(:cl—I—xz)
2 o %($1+:E2) 1 ’

and hence

1



The smallest eigenvalue satisfies

1
Amin = 5 <2 + 2129 — ‘T%.T% + (.’El + 1132)2) .

Fora >0 and b > 0, we have \/a+b§\/5+\/5andthus

1 _
Ammz1—mzz, forz € Q0.
(1b) We have
1 0 0
A+ AT
5 = 0 1+27 (142
0 %(ml—i-:cg) 1+x§

Hence, one of the eigenvalues equals one, while the minimum of the other two is given by

1
Amin = 5 <2+x% +a3 — \/(:r% — %)% + (21 +x2)2> :

Using va + b < /a + Vb again, we find

1 1 2 _
Amin > 5(2+fcf+m§— |27 — 23| — |1 + 22]) > 5 2=zt ) 2 1—\2f, for x € Q.
2 Reaction-diffusion equation in 1D
Consider the elliptic boundary value problem that reads:
— (K(2)u/(2)) + c(@)u(x) = f(z), =€Q (3)
subject to
w(0) = u(1) =0 (4)
where:
e O=1(0,1).

e K (x) is bounded and strictly positive scalar function on €.
e ¢(z) is a bounded scalar function on €.
e f € L%(Q) is a given function.

Derive the weak formulation and give a sufficient condition on ¢(x) to obtain the existence
and uniqueness of the weak solution.



Solution:
As seen in class, the resulting weak formulation is:

Find u € H3(Q) such that a(u,v) = L(v), Yv & Hi(Q). (5)
where
a(u,v) = /(Ku'v’—i—cuv)dm, (6)
Q

L(v) = /Q Fudz. (7)

It is easy to see that the linear form L(-) is continuous on Hg(Q). We now verify the assump-
tions of the Laz-Milgram theorem for the bilinear form (u,v) — a(u,v) in H}(Q) x H ().

o Continuity:
a(u,v) < [|Ku'|| g2 [0l 20 + lleull 2@ lvll2),  (Cauchy-Schwartz)

< K llzee @ lollz1y lull gy + llell e @llull @) 1ol 2@,

= (1Kl o) + llell oo o)) Null oy vl )-

e Coercivity: Denote Ky = mingeq K(z) and ¢y = mingeq c(x). Using the Poincaré
inequality, we obtain

a(u,u) = /Q (K (u')? + cu?) dx

> Kollu/[[ 720y + collull72(q)

Ko 2 2
2 W”UHH%Q) + collullz2 (o

This leads to two possible cases:
Case 1: If co > 0, then

: Ko 2
o) > min (2.0 ) Il o

Case 2: If cg < 0, then

alu,u) > (C%Jrl +CO> [l -
A sufficient condition for coercivity is
Ko

C2+1

co > —



3 Reaction-diffusion equation in 2D (bonus)

Consider the elliptic boundary value problem that reads:

=V - (A(x)Vu(z)) + c(z)u(z) = f(x), =€ (8)

subject to

where:
e O C R? is a bounded open domain with a Lipschitz boundary 0.
e A(x) is bounded, symmetric and positive definite.
e ¢(z) > 0 is a bounded scalar function on €.
e f € L?(Q) is a given function.

(2a)

Derive the weak form of the given boundary value problem.

Hint: As in 1D, multiply by a test function and integrate over the domain. In two spatial
dimensions, the product rule reads:

¢V -F=-V¢-F+V-(¢F). (10)

(2b)
Define the bilinear form a(u,v) and the linear form L(v) based on the weak formulation.

(2¢)
Verify that a(u,v) and L(v) satisfy the boundedness and coercivity conditions necessary for
the Lax-Milgram lemma.

(2d)
Use the Lax-Milgram Lemma to argue the existence and uniqueness of the solution to the
weak formulation.

(2e)

Explore how the solution’s properties might change if ¢(x) is allowed to take negative values
in parts of Q. Derive a lower bound on ¢(z) in terms of the smallest eigenvalue of A(x) such
that Lax-Milgram remains applicable.

Hint: You can use the Poincaré inequality to derive a lower bound.

Solution:

(2a)

We multiply by v € H}(Q) and integrate over the domain:

/—UV - (AVu) + veudQ = /vf dQ. (11)
Q Q



We use the product rule with ¢ = v and F = AVu to derive

/—UV - (AVu) + veud = /Vv - (AVu) =V - (vVAVu) + veu dS. (12)
Q Q

Using the divergence theorem on the second integrand, we obtain

/VU - (AVu) = V- (vAVu) + veudQ = /VU - (AVu) + veu dQ — /’UAVU -ndl.  (13)
Q Q onN

Since v =0 on 0N, the last term vanishes and we are left with the weak form:

/Vv - (AVu) + coudf) = /vf dQ, Vv e Hi(Q). (14)
Q Q

(2b)

We write the forms a(u,v) and L(v) concisely as:

a(u,v) = (Vu, AVu), + (v, cu)q
L(v) = (f,v)q - (15)

(2¢)
We have

a(u,v) = /Vv - (AVu) 4 coudQ
Q

< Vol 2y [AVUl g2y + lleull 2 ) V]l L2 ()
< WAl zee @) 101l g1y 1wl gy + llellzees @) l1ull gy 1ol g o)

— (Al + llell s oy) l1ull 71 gy ol (16)

Furthermore, we utilise the Poincaré inequality to bound a(u,u) from below:

a(u,u) = /Vu- (AVu) + cu® dQ
Q >0

> / Vu - (AVau) dQ
Q

> Amin(A) / [Vl dQ (Amin 18 the smallest eigenvalue)
Q

>\min A
= ()
As for L(v), we have directly by Cauchy-Schwartz
L) = [ 70492 < £l 2 [0l 0 (13)
Q



(2d)
The solution of (2¢) demonstrates that all conditions for applying the Lax-Milgram theorem
are satisfied which means that the weak form admits a unique solutionu € V, with V = H&(Q)

(2e)

a(u,v) = (Vu, AVu)q + (u, cv)g
We have:

Amin A
(Vu AV = 755 Il

Let ¢pin := mine(x) < 0. We have
e

(uy cu) = emin [|ul72iq) = cmin [|ull 70y < 0.

Therefore:
)\min(A) 2
a(u,u) > <03+1 + cmin | [ullz g
must be >0

Therefore, a sufficient condition is:

)\min(A)

Cmin > —
C2+1

4 Coding warmup

Consider the Heron method for computing square roots: starting with an initial guess x¢ > 0
and a number S > 0, we recursively define:

S+ a2

2z, (19)

Tp4+1 =

The iterates z, converge to the square root v/S.
Implement this method and plot the errors e; = z; — /S of the iterates zg, z1, ..., 219 when
S = 10000 and zg = 20000. For plotting, you can use Matplotlib in Python.

Solution:
The solution can be found in a separate .py file.
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