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1 Ellipticity

(1a) Show that the quadratic form

⟨Lu,v⟩ = v1 (1 + x1x2)u1 + x1v1u2 + x2v2u1 + v2u2 (1)

is coercive in Ω = {x ∈ R2 | 0 < x1 <
1
2 , 0 < x2 < 1}.

(1b) Show that the quadratic form ⟨Lu,v⟩ =
∑3

i,j=1 ui (aijvj), with

{aij} =

 1 −x3 x2
x3 1 + x21 x1
−x2 x2 1 + x23

 (2)

is coercive in Ω = {x ∈ R3 | |x| < 1}.

HINT for both exercises: We call a quadratic form ⟨Lu,v⟩ = vTAu coercive if ⟨Lu,u⟩ > 0
for u ̸= 0. First show that a matrix A is positive definite if and only if all eigenvalues of
A+AT

2 are strictly positive.

Solution:
Note that:(

v,
A+AT

2
v

)
=

1

2
(v,Av) +

1

2

(
v,AT v

)
=

1

2
(v,Av) +

1

2
(Av, v) = (v,Av) .

Furthermore, note that A+AT

2 is symmetric and hence positive definite if and only if all eigen-
values are strictly positive.

(1a) We have

A =

(
1 + x1x2 x1

x2 1

)
and hence

A+AT

2
=

(
1 + x1x2

1
2(x1 + x2)

1
2(x1 + x2) 1

)
.
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The smallest eigenvalue satisfies

λmin =
1

2

(
2 + x1x2 −

√
x21x

2
2 + (x1 + x2)

2

)
.

For a ≥ 0 and b ≥ 0, we have
√
a+ b ≤

√
a+

√
b and thus

λmin ≥ 1− x1 + x2
2

≥ 1

4
, for x ∈ Ω.

(1b) We have

A+AT

2
=

1 0 0
0 1 + x21

1
2(x1 + x2)

0 1
2(x1 + x2) 1 + x23

 .

Hence, one of the eigenvalues equals one, while the minimum of the other two is given by

λmin =
1

2

(
2 + x21 + x23 −

√
(x21 − x23)

2 + (x1 + x2)2
)
.

Using
√
a+ b ≤

√
a+

√
b again, we find

λmin ≥ 1

2

(
2 + x21 + x23 − |x21 − x23| − |x1 + x2|

)
≥ 1

2
(2− |x1 + x2|) ≥ 1−

√
2

2
, for x ∈ Ω.

2 Reaction-diffusion equation in 1D

Consider the elliptic boundary value problem that reads:

−
(
K(x)u′(x)

)′
+ c(x)u(x) = f(x), x ∈ Ω (3)

subject to

u(0) = u(1) = 0. (4)

where:

• Ω = (0, 1).

• K(x) is bounded and strictly positive scalar function on Ω.

• c(x) is a bounded scalar function on Ω.

• f ∈ L2(Ω) is a given function.

Derive the weak formulation and give a sufficient condition on c(x) to obtain the existence
and uniqueness of the weak solution.
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Solution:
As seen in class, the resulting weak formulation is:

Find u ∈ H1
0 (Ω) such that a(u, v) = L(v), ∀v ∈ H1

0 (Ω). (5)

where

a(u, v) =

∫
Ω
(Ku′v′ + cuv)dx, (6)

L(v) =

∫
Ω
fvdx. (7)

It is easy to see that the linear form L(·) is continuous on H1
0 (Ω). We now verify the assump-

tions of the Lax-Milgram theorem for the bilinear form (u, v) → a(u, v) in H1
0 (Ω)×H1

0 (Ω).

• Continuity:

a(u, v) ≤ ∥Ku′∥L2(Ω)∥v′∥L2(Ω) + ∥cu∥L2(Ω)∥v∥L2(Ω), (Cauchy-Schwartz)

≤ ∥K∥L∞(Ω)∥v∥H1(Ω) ∥u∥H1(Ω) + ∥c∥L∞(Ω)∥u∥H1(Ω)∥v∥H1(Ω),

=
(
∥K∥L∞(Ω) + ∥c∥L∞(Ω)

)
∥u∥H1(Ω)∥v∥H1(Ω).

• Coercivity: Denote K0 = minx∈ΩK(x) and c0 = minx∈Ω c(x). Using the Poincaré
inequality, we obtain

a(u, u) =

∫
Ω

(
K(u′)2 + cu2

)
dx

≥ K0∥u′∥2L2(Ω) + c0∥u∥2L2(Ω)

≥ K0

C2
p + 1

∥u∥2H1(Ω) + c0∥u∥2L2(Ω)

This leads to two possible cases:

Case 1: If c0 ≥ 0, then

a(u, u) ≥ min

(
K0

C2
p + 1

, c0

)
∥u∥2H1(Ω).

Case 2: If c0 < 0, then

a(u, u) ≥
(

K0

C2
p + 1

+ c0

)
∥u∥2H1(Ω).

A sufficient condition for coercivity is

c0 > − K0

C2
p + 1

.
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3 Reaction-diffusion equation in 2D (bonus)

Consider the elliptic boundary value problem that reads:

−∇ · (A(x)∇u(x)) + c(x)u(x) = f(x), x ∈ Ω (8)

subject to

u(x) = 0, on ∂Ω (9)

where:

• Ω ⊂ R2 is a bounded open domain with a Lipschitz boundary ∂Ω.

• A(x) is bounded, symmetric and positive definite.

• c(x) ≥ 0 is a bounded scalar function on Ω.

• f ∈ L2(Ω) is a given function.

(2a)
Derive the weak form of the given boundary value problem.
Hint: As in 1D, multiply by a test function and integrate over the domain. In two spatial
dimensions, the product rule reads:

ϕ∇ · F = −∇ϕ · F+∇ · (ϕF) . (10)

(2b)
Define the bilinear form a(u, v) and the linear form L(v) based on the weak formulation.

(2c)
Verify that a(u, v) and L(v) satisfy the boundedness and coercivity conditions necessary for
the Lax-Milgram lemma.

(2d)
Use the Lax-Milgram Lemma to argue the existence and uniqueness of the solution to the
weak formulation.

(2e)
Explore how the solution’s properties might change if c(x) is allowed to take negative values
in parts of Ω. Derive a lower bound on c(x) in terms of the smallest eigenvalue of A(x) such
that Lax-Milgram remains applicable.
Hint: You can use the Poincaré inequality to derive a lower bound.

Solution:
(2a)
We multiply by v ∈ H1

0 (Ω) and integrate over the domain:∫
Ω

−v∇ · (A∇u) + vcudΩ =

∫
Ω

vf dΩ. (11)
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We use the product rule with ϕ = v and F = A∇u to derive∫
Ω

−v∇ · (A∇u) + vcudΩ =

∫
Ω

∇v · (A∇u)−∇ · (vA∇u) + vcudΩ. (12)

Using the divergence theorem on the second integrand, we obtain∫
Ω

∇v · (A∇u)−∇ · (vA∇u) + vcudΩ =

∫
Ω

∇v · (A∇u) + vcudΩ−
∫
∂Ω

vA∇u · ndΓ. (13)

Since v = 0 on ∂Ω, the last term vanishes and we are left with the weak form:∫
Ω

∇v · (A∇u) + cvudΩ =

∫
Ω

vf dΩ, ∀v ∈ H1
0 (Ω). (14)

(2b)
We write the forms a(u, v) and L(v) concisely as:

a(u, v) = (∇v,A∇u)Ω + (v, cu)Ω
L(v) = (f, v)Ω . (15)

(2c)
We have

a(u, v) =

∫
Ω

∇v · (A∇u) + cvudΩ

≤ |∇v|L2(Ω) |A∇u|L2(Ω) + ∥cu∥L2(Ω) ∥v∥L2(Ω)

≤ ∥A∥L∞(Ω) ∥v∥H1(Ω) ∥u∥H1(Ω) + ∥c∥L∞(Ω) ∥u∥H1(Ω) ∥v∥H1(Ω)

=
(
∥A∥L∞(Ω) + ∥c∥L∞(Ω)

)
∥u∥H1(Ω) ∥v∥H1(Ω) . (16)

Furthermore, we utilise the Poincaré inequality to bound a(u, u) from below:

a(u, u) =

∫
Ω

∇u · (A∇u) + cu2︸︷︷︸
>0

dΩ

≥
∫
Ω

∇u · (A∇u) dΩ

≥ λmin(A)

∫
Ω

∥∇u∥2 dΩ (λmin is the smallest eigenvalue)

≥ λmin(A)

C2
p + 1

∥u∥2H1(Ω) . (17)

As for L(v), we have directly by Cauchy-Schwartz

L(v) =

∫
Ω

fvdΩ ≤ ∥f∥L2(Ω) ∥v∥L2(Ω) . (18)
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(2d)
The solution of (2c) demonstrates that all conditions for applying the Lax-Milgram theorem
are satisfied which means that the weak form admits a unique solution u ∈ V , with V = H1

0 (Ω).

(2e)

a(u, v) = (∇u,A∇u)Ω + (u, cv)Ω

We have:

(∇u,A∇u)Ω ≥ λmin(A)

C2
p + 1

∥u∥2H1(Ω) .

Let cmin := min
x∈Ω

c(x) < 0. We have

(u, cu) ≥ cmin ∥u∥2L2(Ω) ≥ cmin ∥u∥2H1(Ω) < 0.

Therefore:

a(u, u) ≥
(
λmin(A)

C2
p + 1

+ cmin

)
︸ ︷︷ ︸

must be >0

∥u∥2H1(Ω)

Therefore, a sufficient condition is:

cmin > −λmin(A)

C2
p + 1

.

4 Coding warmup

Consider the Heron method for computing square roots: starting with an initial guess x0 > 0
and a number S > 0, we recursively define:

xn+1 =
S + x2n
2xn

. (19)

The iterates xn converge to the square root
√
S.

Implement this method and plot the errors ei = xi −
√
S of the iterates x0, x1, . . . , x10 when

S = 10000 and x0 = 20000. For plotting, you can use Matplotlib in Python.

Solution:
The solution can be found in a separate .py file.
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