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Exercise 1. [Streamline Diffusion for Diffusion-Advection-Reaction Equation] Let Ω be a
bounded domain in R2. We consider the following advection-diffusion-reaction problem for
u : Ω → R:

−∆u+ div (βu) + u = f in Ω
u = ϕ on ΓD

∇u · n = uβ · n on ΓN

, (1)

where ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅ is a partition of the boundary and where and
β = β(x) ∈ R2 is the flow vector field and f ∈ L2(Ω) the source term.

1. Derive the weak formulation of the problem; state the bilinear form a and the functional
on the right-hand side. Apply integration by parts to the first-order term and use the
boundary conditions to remove all boundary integrals.

2. For now we take f = 0.
We can use the bilinear form a( · , · ) for a finite element method, similar as we have
done for the Poisson problem. But in the case of an advection-dominated problem, we
need to stabilize the numerical method to avoid spurious oscillations in the numerical
solution. Introduce an isotropic streamline viscosity by modifying the bilinear form as
follows:

ah(uh, vh) = a(uh, vh) +
∑
K∈Th

γhK
∥β∥L∞(K)

∫
K
(∇uh · β) (∇vh · β) ,

where γ > 0 is a stabilisation parameter. We mention that the use of the ∥ · ∥∞ norm
is equivalent to the norm discussed in class (only potentially requiring a differing value
of γ) but easier to implement.
Now we assume that Ω = [0, 1]2, β = (−103,−103)T and ΓD = ∂Ω. We also define ϕ
as: {

ϕ = 1 on Γ = {(x, y) | 0 ≤ x ≤ 1 and y = 0, or x = 0 and 0 ≤ y ≤ 1}
ϕ = 0 on ΓD \ Γ.

Construct ah(uh, vh) with your Python code by adding the aforementioned contribution

+
∑
K∈Th

γhK
∥β∥L∞(K)

∫
K
(∇uh · β) (∇vh · β)

to the bilinear form. Solve the problem without stabilisation for h ∈ {0.1, 0.05, 0.025}
without stabilisation and then with streamline diffusion stabilisation for all values of
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h and γ ∈ {0.1, 1, 5}. In the Python template conv dom template.py you will find a
function for solving without stabilisation and with streamline diffusion stabilisation. In
integrate template.py, you will find templates for iterators constructing the trans-
port matrix Bij = −

∫
Ω ϕiβ·∇ϕj and a template for the streamline diffusion stabilisation

as discussed above. After you have completed the script, rename it to integrate.py

to run the main script.
Compare the stabilised and non-stabilised solutions. Is the stabilisation consistent for
f = 0 ? And what about f ̸= 0 ?

Exercise 2. [The plate problem and the Argyris finite element] The goal of this exercise is to
solve a simple elliptic fourth order PDE using a suitable (conforming) finite element method.

1. Let Ω ⊂ Rn be a bounded open domain with smooth boundary ∂Ω and f ∈ L2(Ω).
Consider the biharmonic equation

∆(∆u) = f in Ω,

u = 0 on ∂Ω,
∂u

∂n
= 0 on ∂Ω,

(2)

Show that we have the following variational formulation, and use Lax-Milgram lemma
to prove the well-posedness of the weak problem.∫

Ω
∆u∆w dx =

∫
Ω
fw dx for all w ∈ H2

0 (Ω). (3)

where H2
0 (Ω) =

{
u ∈ H2(Ω),

∣∣u = ∂u
∂n = 0 on ∂Ω

}
.

Hint : Note that if u ∈ H2
0 (Ω), then we have

∂u

∂xi
∈ H1

0 (Ω), i = 1, . . . , n and by integrat-

ing by parts twice: ∫
Ω
|∆u|2 dx =

n∑
i,j=1

∫
Ω

∣∣∣∣ ∂2u

∂xi∂xj

∣∣∣∣2 dx.
2. Let T h be a conforming triangulation of Ω ⊂ R2 into elements {Kj}. Let PKj ⊂ H2(Kj)

be a polynomial space on each element. Define the global finite element space Vh ⊂
C1(Ω) such that vh|Kj ∈ PKj for all j. Define:

V 0
h = {vh ∈ Vh : vh = 0 on ∂Ω},

V 00
h =

{
vh ∈ Vh : vh = 0 and

∂vh
∂n

= 0 on ∂Ω

}
.

Show that:
V 0
h ⊂ H2(Ω) ∩H1

0 (Ω), and V 00
h ⊂ H2

0 (Ω).

3. Denote by P5(K) the space of polynomials of total degree at most 5 on the triangle K.
Consider the following set of degrees of freedom

A =

{
p(vk),

∂p

∂xi
(vk),

∂2p

∂xi∂xj
(vk),

∂p

∂n
(mk), k = 1, 2, 3, i, j = 1, 2

}
, (4)
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where v1, v2, v3 are the triangle’s vertices and m1,m2,m3 are the midpoints of its edges.
∂p
∂n(mk) denotes the normal derivative of p along the edge at midpoint mk.

Show that A (called the Argyris element) is P5-unisolvent i.e. any polynomial p ∈ P5 is
uniquely determined on K by the 21 degrees of freedom in (4).

4. We are now ready to construct a discrete conforming subspace and solve the biharmonic
equation (2) numerically in two dimensions n = 2 based on the variational formulation
(3). Consider the discrete space Vh associated to the Argyris element. Show that Vh is
a subspace of H2(Ω). We denote

Vh =
{
v ∈ C1(Ω)

∣∣ v|K ∈ P5 for each K ∈ Th
}
.

Hint : Show that for two adjacent triangles K1 and K2 sharing a common edge Γ =
[v1, v2]. We have v ∈ C1(K1 ∪ K2) ∩ Vh if and only if for k = 1, 2 the following
conditions are satisfied:

p|K1(vk) = p|K2(vk),

∂(p|K1)

∂xi
(vk) =

∂(p|K2)

∂xi
(vk),

∂2(p|K1)

∂xi∂xj
(vk) =

∂2(p|K2)

∂xi∂xj
(vk),

∂(p|K1)

∂n
(m) =

∂(p|K2)

∂n
(m),

where i, j = 1, 2 and m is the midpoint of the shared edge. Use question 2 to conclude.

5. Suppose that the regularity of the exact solution of (3) is u ∈ H4(Ω)
⋂

K∈Th H
6(K),

and that the interpolation operator ΠK : C2(Ω) → P5(K) associated with A satisfies
the following estimate:

∀K ∈ Th, ∥v−ΠKv∥H2(K) ≲ h4K |v|H6(K), ∀v ∈ H6(K), where hK = diam(K). (5)

Let uh ∈ Vh be the approximate solution of (3). Show that the global error satisfies the
estimate:

∥u− uh∥H2(Ω) ≲ h2|u|H4(Ω), where h = max
K∈Th

hK . (6)
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