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Problem 1 (10 points)

Let © C R? be a bounded Lipschitz domain with boundary 9. We consider the elliptic boundary value problem

—eAu+ku = [ inQ,
u = 0 on 0.

Here, f € L?(Q2), and € > 0 and k > 0 are positive numbers.

(a) Write a weak formulation of the problem in suitable Sobolev spaces and state the bilinear form.

(b) Show that the problem is well-posed by using the Lax-Milgram theorem. How do the constants in the Lax-
Milgram theorem depend on k and €? Find a lower estimate for the coercivity constant that depends only on
€.

(¢) Suppose that V}, is a subspace of the relevant Sobolev space. Write down the Galerkin formulation, explain why
it is well-posed, and compare the Galerkin error to the best approximation error (Cea’s lemma).

(d) Describe in words what happens in the situation that € is much larger than k.












Problem 2 (10 points)

Consider the one-dimensional reference interval K = [0, 1].

Describe an affine transformation that maps [0, 1] onto [a, b] for any a < b.
Define degrees of freedom for the space Pl(f{ ) and the corresponding Lagrange basis.
Take the Lagrange basis from the previous subtask together with the two functions
(1 -2), #(1-2)%
Show that these together constitute a basis of Ps(K) and state suitable degrees of freedom.
Compute the mass matrix M; for the above basis of Py (K).

Give a formula for the condition number of a symmetric positive-definite matrix. Calculate the condition number
of the mass matrix M;.












Problem 3 (10 points)

Let © C R? be a bounded Lipschitz domain with boundary 9Q. We consider the convection-dominated problem

U 0 on 0.

{—eAu+B~Vu = f in Q,

Here, 3 : Q — R? is a continuous vector field, f € L%(R), and € > 0. Suppose that 7 is a triangulation of © and write
Vi, € H () for the linear finite element space.

(a) Describe the weak formulation (with the suitable choice of Sobolev space) and the Galerkin formulation. State
the bilinear form a of the weak formulation.

(b) Describe the linear system of equations for the finite element problem. Describe the entries of the matrix and
the right-hand side in terms of integrals. Can you restrict the integrals to subsets of 2?7

(c) Compute the integrals if we use the modified bilinear form

ap(u,v) := a(u,v) + 5/9 Vu(z)Vu(z) de.












Problem 4 (10 points)

Let Q = (0,1)? C R? be a bounded polyhedral domain. We consider the heat equation

Ou—Au = f inQ,
u = 0 on 99,
u=uyg = 0 att=0.

over some time interval [0, T with 7' > 0. Here, f € C(0,T; L?(Q)) and ug € L*(Q2). Suppose that T is a triangulation
of Q and write V;, C H}(Q) for the linear finite element space. We let N be the dimension of that space.

(a) State the semidiscrete formulation in terms of functions and in terms of coefficients. Briefly define all matrices
and vectors.

(b) Write the coefficient-form of the semidiscrete formulation in the form 0,U(t) = G(¢,U(t)).
(c¢) For a fully discrete scheme with time step At > 0, we consider the Runge-Kutta method
i=G({", U"),
Vo =G (t" + 2At, U™+ 2AtV),
UMt =U™ + At ($V1 + 3W%).
Implement this scheme by filling out the Python code below, where ug =1 and f = 1.

For testing your implementation, you can use the time step At = 0.0001.



from util import np # <mport numpy

from integrate import assemble_matrix_from_iterables, assemble_rhs_from_iterables, \
stiffness_with_diffusivity_iter, mass_with_reaction_iter, \
poisson_rhs_iter

from quad import seven_point_gauss_6

from solve import solve_with_dirichlet_data

from mesh import Triangulation

def main():

# define the mesh vertices of (0, 1)7°2 in counterclockwise directton TODO: complete the blank line
mesh_vertices =

mesh = Triangulation.from_polygon( mesh_vertices, mesh_size=.1 )

# as quadrature rule we utilise the severn point gauss scheme of order 6
quadrule = seven_point_gauss_6()

# dimension of the FEM space
ndofs = len(mesh.points)

# we are freezing the entire boundary

freezeindices = mesh.boundary_indices

# we enforce zero Dirichlet on the boundary TODO: complete after ="
data =

Ntimesteps = 15000
dt = 0.0001

# assemble the mass and stiffness matrices
= assemble_matrix_from_iterables(mesh, mass_with_reaction_iter(mesh, quadrule))
= assemble_matrix_from_iterables(mesh, stiffness_with_diffusivity_iter(mesh, quadrule))

==

# the source term as a function of = TODO: complete after
f = lambda x:

rhs = assemble_rhs_from_iterables(mesh, poisson_rhs_iter(mesh, quadrule, f=f))

# first iterate TODO complete after “="
u0 =

# tnitialise
un = u0

for iiter in range(Ntimesteps):

# the matriz we need to invert for V1 TODO complete after "=
matl =

# the right hand side term corresponding to V1 TODO complete after “="
rhsl =

V1 = solve_with_dirichlet_data(matl, rhsl, freezeindices, data)

# the matriz we need to invert for V2 TODO complete after “="
mat2 =



# the right hand stide term corresponding to V2 TODO complete after "=
rhs2 =

V2 = solve_with_dirichlet_data(mat2, rhs2, freezeindices, data)

# update iterate TODO complete after “+°
un = un +

mesh.tripcolor (un)

if __name__ == '__main__

main()












