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Problem 1 (10 points)

Let Ω ⊂ Rd be a bounded Lipschitz domain with boundary ∂Ω. We consider the elliptic boundary value problem{
−ε∆u+ ku = f in Ω,

u = 0 on ∂Ω.

Here, f ∈ L2(Ω), and ε > 0 and k > 0 are positive numbers.

(a) Write a weak formulation of the problem in suitable Sobolev spaces and state the bilinear form.

(b) Show that the problem is well-posed by using the Lax-Milgram theorem. How do the constants in the Lax-
Milgram theorem depend on k and ε? Find a lower estimate for the coercivity constant that depends only on
ε.

(c) Suppose that Vh is a subspace of the relevant Sobolev space. Write down the Galerkin formulation, explain why
it is well-posed, and compare the Galerkin error to the best approximation error (Cea’s lemma).

(d) Describe in words what happens in the situation that ε is much larger than k.









Problem 2 (10 points)

Consider the one-dimensional reference interval K̂ = [0, 1].

(a) Describe an affine transformation that maps [0, 1] onto [a, b] for any a < b.

(b) Define degrees of freedom for the space P1(K̂) and the corresponding Lagrange basis.

(c) Take the Lagrange basis from the previous subtask together with the two functions

x̂2(1− x̂), x̂(1− x̂)2.

Show that these together constitute a basis of P3(K̂) and state suitable degrees of freedom.

(d) Compute the mass matrix M̂1 for the above basis of P1(K̂).

(e) Give a formula for the condition number of a symmetric positive-definite matrix. Calculate the condition number
of the mass matrix M̂1.









Problem 3 (10 points)

Let Ω ⊆ Rd be a bounded Lipschitz domain with boundary ∂Ω. We consider the convection-dominated problem{
−ε∆u+ β · ∇u = f in Ω,

u = 0 on ∂Ω.

Here, β : Ω→ Rd is a continuous vector field, f ∈ L2(Ω), and ε > 0. Suppose that T is a triangulation of Ω and write
Vh ⊆ H1

0 (Ω) for the linear finite element space.

(a) Describe the weak formulation (with the suitable choice of Sobolev space) and the Galerkin formulation. State
the bilinear form a of the weak formulation.

(b) Describe the linear system of equations for the finite element problem. Describe the entries of the matrix and
the right-hand side in terms of integrals. Can you restrict the integrals to subsets of Ω?

(c) Compute the integrals if we use the modified bilinear form

ah(u, v) := a(u, v) + δ

∫
Ω

∇u(x)∇v(x) dx.









Problem 4 (10 points)

Let Ω = (0, 1)2 ⊂ R2 be a bounded polyhedral domain. We consider the heat equation ∂tu−∆u = f in Ω,
u = 0 on ∂Ω,

u = u0 = 0 at t = 0.

over some time interval [0, T ] with T > 0. Here, f ∈ C(0, T ;L2(Ω)) and u0 ∈ L2(Ω). Suppose that T is a triangulation
of Ω and write Vh ⊆ H1

0 (Ω) for the linear finite element space. We let N be the dimension of that space.

(a) State the semidiscrete formulation in terms of functions and in terms of coefficients. Briefly define all matrices
and vectors.

(b) Write the coefficient-form of the semidiscrete formulation in the form ∂tU(t) = G(t, U(t)).

(c) For a fully discrete scheme with time step ∆t > 0, we consider the Runge-Kutta method

V1 = G (tn, Un) ,

V2 = G
(
tn + 2

3∆t, Un + 2
3∆tV1

)
,

Un+1 = Un + ∆t
(

1
4V1 + 3

4V2

)
.

Implement this scheme by filling out the Python code below, where u0 = 1 and f = 1.

For testing your implementation, you can use the time step ∆t = 0.0001.



from util import np # import numpy

from integrate import assemble_matrix_from_iterables, assemble_rhs_from_iterables, \

stiffness_with_diffusivity_iter, mass_with_reaction_iter, \

poisson_rhs_iter

from quad import seven_point_gauss_6

from solve import solve_with_dirichlet_data

from mesh import Triangulation

def main():

# define the mesh vertices of (0, 1)^2 in counterclockwise direction TODO: complete the blank line

mesh_vertices =

mesh = Triangulation.from_polygon( mesh_vertices, mesh_size=.1 )

# as quadrature rule we utilise the severn point gauss scheme of order 6

quadrule = seven_point_gauss_6()

# dimension of the FEM space

ndofs = len(mesh.points)

# we are freezing the entire boundary

freezeindices = mesh.boundary_indices

# we enforce zero Dirichlet on the boundary TODO: complete after `=`

data =

Ntimesteps = 15000

dt = 0.0001

# assemble the mass and stiffness matrices

M = assemble_matrix_from_iterables(mesh, mass_with_reaction_iter(mesh, quadrule))

A = assemble_matrix_from_iterables(mesh, stiffness_with_diffusivity_iter(mesh, quadrule))

# the source term as a function of x TODO: complete after `:`

f = lambda x:

rhs = assemble_rhs_from_iterables(mesh, poisson_rhs_iter(mesh, quadrule, f=f))

# first iterate TODO complete after `=`

u0 =

# initialise

un = u0

for iiter in range(Ntimesteps):

# the matrix we need to invert for V1 TODO complete after `=`

mat1 =

# the right hand side term corresponding to V1 TODO complete after `=`

rhs1 =

V1 = solve_with_dirichlet_data(mat1, rhs1, freezeindices, data)

# the matrix we need to invert for V2 TODO complete after `=`

mat2 =



# the right hand side term corresponding to V2 TODO complete after `=`

rhs2 =

V2 = solve_with_dirichlet_data(mat2, rhs2, freezeindices, data)

# update iterate TODO complete after `+`

un = un +

mesh.tripcolor(un)

if __name__ == '__main__':

main()








