
EPFL
Mathematics section
Prof Annalisa Buffa

Numerical Approximation of Partial Differential Equations

MATH-451 EXAM 23.06.2022 9h15-12h15

Name: Forename:....................... Sciper:

EXAM RULES:

• CAMIPRO card is mandatory and will be checked.

• The exam is recorded only after the student has signed.

• Do not detach any page. The colored sheets are draft papers and do not have to be handed in.

• Write with blue or black ink. No other colors are allowed.

• Mobile phones and other electronic devices must be turned off and in the bags.

• Please copy all MATLAB code into the exam. Results without code will not be graded.

• Please write one-sided.

• Justify all your answers. The clearness of the answers will be evaluated as well.

� I read and understood the above rules. Signature :

Exercises Points Grades
1 8
2 8
3 10
4 10

TOTAL 36

Problem 1 (8 points)

Let Th be a regular affine triangulation of a convex, polygonal domain Ω ⊂ R2 and let K̂ = {(x̂, ŷ), x̂ ≥ 0, ŷ ≥
0, x̂+ ŷ ≤ 1} be the reference triangle.

(a) Define a set of degrees of freedom for P2(K̂) and prove their unisolvence.

(b) Construct a corresponding Lagrangian basis.

(c) Construct a basis for

Vh =
{
uh ∈ C0(Ω̄) : uh|K ∈ P2(K) ∀K ∈ Th

}
. (1)

(d) Let Ih : C0(Ω̄) → Vh be the interpolation operator. What do you know about the error ‖u − Ih(u)‖L2(Ω) for
u ∈ H2(Ω)?

(e) Prove that Ih (Ih(u)) = Ih(u), i.e., Ih is a projector.

Exercise 2 (8 points)

We are considering the general stationary advection-reaction-diffusion problem with homogeneous Dirichlet boundary
conditions on an open polygonal domain Ω ⊂ R2, divergence-free advection field b : Ω̄ → R2 and reaction term
r ∈ R≥0: {

−∆u+ b(x) · ∇u+ ru = f in Ω
u = 0 on ∂Ω

(2)

We are considering a regular affine triangulation Th of Ω and the finite element space X1
h of continuous piecewise linear

functions on Th with canonical nodal basis {v1, . . . , vN} satisfying vi(xj) = δij , where xj denotes the j-th vertex of
Th.

Disregarding the Dirichlet boundary condition for now, the finite-element discretisation of the problem is associated
with three matrices:

1. The mass matrix M ∈ RN×N with entries Mi,j =
∫

Ω
vivjdΩ;

2. The stiffness matrix A ∈ RN×N with entries Ai,j =
∫

Ω
∇vi · ∇vjdΩ;

3. The advection matrix B ∈ RN×N with entries Bi,j =
∫

Ω
vi (b(x) · ∇vj) dΩ.

The point of this exercise is designing Matlab functions for the local contributions to the mass, stiffness and advection
matrices. The functions are of the form:

Mloc = LocalMass(BK, bk, xhat, w, shapeF, gradshapeF, bhandle);

Aloc = LocalStiff(BK, bk, xhat, w, shapeF, gradshapeF, bhandle);

Bloc = LocalAdv(BK, bk, xhat, w, shapeF, gradshapeF, bhandle);

and take as input

• BK of shape [2 2] and bk of shape [2 1] that map the reference element K̂ = {x̂ ≥ 0, ŷ ≥ 0, x̂ + ŷ ≤ 1} onto
the current element K ∈ Th via

FK(x̂) = BK x̂ + bk, for x̂ ∈ K̂

• xhat: a 7 × 2 array of quadrature points in K̂ corresponding to a 7-point Gauss quadrature of order 6 on the
reference element;

• w: a 7 × 1 array of quadrature weights corresponding to the same 7-point Gauss quadrature of order 6 on the
reference element;

• shapeF: a 7× 3 array containing the evaluations of the set of the locally defined basis functions {φ̂1, φ̂2, φ̂3} in
the quadrature points xhat.

• gradshapeF: a 7× 6 array containing the evaluations of ∇̂φ̂i in xhat in columns of two.

• bhandle: a function representing b(x) by mapping any N × 2 array of values x ∈ Ω onto an N × 2 array of
function evaluations of b in those values.

Answer the following points, keeping in mind that some functions may not use all of their inputs and that
your implementation need not be efficient:

(a) Complete the template for the local contribution to the mass matrix by filling the blanks of Listing 1.

Listing 1: Template for the implementation of the local mass matrix

function Mloc = LocalMass(BK , bk, xhat , w, shapeF , gradshapeF , bhandle)

% Local mass matrix for reaction in 2D using
% linear Lagrangian finite elements (hat functions).
% The integrals are computed using a 7−point Gauss quadrature rule.

% compute BK^−1 and det(BK). These values may or may not be needed
invBK = inv(BK);
detBK = det(BK);

Mloc = zeros(3,3);

% Compute element mass matrix using two for loops
for i = 1:3

for j = i:3

% FILL IN THE BLANK LINE(S)
Mloc(i,j) =

end
end

Mloc(2, 1) = Mloc(1, 2);

Mloc(3, 1) = Mloc(1, 3);

Mloc(3, 2) = Mloc(2, 3);

end

(b) Complete the template for the local contribution to the stiffness matrix by filling the blanks of Listing 2

Listing 2: Template for the implementation of the local stiffness matrix

function Aloc = LocalStiff(BK, bk, xhat , w, shapeF , gradshapeF , bhandle)

% Local stiffness matrix 2D using
% linear Lagrangian finite elements (hat functions).
% The integrals are computed using a 7−point Gauss quadrature rule.

% compute BK^−1 and det(BK). These values may or may not be needed
invBK = inv(BK);
detBK = det(BK);

% Create an empty array of size(gradshapeF). This array represents the
% push−forward of gradshapeF onto the element.
gradshapeF_global = zeros(s ize (gradshapeF));

% Fill the array with the correct values
for j = 1:3

% FILL IN THE BLANK LINE(S)
gradshapeF_global (:, 2*j - 1: 2*j) =

end

Aloc = zeros(3,3);

for i = 1:3

for j = i:3

% FILL IN THE BLANK LINE(S)
Aloc(i,j) =

end
end

Aloc (2,1) = Aloc (1,2);

Aloc (3,1) = Aloc (1,3);

Aloc (3,2) = Aloc (2,3);

end

(c) Complete the template for the local contribution to the advection matrix by filling the blanks of Listing 3

Listing 3: Template for the implementation of the local advection matrix

function Bloc = LocalAdv(BK , bk , xhat , w, shapeF , gradshapeF , bhandle)

% Local advection matrix in 2D using
% linear Lagrangian finite elements (hat functions).
% The integrals are computed using a 7−point Gauss quadrature rule.

% compute BK^−1 and det(BK). These values may or may not be needed
invBK = inv(BK);
detBK = det(BK);

% Create an empty array of size(gradshapeF). This array represents the
% push−forward of gradshapeF onto the element.
gradshapeF_global = zeros(s ize (gradshapeF));

% Fill the array with the correct values
for j = 1:3

% FILL IN THE BLANK LINE(S)
gradshapeF_global (:, 2*j - 1: 2*j) =

end

% create an array of global values x by mapping xhat from the reference
% element onto the current element K
x =

% compute the values of b(x) from x computed above
b =

Bloc = zeros(3,3);

% Compute element advection matrix using two for loops
for i = 1:3

for j = 1:3

% FILL IN THE BLANK LINE(S)
Bloc(i, j) =

end
end

end

Suppose our code is capable of assembling M,A and B using above routines as well as the right-hand side vector
f ∈ RN (again, disregarding the boundary conditions). We define the matrix

S = A+B + rM (3)

and the index-set Iinner of trace-free basis functions in Ω, i.e.,

Iinner =
{
i ∈ {1, . . . , N} | vi ∈ X1

h ∩H1
0 (Ω)

}
. (4)

Consider the function

uinner = SolveWithHomogeneousDirichlet(S, f, Iinner)

taking as input

• S: the full matrix S ∈ RN×N disregarding any boundary conditions, as defined in (3).

• f: the full right-hand side vector f ∈ Rn, again disregarding the BC.

• Iinner a N0 × 1 vector containing the i ∈ Iinner in ascending order. Here N0 denotes the cardinality of Iinner.

(d) Complete the template of the routine that solves for a N0×1 vector uinner containing the approximate solution’s
weights corresponding to the vi, i ∈ Iinner in ascending order. For this, fill in the blanks of Listing 4

Listing 4: Template for solving for the vector of inner degrees of freedom

function uinner = SolveWithHomogeneousDirichlet(S, f, Iinner)

% Solve for and return the solution’s weights corresponding to the inner
% degrees of freedom.

% You may use the following lines to define auxiliary quantities for
% their use later on.

% FILL IN THE BLANK LINE
uinner =

end

Exercise 3 (10 points)

We are considering the heat equation with time-independent source term f(x) ∈ C2([0, 1]): ut = Auxx + f(x) for x ∈ (0, 1), t ∈ (0, T]
u(0, t) = u(1, t) = 0 for t ∈ (0, T]
u(x, 0) = u0(x) for x ∈ [0, 1]

(5)

and constant diffusivity A > 0.
We introduce a uniform grid with spacing h = 1/N , xj = jh, j = 0 . . . N and ∆t = T/M , where M ∈ Z is the total
number of time-steps.
We discretise this equation in the usual way, using a forward Euler scheme for the time derivative and a central scheme
for the Laplacian. This leads to the discrete scheme

{
Um+1

j −Um
j

∆t = A
h2

(
Um
j−1 − 2Um

j + Um
j+1

)
+ Fj , j = 1, . . . , N − 1

Um
0 = Um

N = 0 ∀m
(6)

where the first iterate satisfies U0
j = u0(xj) and Fj = f(xj). In what follows, we define U =

(
U0,U1, . . . ,UM

)
as the

column matrix of discrete time iterates Um = (Um
0 , . . . , U

m
N)T , ∀m = 0, . . . ,M and κ = A∆t

h2 . We write the system
compactly as LU = F .

Answer the following questions:

(a) Give the linear operator L and right-hand side F corresponding to (6), where M ∈ Z denotes the total number of
discrete time steps we perform. Show that L is inverse monotone for κ ≤ 1

2 and derive a bound on maxj,m |UM
jm|

in terms of ‖f‖C([0,1]) using a suitable comparison function. You may assume that u0 = 0.

(b) The recurrence from (6) can be written in the matrix-form Ũm+1 = SŨm + ∆tF̃, where Ũm is the vector of
inner values, i.e.,

Um =

Um
0

Ũm

Um
N

 , while F̃ =

 F1

...
FN−1

 .

Given the matrix

K =


2 −1 0

−1
. . .

. . .

. . .

0

 ∈ R(N−1)×(N−1)

provide the matrix S ∈ R(N−1)×(N−1) in closed form. Moreover, knowing that the eigenvalues of K are given by

λj(K) = 2

(
1− cos

(
jπ

N

))
, j = 1, . . . , N − 1,

provide a formula for the eigenvalues λj(S), j = 1, . . . , N − 1 of S.

(c) Give an expression for ŨM in terms of Ũ0, F̃ and S

(d) Derive a condition on κ such that the spectral radius ρ(S) < 1 for all N . Is this result to be expected ? Starting
from your result in (c), explain what happens if the condition is violated.

(e) Consider problem (5) again. Propose a discretisation via piecewise polynomials of degree 1 and a forward-Euler
discretisation in time.

• Comment on differences and similarities with (6);

• Discuss the stability of the FEM scheme.

Exercise 4 (10 points)

We are interested in approximating the solution of the following nonlinear PDE:{
∆u+R(u) = 0 in Ω = (0, 1)2

u|∂Ω = 0
, (7)

where R(u) = ru(1− u), with r ∈ R>0 is a nonlinear reaction term. In what follows, we disregard the trivial solution
u = 0 and look for solutions u 6= 0.
Rather than seeking the solution directly, we look for the steady-state solution of the nonlinear reaction-diffusion
problem  ut = ∆u+R(u) in Ω = (0, 1)2, t > 0

u(x, y, 0) = u0(x, y)
u|∂Ω = 0 ∀t ≥ 0

, (8)

For this, we introduce a computational grid

Ωh = {(ih, jh), i, j = 0, . . . , N}, h =
1

N

with boundary

∂Ωh = {(ih, jh), i ∈ {0, N} or j ∈ {0, N}}

and corresponding index-sets

Iinner = {(i, j) | i, j = 1, . . . , N − 1} and Iboundary = {(i, j) | i ∈ {0, N} or j ∈ {0, N}}

of inner and boundary vertices, resepectively.

In this problem, we seek to approximate the solution of (8) by using a mixed implicit-explicit quadrature in time that
treats the diffusion implicitly, while the reaction is treated explicity, i.e,

um+1 − um

∆t
≈ ∆um+1 +R(um), (9)

where um = u(t = m∆t), for some time-step ∆t > 0.

We discretise in space using the usual second-order accurate central finite-difference scheme. For this we introduce Um
i,j

as the approximate solution at time-instance t = m∆t and vertex (ih, jh), taking as an initialisation U0
i,j = u0(ih, jh).

(a) Write down the recursion associated with the numerical scheme as described above. Here, make a distinction
between the indices (i, j) ∈ Iinner and (i, j) ∈ Iboundary while including the initialisation and boundary conditions.

We introduce the vector Um containing the Um
i,j corresponding to the inner indices (i, j) ∈ Iinner in the usual

lexicographic ordering.

For the vector of inner degrees of freedom, the scheme can be written in matrix form(
I − ∆t

h2
A

)
Um+1 = Um + ∆trUm ∗ (1−Um) ,

where the operator ∗ denotes entry-wise multiplication and 1 is a vector of ones of appropriate size.

(b) Explain how you would implement the matrix A in Matlab using matrix tensor products.
HINT: Thanks to the elimination of the boundary vertices, A can be constructed from univariate matrices of
size (N − 1)× (N − 1).

(c) What happens if we take u0(x, y) = 0 ?

(d) Implement the scheme for r = 100, N = 50 and dt = h2. Use the function u0(x, y) = x(1−x)y(1−y) to initialise
the scheme. Use sparse matrices and Matlab’s backslash command to invert them.
Terminate the scheme once ‖ 1

h2AUm + rUm ∗ (1−Um)‖∞ < 10−6 and sketch the plot of the solution.

COPY ALL YOUR MATLAB CODE INTO THE EXAM !!

HINT 1: if you could not answer question 1, you may use

E = ones((N-1)^2, 1);

Em1 = repmat([ones(N - 2, 1); 0], N-1, 1);

E1 = repmat([0; ones(N - 2, 1)], N-1, 1);

A = spdiags([E Em1 -4*E E1 E], [-(N-1) -1 0 1 (N-1)], (N-1)^2, (N-1)^2);

HINT 2: U0 can be constructed using

x = linspace(0, 1, N+1);

xinner = x(2:end - 1);

u0 = xinner.*(1 - xinner);

U0 = kron(u0, u0)’;

Adhering to the lexicographic ordering, you can plot using

[X, Y] = meshgrid(xinner, xinner);

surf(X, Y, reshape(U, [N-1 N-1]))

You need not plot the points located on the boundary.

