

Numerical Approximation of Partial Differential Equations

MATH-451 EXAM

23.06.2022

9h15-12h15

Name: Forename: Sciper:

EXAM RULES:

- CAMIPRO card is mandatory and will be checked.
- The exam is recorded only after the student has signed.
- Do not detach any page. The colored sheets are draft papers and do not have to be handed in.
- Write with blue or black ink. No other colors are allowed.
- Mobile phones and other electronic devices must be turned off and in the bags.
- Please copy all MATLAB code into the exam. Results without code will not be graded.
- Please write one-sided.
- Justify all your answers. The clearness of the answers will be evaluated as well.

I read and understood the above rules. Signature :

Exercises	Points	Grades
1	8	
2	8	
3	10	
4	10	
TOTAL	36	

Problem 1 (8 points)

Let \mathcal{T}_h be a regular affine triangulation of a convex, polygonal domain $\Omega \subset \mathbb{R}^2$ and let $\hat{K} = \{(\hat{x}, \hat{y}), \hat{x} \geq 0, \hat{y} \geq 0, \hat{x} + \hat{y} \leq 1\}$ be the reference triangle.

- (a) Define a set of degrees of freedom for $\mathbb{P}_2(\hat{K})$ and prove their unisolvence.
- (b) Construct a corresponding Lagrangian basis.
- (c) Construct a basis for

$$V_h = \{u_h \in C^0(\bar{\Omega}) : u_h|_K \in \mathbb{P}_2(K) \ \forall K \in \mathcal{T}_h\}. \quad (1)$$

- (d) Let $I_h : C^0(\bar{\Omega}) \rightarrow V_h$ be the interpolation operator. What do you know about the error $\|u - I_h(u)\|_{L^2(\Omega)}$ for $u \in H^2(\Omega)$?
- (e) Prove that $I_h(I_h(u)) = I_h(u)$, i.e., I_h is a projector.

Exercise 2 (8 points)

We are considering the general stationary advection-reaction-diffusion problem with homogeneous Dirichlet boundary conditions on an open polygonal domain $\Omega \subset \mathbb{R}^2$, divergence-free advection field $\mathbf{b} : \bar{\Omega} \rightarrow \mathbb{R}^2$ and reaction term $r \in \mathbb{R}^{\geq 0}$:

$$\begin{cases} -\Delta u + \mathbf{b}(\mathbf{x}) \cdot \nabla u + ru = f & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \end{cases} \quad (2)$$

We are considering a regular affine triangulation \mathcal{T}_h of Ω and the finite element space X_h^1 of continuous piecewise linear functions on \mathcal{T}_h with canonical nodal basis $\{v_1, \dots, v_N\}$ satisfying $v_i(\mathbf{x}_j) = \delta_{ij}$, where \mathbf{x}_j denotes the j -th vertex of \mathcal{T}_h .

Disregarding the Dirichlet boundary condition for now, the finite-element discretisation of the problem is associated with three matrices:

1. The mass matrix $M \in \mathbb{R}^{N \times N}$ with entries $M_{i,j} = \int_{\Omega} v_i v_j d\Omega$;
2. The stiffness matrix $A \in \mathbb{R}^{N \times N}$ with entries $A_{i,j} = \int_{\Omega} \nabla v_i \cdot \nabla v_j d\Omega$;
3. The advection matrix $B \in \mathbb{R}^{N \times N}$ with entries $B_{i,j} = \int_{\Omega} v_i (\mathbf{b}(\mathbf{x}) \cdot \nabla v_j) d\Omega$.

The point of this exercise is designing Matlab functions for the *local* contributions to the mass, stiffness and advection matrices. The functions are of the form:

```
Mloc = LocalMass(BK, bk, xhat, w, shapeF, gradshapeF, bhandle);
Aloc = LocalStiff(BK, bk, xhat, w, shapeF, gradshapeF, bhandle);
Bloc = LocalAdv(BK, bk, xhat, w, shapeF, gradshapeF, bhandle);
```

and take as input

- BK of shape $[2 \ 2]$ and bk of shape $[2 \ 1]$ that map the reference element $\hat{K} = \{\hat{x} \geq 0, \hat{y} \geq 0, \hat{x} + \hat{y} \leq 1\}$ onto the current element $K \in \mathcal{T}_h$ via

$$F_K(\hat{\mathbf{x}}) = B_K \hat{\mathbf{x}} + b_k, \quad \text{for } \hat{\mathbf{x}} \in \hat{K}$$

- $xhat$: a 7×2 array of quadrature points in \hat{K} corresponding to a 7-point Gauss quadrature of order 6 on the reference element;
- w : a 7×1 array of quadrature weights corresponding to the same 7-point Gauss quadrature of order 6 on the reference element;
- $shapeF$: a 7×3 array containing the evaluations of the set of the locally defined basis functions $\{\hat{\phi}_1, \hat{\phi}_2, \hat{\phi}_3\}$ in the quadrature points $xhat$.
- $gradshapeF$: a 7×6 array containing the evaluations of $\hat{\nabla} \hat{\phi}_i$ in $xhat$ in columns of two.
- $bhandle$: a function representing $\mathbf{b}(\mathbf{x})$ by mapping any $N \times 2$ array of values $\mathbf{x} \in \Omega$ onto an $N \times 2$ array of function evaluations of \mathbf{b} in those values.

Answer the following points, **keeping in mind that some functions may not use all of their inputs and that your implementation need not be efficient**:

(a) Complete the template for the local contribution to the mass matrix by filling the blanks of Listing 1.

Listing 1: Template for the implementation of the local mass matrix

```
function Mloc = LocalMass(BK, bk, xhat, w, shapeF, gradshapeF, bhandle)
% Local mass matrix for reaction in 2D using
% linear Lagrangian finite elements (hat functions).
% The integrals are computed using a 7-point Gauss quadrature rule.

% compute BK^-1 and det(BK). These values may or may not be needed
invBK = inv(BK);
detBK = det(BK);

Mloc = zeros(3,3);
```

```

% Compute element mass matrix using two for loops
for i = 1:3
    for j = i:3
        % FILL IN THE BLANK LINE(S)
        Mloc(i,j) =
    end
end

Mloc(2, 1) = Mloc(1, 2);
Mloc(3, 1) = Mloc(1, 3);
Mloc(3, 2) = Mloc(2, 3);
end

```

(b) Complete the template for the local contribution to the stiffness matrix by filling the blanks of Listing 2

Listing 2: Template for the implementation of the local stiffness matrix

```

function Aloc = LocalStiff(BK, bk, xhat, w, shapeF, gradshapeF, bhandle)
% Local stiffness matrix 2D using
% linear Lagrangian finite elements (hat functions).
% The integrals are computed using a 7-point Gauss quadrature rule.

% compute BK^-1 and det(BK). These values may or may not be needed
invBK = inv(BK);
detBK = det(BK);

% Create an empty array of size(gradshapeF). This array represents the
% push-forward of gradshapeF onto the element.
gradshapeF_global = zeros(size(gradshapeF));

% Fill the array with the correct values
for j = 1:3
    % FILL IN THE BLANK LINE(S)
    gradshapeF_global(:, 2*j - 1: 2*j) =
end

Aloc = zeros(3,3);

for i = 1:3
    for j = i:3
        % FILL IN THE BLANK LINE(S)
        Aloc(i,j) =
    end
end

Aloc(2,1) = Aloc(1,2);
Aloc(3,1) = Aloc(1,3);
Aloc(3,2) = Aloc(2,3);
end

```

(c) Complete the template for the local contribution to the advection matrix by filling the blanks of Listing 3

Listing 3: Template for the implementation of the local advection matrix

```

function Bloc = LocalAdv(BK, bk, xhat, w, shapeF, gradshapeF, bhandle)
% Local advection matrix in 2D using
% linear Lagrangian finite elements (hat functions).
% The integrals are computed using a 7-point Gauss quadrature rule.

% compute BK^-1 and det(BK). These values may or may not be needed
invBK = inv(BK);
detBK = det(BK);

% Create an empty array of size(gradshapeF). This array represents the
% push-forward of gradshapeF onto the element.
gradshapeF_global = zeros(size(gradshapeF));

```

```

% Fill the array with the correct values
for j = 1:3

    % FILL IN THE BLANK LINE(S)
    gradshapeF_global(:, 2*j - 1: 2*j) =

end

% create an array of global values x by mapping xhat from the reference
% element onto the current element K
x =

% compute the values of b(x) from x computed above
b =

Bloc = zeros(3,3);

% Compute element advection matrix using two for loops
for i = 1:3
    for j = 1:3

        % FILL IN THE BLANK LINE(S)
        Bloc(i, j) =

    end
end
end

```

Suppose our code is capable of assembling M, A and B using above routines as well as the right-hand side vector $\mathbf{f} \in \mathbb{R}^N$ (again, disregarding the boundary conditions). We define the matrix

$$S = A + B + rM \quad (3)$$

and the index-set $\mathcal{I}_{\text{inner}}$ of trace-free basis functions in Ω , i.e.,

$$\mathcal{I}_{\text{inner}} = \{i \in \{1, \dots, N\} \mid v_i \in X_h^1 \cap H_0^1(\Omega)\}. \quad (4)$$

Consider the function

```
uinner = SolveWithHomogeneousDirichlet(S, f, Iinner)
```

taking as input

- \mathbf{S} : the **full** matrix $S \in \mathbb{R}^{N \times N}$ disregarding any boundary conditions, as defined in (3).
- \mathbf{f} : the full right-hand side vector $\mathbf{f} \in \mathbb{R}^n$, again disregarding the BC.
- \mathbf{Iinner} a $N_0 \times 1$ vector containing the $i \in \mathcal{I}_{\text{inner}}$ in ascending order. Here N_0 denotes the cardinality of $\mathcal{I}_{\text{inner}}$.

(d) Complete the template of the routine that solves for a $N_0 \times 1$ vector \mathbf{uinner} containing the approximate solution's weights corresponding to the v_i , $i \in \mathcal{I}_{\text{inner}}$ in ascending order. For this, fill in the blanks of Listing 4

Listing 4: Template for solving for the vector of inner degrees of freedom

```

function uinner = SolveWithHomogeneousDirichlet(S, f, Iinner)
% Solve for and return the solution's weights corresponding to the inner
% degrees of freedom.

% You may use the following lines to define auxiliary quantities for
% their use later on.

```

```

% FILL IN THE BLANK LINE
uinner =

```

```
end
```


Exercise 3 (10 points)

We are considering the heat equation with time-independent source term $f(x) \in C^2([0, 1])$:

$$\begin{cases} u_t = Au_{xx} + f(x) & \text{for } x \in (0, 1), \quad t \in (0, T] \\ u(0, t) = u(1, t) = 0 & \text{for } t \in (0, T] \\ u(x, 0) = u_0(x) & \text{for } x \in [0, 1] \end{cases} \quad (5)$$

and constant diffusivity $A > 0$.

We introduce a uniform grid with spacing $h = 1/N$, $x_j = jh, j = 0 \dots N$ and $\Delta t = T/M$, where $M \in \mathbb{Z}$ is the total number of time-steps.

We discretise this equation in the usual way, using a forward Euler scheme for the time derivative and a central scheme for the Laplacian. This leads to the discrete scheme

$$\begin{cases} \frac{U_j^{m+1} - U_j^m}{\Delta t} = \frac{A}{h^2} (U_{j-1}^m - 2U_j^m + U_{j+1}^m) + F_j, & j = 1, \dots, N-1 \\ U_0^m = U_N^m = 0 & \forall m \end{cases} \quad (6)$$

where the first iterate satisfies $U_j^0 = u_0(x_j)$ and $F_j = f(x_j)$. In what follows, we define $\mathbb{U} = (\mathbf{U}^0, \mathbf{U}^1, \dots, \mathbf{U}^M)$ as the column matrix of discrete time iterates $\mathbf{U}^m = (U_0^m, \dots, U_N^m)^T$, $\forall m = 0, \dots, M$ and $\kappa = \frac{A\Delta t}{h^2}$. We write the system compactly as $\mathcal{L}\mathbb{U} = \mathcal{F}$.

Answer the following questions:

- (a) Give the linear operator \mathcal{L} and right-hand side \mathcal{F} corresponding to (6), where $M \in \mathbb{Z}$ denotes the total number of discrete time steps we perform. Show that \mathcal{L} is inverse monotone for $\kappa \leq \frac{1}{2}$ and derive a bound on $\max_{j,m} |\mathbb{U}_{jm}^M|$ in terms of $\|f\|_{C([0,1])}$ using a suitable comparison function. **You may assume that $u_0 = 0$.**
- (b) The recurrence from (6) can be written in the matrix-form $\tilde{\mathbf{U}}^{m+1} = S\tilde{\mathbf{U}}^m + \Delta t \tilde{\mathbf{F}}$, where $\tilde{\mathbf{U}}^m$ is the vector of **inner** values, i.e.,

$$\mathbf{U}^m = \begin{pmatrix} U_0^m \\ \tilde{\mathbf{U}}^m \\ U_N^m \end{pmatrix}, \quad \text{while} \quad \tilde{\mathbf{F}} = \begin{pmatrix} F_1 \\ \vdots \\ F_{N-1} \end{pmatrix}.$$

Given the matrix

$$K = \begin{pmatrix} 2 & -1 & & 0 \\ -1 & \ddots & \ddots & \\ & \ddots & & \\ 0 & & & \end{pmatrix} \in \mathbb{R}^{(N-1) \times (N-1)}$$

provide the matrix $S \in \mathbb{R}^{(N-1) \times (N-1)}$ in closed form. Moreover, knowing that the eigenvalues of K are given by

$$\lambda_j(K) = 2 \left(1 - \cos \left(\frac{j\pi}{N} \right) \right), \quad j = 1, \dots, N-1,$$

provide a formula for the eigenvalues $\lambda_j(S)$, $j = 1, \dots, N-1$ of S .

- (c) Give an expression for $\tilde{\mathbf{U}}^M$ in terms of $\tilde{\mathbf{U}}^0$, $\tilde{\mathbf{F}}$ and S
- (d) Derive a condition on κ such that the spectral radius $\rho(S) < 1$ for all N . Is this result to be expected? Starting from your result in (c), explain what happens if the condition is violated.
- (e) Consider problem (5) again. Propose a discretisation via piecewise polynomials of degree 1 and a forward-Euler discretisation in time.
 - Comment on differences and similarities with (6);
 - Discuss the stability of the FEM scheme.

Exercise 4 (10 points)

We are interested in approximating the solution of the following nonlinear PDE:

$$\begin{cases} \Delta u + R(u) = 0 & \text{in } \Omega = (0, 1)^2 \\ u|_{\partial\Omega} = 0 \end{cases}, \quad (7)$$

where $R(u) = ru(1 - u)$, with $r \in \mathbb{R}^{>0}$ is a nonlinear reaction term. In what follows, we disregard the trivial solution $u = 0$ and look for solutions $u \neq 0$.

Rather than seeking the solution directly, we look for the steady-state solution of the nonlinear reaction-diffusion problem

$$\begin{cases} u_t = \Delta u + R(u) & \text{in } \Omega = (0, 1)^2, t > 0 \\ u(x, y, 0) = u_0(x, y) & \\ u|_{\partial\Omega} = 0 & \forall t \geq 0 \end{cases}, \quad (8)$$

For this, we introduce a computational grid

$$\Omega_h = \{(ih, jh), i, j = 0, \dots, N\}, \quad h = \frac{1}{N}$$

with boundary

$$\partial\Omega_h = \{(ih, jh), i \in \{0, N\} \text{ or } j \in \{0, N\}\}$$

and corresponding index-sets

$$\mathcal{I}_{\text{inner}} = \{(i, j) \mid i, j = 1, \dots, N-1\} \quad \text{and} \quad \mathcal{I}_{\text{boundary}} = \{(i, j) \mid i \in \{0, N\} \text{ or } j \in \{0, N\}\}$$

of inner and boundary vertices, respectively.

In this problem, we seek to approximate the solution of (8) by using a mixed implicit-explicit quadrature in time that treats the diffusion implicitly, while the reaction is treated explicitly, i.e,

$$\frac{u^{m+1} - u^m}{\Delta t} \approx \Delta u^{m+1} + R(u^m), \quad (9)$$

where $u^m = u(t = m\Delta t)$, for some time-step $\Delta t > 0$.

We discretise in space using the usual second-order accurate central finite-difference scheme. For this we introduce $U_{i,j}^m$ as the approximate solution at time-instance $t = m\Delta t$ and vertex (ih, jh) , taking as an initialisation $U_{i,j}^0 = u_0(ih, jh)$.

(a) Write down the recursion associated with the numerical scheme as described above. Here, make a distinction between the indices $(i, j) \in \mathcal{I}_{\text{inner}}$ and $(i, j) \in \mathcal{I}_{\text{boundary}}$ while including the initialisation and boundary conditions.

We introduce the vector \mathbf{U}^m containing the $U_{i,j}^m$ corresponding to the **inner** indices $(i,j) \in \mathcal{I}_{\text{inner}}$ in the usual lexicographic ordering.

For the vector of inner degrees of freedom, the scheme can be written in matrix form

$$\left(I - \frac{\Delta t}{h^2} A \right) \mathbf{U}^{m+1} = \mathbf{U}^m + \Delta t r \mathbf{U}^m * (\mathbf{1} - \mathbf{U}^m),$$

where the operator $*$ denotes entry-wise multiplication and $\mathbf{1}$ is a vector of ones of appropriate size.

(b) Explain how you would implement the matrix A in Matlab using matrix tensor products.

HINT: Thanks to the elimination of the boundary vertices, A can be constructed from univariate matrices of size $(N-1) \times (N-1)$.

(c) What happens if we take $u_0(x, y) = 0$?

(d) Implement the scheme for $r = 100$, $N = 50$ and $dt = h^2$. Use the function $u_0(x, y) = x(1-x)y(1-y)$ to initialise the scheme. Use sparse matrices and Matlab's backslash command to invert them.

Terminate the scheme once $\| \frac{1}{h^2} A \mathbf{U}^m + r \mathbf{U}^m * (\mathbf{1} - \mathbf{U}^m) \|_\infty < 10^{-6}$ and sketch the plot of the solution.

COPY ALL YOUR MATLAB CODE INTO THE EXAM !!

HINT 1: if you could not answer question 1, you may use

```
E = ones((N-1)^2, 1);
Em1 = repmat([ones(N - 2, 1); 0], N-1, 1);
E1 = repmat([0; ones(N - 2, 1)], N-1, 1);
A = spdiags([E Em1 -4*E E1 E], [-N+1 -1 0 1 N], (N-1)^2, (N-1)^2);
```

HINT 2: \mathbf{U}^0 can be constructed using

```
x = linspace(0, 1, N+1);
xinner = x(2:end - 1);
u0 = xinner.* (1 - xinner);
U0 = kron(u0, u0');
```

Adhering to the lexicographic ordering, you can plot using

```
[X, Y] = meshgrid(xinner, xinner);
surf(X, Y, reshape(U, [N-1 N-1]))
```

You need not plot the points located on the boundary.

