EPFL
Mathematics section
Prof Annalisa Buffa

Numerical Approximation of Partial Differential Equations

MATH-451 EXAM

23.06.2022 9h15-12h15

EXAM RULES:

CAMIPRO card is mandatory and will be checked.

The exam is recorded only after the student has signed.

Do not detach any page. The colored sheets are draft papers and do not have to be handed in.

Write with blue or black ink. No other colors are allowed.

Mobile phones and other electronic devices must be turned off and in the bags.

Please copy all MATLAB code into the exam. Results without code will not be graded.

Please write one-sided.

Justify all your answers. The clearness of the answers will be evaluated as well.

O I read and understood the above rules. Signature :ccccceeviinnuininneeen.

Exercises | Points | Grades
1 8
2 8
3 10
4 10
TOTAL 36

Problem 1 (8 points)

Let 75 be a regular affine triangulation of a convex, polygonal domain Q@ C R? and let K = {(&,9), & > 0,9 >
0,2 4+ § < 1} be the reference triangle.

(a) Define a set of degrees of freedom for Po(K') and prove their unisolvence.
(b) Construct a corresponding Lagrangian basis.

(¢) Construct a basis for

Vi = {un € C°(Q) : up|x € P2(K) VK € Tp} . (1)

(d) Let I, : C°(Q2) — Vj, be the interpolation operator. What do you know about the error ||u — I, (u)|| 2(q) for
u € H?(Q)?

(e) Prove that Ij, (I,(u)) = I, (u), i.e., I, is a projector.

Exercise 2 (8 points)

We are considering the general stationary advection-reaction-diffusion problem with homogeneous Dirichlet boundary

conditions on an open polygonal domain 2 C R2?, divergence-free advection field b : — R? and reaction term
r € R20:

—Au+b(x)-Vu+ru=f inQ)
u=20 on 0N

We are considering a regular affine triangulation 7;, of {2 and the finite element space X} of continuous piecewise linear
functions on 7j, with canonical nodal basis {vi,...,vn} satisfying v;(x;) = J;;, where x; denotes the j-th vertex of

Th.
Disregarding the Dirichlet boundary condition for now, the finite-element discretisation of the problem is associated
with three matrices:

1. The mass matrix M € RV*Y with entries M; j; = [, viv;d€;

2. The stiffness matrix A € RY*N with entries A= fﬂ Vv, - Vo;dQ;

3. The advection matrix B € RN*V with entries B; ; = [, vi (b(x) - Vv;) d€Q.

The point of this exercise is designing Matlab functions for the local contributions to the mass, stiffness and advection
matrices. The functions are of the form:

Mloc = LocalMass(BK, bk, xhat, w, shapeF, gradshapeF, bhandle);
Aloc = LocalStiff (BK, bk, xhat, w, shapeF, gradshapeF, bhandle);
Bloc = LocalAdv(BK, bk, xhat, w, shapeF, gradshapeF, bhandle);

and take as input

e BK of shape [2 2] and bk of shape [2 1] that map the reference element K = {# >0,9>0,&+ 9 <1} onto
the current element K € 7}, via

Fi(X) = Bgx + b, forxeK

e xhat: a 7 x 2 array of quadrature points in K corresponding to a 7-point Gauss quadrature of order 6 on the
reference element;

e w: a7 x 1 array of quadrature weights corresponding to the same 7-point Gauss quadrature of order 6 on the
reference element;

e shapeF: a 7 x 3 array containing the evaluations of the set of the locally defined basis functions {gi;l, g?)g, 4133} in
the quadrature points xhat.

e gradshapeF: a 7 X 6 array containing the evaluations of @QASZ in xhat in columns of two.

e bhandle: a function representing b(x) by mapping any N x 2 array of values x € Q onto an N x 2 array of
function evaluations of b in those values.

Answer the following points, keeping in mind that some functions may not use all of their inputs and that
your implementation need not be efficient:

(a) Complete the template for the local contribution to the mass matrix by filling the blanks of Listing 1.

Listing 1: Template for the implementation of the local mass matrix

function Mloc = LocalMass(BK, bk, xhat, w, shapeF, gradshapeF, bhandle)
Local mass matrix for reaction in 2D using

linear Lagrangian finite elements (hat functions).

The integrals are computed using a 7-point Gauss quadrature rule.

oo oo oo

o

compute BK"-1 and det (BK). These values may or may not be needed
invBK = inv (BK);
detBK = det (BK);

Mloc = zeros(3,3);

)

% Compute element mass matrix using two for loops
for i = 1:3
for j = i:3

% FILL IN THE BLANK LINE(S)

Mloc(i,j) =
end
end
Mloc (2, 1) = Mloc(1l, 2);
Mloc (3, 1) = Mloc (1, 3);
Mloc (3, 2) = Mloc(2, 3);
end

Complete the template for the local contribution to the stiffness matrix by filling the blanks of Listing 2

Listing 2: Template for the implementation of the local stiffness matrix

function Aloc = LocalStiff (BK, bk, xhat, w, shapeF, gradshapeF, bhandle)
Local stiffness matrix 2D using

linear Lagrangian finite elements (hat functions).

The integrals are computed using a 7-point Gauss quadrature rule.

oo oo oo

)

% compute BK"-1 and det (BK). These values may or may not be needed
invBK = inv (BK);
detBK det (BK) ;

% Create an empty array of size(gradshapeF). This array represents the
% push—-forward of gradshapeF onto the element.

gradshapeF_global = zeros(size (gradshapeF));

$ Fill the array with the correct values

for j = 1:3

% FILL IN THE BLANK LINE (S)
gradshapeF_global (:, 2*j - 1: 2%j) =
end
Aloc = zeros(3,3);

for i =

:3
for =

1
j = i:3

% FILL IN THE BLANK LINE (S)
Aloc(i,j) =
end

end

Aloc(2,1) = Aloc(1,2);

Aloc(3,1) = Aloc(1,3);
Aloc(3,2) = Aloc(2,3);
end

Complete the template for the local contribution to the advection matrix by filling the blanks of Listing 3

Listing 3: Template for the implementation of the local advection matrix

function Bloc = LocalAdv(BK, bk, xhat, w, shapeF, gradshapeF, bhandle)
Local advection matrix in 2D using

linear Lagrangian finite elements (hat functions).

The integrals are computed using a 7-point Gauss quadrature rule.

oo oo oo

IS

compute BK"-1 and det (BK). These values may or may not be needed
invBK = inv (BK);
detBK = det (BK);

% Create an empty array of size(gradshapeF). This array represents the
% push—-forward of gradshapeF onto the element.
gradshapeF_global = zeros(size (gradshapeF));

o

$ Fill the array with the correct values
for j = 1:3

% FILL IN THE BLANK LINE(S)
gradshapeF_global (:, 2xj - 1: 2%j) =

end

create an array of global values x by mapping xhat from the reference
element onto the current element K

oo o

kel

compute the values of b(x) from x computed above

T oo

Bloc = zeros(3,3);

o

% Compute element advection matrix using two for loops
for i = 1:3
for j = 1:3
% FILL IN THE BLANK LINE(S)
Bloc(i, j) =
end

end

end

Suppose our code is capable of assembling M, A and B using above routines as well as the right-hand side vector
f € RV (again, disregarding the boundary conditions). We define the matrix

S=A+B+rM (3)
and the index-set Zj,ner of trace-free basis functions in €2, i.e.,
Timner = {1 € {1,...,N} | v; € X; N H{(Q)}. (4)
Consider the function
uinner = SolveWithHomogeneousDirichlet(S, f, Iinner)
taking as input
e S: the full matrix S € RV*¥ disregarding any boundary conditions, as defined in (3).
e f: the full right-hand side vector f € R", again disregarding the BC.
e Tinner a Ny X 1 vector containing the ¢ € T, in ascending order. Here Ny denotes the cardinality of Zinper-

(d) Complete the template of the routine that solves for a Ny x 1 vector uinner containing the approximate solution’s
weights corresponding to the v;, i € Zinper in ascending order. For this, fill in the blanks of Listing 4

Listing 4: Template for solving for the vector of inner degrees of freedom

function uinner = SolveWithHomogeneousDirichlet(S, f, Iinner)
Solve for and return the solution’s weights corresponding to the inner
degrees of freedom.

oo oo

You may use the following lines to define auxiliary quantities for
their use later on.

oo o

% FILL IN THE BLANK LINE
uinner =

end

Exercise 3 (10 points)

We are considering the heat equation with time-independent source term f(z) € C?([0, 1]):

up = Augy + f(2 for z€(0,1), t€ (0,7
u(0,t) =u(l,t) =0 for ¢e (0,7 (5)
u(z,0) = ug(2) for z€]0,1]

and constant diffusivity A > 0.

We introduce a uniform grid with spacing h = 1/N, x; = jh,7 =0...N and At = T/M, where M € Z is the total
number of time-steps.

We discretise this equation in the usual way, using a forward Euler scheme for the time derivative and a central scheme
for the Laplacian. This leads to the discrete scheme

U;'L+1_U]T’L _ A m m m L
ar = (UL — 20" +U,) + Fy, j=1,...,N -1 (6)
Ur=Up =0 Vm
where the first iterate satisfies U] = ug(x;) and Fj = f(x;). In what follows, we define U= (U°,U",..., UM) as the
column matrix of discrete time iterates U™ = (U, ...,.UMT, ¥m =0,...,M and k = Ah%t. We write the system

compactly as LU = F.

Answer the following questions:

(a) Give the linear operator £ and right-hand side F corresponding to (6), where M € Z denotes the total number of
discrete time steps we perform. Show that £ is inverse monotone for £ < 1 and derive a bound on max; , Lo7=8
in terms of || f ”C([O 1j) using a suitable comparison function. You may assume that ug = 0.

(b) The recurrence from (6) can be written in the matrix-form U™*! = SU™ + AtF, where U™ is the vector of
inner values, i.e.,

Uy 3
Um=(Um], while F= :
UN Fyn_q
Given the matrix
2 -1 0
- |1 e RIN-1Dx(N-1)

provide the matrix S € RN=Dx(N=1) ip closed form. Moreover, knowing that the eigenvalues of K are given by

AAK):2<1—aw(%>>, j=1,...,N -1,

provide a formula for the eigenvalues A;(S), j=1,...,N —1of S.

(¢) Give an expression for UM in terms of U?, F and S

(d) Derive a condition on k such that the spectral radius p(S) < 1 for all N. Is this result to be expected ? Starting
from your result in (c¢), explain what happens if the condition is violated.

(e) Consider problem (5) again. Propose a discretisation via piecewise polynomials of degree 1 and a forward-Euler
discretisation in time.

e Comment on differences and similarities with (6);

e Discuss the stability of the FEM scheme.

Exercise 4 (10 points)

We are interested in approximating the solution of the following nonlinear PDE:

{Au—i—R(u):O in Q=(0,1)? ’ (7)

u|aQ =0

where R(u) = ru(1 — u), with r € R>Y is a nonlinear reaction term. In what follows, we disregard the trivial solution
u = 0 and look for solutions u # 0.

Rather than seeking the solution directly, we look for the steady-state solution of the nonlinear reaction-diffusion
problem

ur = Au+ R(u) in Q=(0,1)%t>0

U($7y70) = uO(xvy)) (8)
u|aQ =0 Yt>0

For this, we introduce a computational grid

1
Q= {(ih, jh),ij =0,...,N}, h=+

with boundary
o, = {(ih,jh),1 € {0,N} or j € {0, N}}
and corresponding index-sets
Tiomer ={(4,7) | 4,5=1,...,N—=1} and Zpoundary = {(%,7) | ¢ € {0,N} or j € {0,N}}

of inner and boundary vertices, resepectively.

In this problem, we seek to approximate the solution of (8) by using a mixed implicit-explicit quadrature in time that
treats the diffusion implicitly, while the reaction is treated explicity, i.e,

m—+1 m

~ Au™ 4+ R(u™), (9)

u —Uu

At
where u™ = u(t = mAt), for some time-step At > 0.
We discretise in space using the usual second-order accurate central finite-difference scheme. For this we introduce U;";
as the approximate solution at time-instance ¢ = mA¢ and vertex (ih, jh), taking as an initialisation Ugj = ug(ih, jh).

(a) Write down the recursion associated with the numerical scheme as described above. Here, make a distinction
between the indices (4, j) € Zinner a01d (4, j) € Zpoundary While including the initialisation and boundary conditions.

We introduce the vector U™ containing the Uz"; corresponding to the inner indices (i,j) € Zipner in the usual
lexicographic ordering.

For the vector of inner degrees of freedom, the scheme can be written in matrix form

At m m m m
<I—h2A)U T =U"+ AtrU™ (1 -U™),

where the operator * denotes entry-wise multiplication and 1 is a vector of ones of appropriate size.

(b) Explain how you would implement the matrix A in Matlab using matrix tensor products.
HINT: Thanks to the elimination of the boundary vertices, A can be constructed from univariate matrices of
size (N —1) x (N —1).

(¢c) What happens if we take ug(z,y) =07

(d) Implement the scheme for » = 100, N = 50 and dt = h%. Use the function ug(z,y) = (1 —z)y(1—y) to initialise
the scheme. Use sparse matrices and Matlab’s backslash command to invert them.
Terminate the scheme once || 7z AU™ + 7U™ % (1 — U™)||» < 107 and sketch the plot of the solution.

COPY ALL YOUR MATLAB CODE INTO THE EXAM !!

HINT 1: if you could not answer question 1, you may use

E = ones((N-1)"2, 1);

Eml = repmat([ones(N - 2, 1); 0], N-1, 1);

El = repmat([0; ones(N - 2, 1)], N-1, 1);

A = spdiags([E Eml -4#E E1 E], [-(N-1) -1 0 1 (N-1)], (N-1)"2, (N-1)"2);

HINT 2: U° can be constructed using

x = linspace(0, 1, N+1);
xinner = x(2:end - 1);

u0 = xinner.*(1 - xinner);
U0 = kron(u0, u0)’;

Adhering to the lexicographic ordering, you can plot using

[X, Y] = meshgrid(xinner, xinner);
surf (X, Y, reshape(U, [N-1 N-11))

You need not plot the points located on the boundary.

