

Numerical Approximation of PDEs

Spring Semester 2025

Lecturer: Prof. Annalisa Buffa

Assistant: Mohamed Ben Abdelouahab

Session 11: May 22, 2025

Exercise 1. [The MINI Element for the steady Stokes problem]

- Consider the Stokes problem:

$$\begin{cases} -\Delta \underline{u} + \nabla p = \underline{f} & \text{in } \Omega, \\ \nabla \cdot \underline{u} = 0 & \text{in } \Omega, \\ \underline{u} = 0 & \text{on } \partial\Omega. \end{cases}$$

Write the variational formulation.

- If you replace the Hilbert spaces with finite dimensional spaces V_h for \underline{u} and Q_h for p ; then the discrete problem takes the form of the following linear system:

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} U \\ P \end{pmatrix} = \begin{pmatrix} F \\ 0 \end{pmatrix},$$

To what corresponds the matrices A and B ?

- Let \mathcal{T}_h be a conforming triangulation of $\Omega \subset \mathbb{R}^2$. For each triangle $T \in \mathcal{T}_h$, define the bubble function:

$$b_T(x) = \lambda_1(x)\lambda_2(x)\lambda_3(x),$$

where $\lambda_i(x)$ are the barycentric coordinates on T .

Define the velocity and pressure spaces as:

$$\begin{aligned} V_h &= \left\{ \underline{u}_h \in [H_0^1(\Omega)]^2 : \underline{u}_h|_T \in [\mathbb{P}^1(T) \oplus \text{span}(b_T)]^2, \forall T \in \mathcal{T}_h \right\}, \\ Q_h &= \left\{ q_h \in L_0^2(\Omega) \cap C^0(\Omega) : q_h|_T \in \mathbb{P}^1(T), \forall T \in \mathcal{T}_h \right\}. \end{aligned}$$

Prove that with this choice of V_h and Q_h (known as the MINI Element), the matrix $B \in \mathbb{R}^{M \times N}$ has full rank.

Note that: $\dim(V_h) = \#V_0 + \#T = N > \dim(Q_h) = \#V - 1 = M$, where

- $\#V$ is the total number of vertices in \mathcal{T}_h .
- $\#V_0$ is the number of interior vertices.
- $\#T$ is the number of triangles in \mathcal{T}_h .

NB. For further details, see the book by Boffi, Brezzi and Fortin.

Solution:

- We seek $\underline{u} \in V := [H_0^1(\Omega)]^2$ and $p \in Q := L_0^2(\Omega)$ such that:

$$\begin{aligned} \int_{\Omega} \nabla \underline{u} : \nabla \underline{v} \, dx - \int_{\Omega} p \nabla \cdot \underline{v} \, dx &= \int_{\Omega} \underline{f} \cdot \underline{v} \, dx \quad \forall \underline{v} \in V, \\ \int_{\Omega} q \nabla \cdot \underline{u} \, dx &= 0 \quad \forall q \in Q. \end{aligned}$$

- Let $V_h \subset V$ and $Q_h \subset Q$ be finite-dimensional subspaces. The discrete problem takes the form:

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} U \\ P \end{pmatrix} = \begin{pmatrix} F \\ 0 \end{pmatrix},$$

where:

- $A_{ij} = \int_{\Omega} \nabla \phi_j : \nabla \phi_i \, dx$ corresponds to the stiffness matrix for the velocity space V_h ,
- $B_{ij} = - \int_{\Omega} \psi_i \nabla \cdot \phi_j \, dx$ represents the discretization of the divergence operator,
- $F_i = \int_{\Omega} \underline{f} \cdot \phi_i \, dx$ is the load vector.

Here, $\{\phi_j\}$ is a basis for V_h and $\{\psi_i\}$ is a basis for Q_h .

- We want to prove that the matrix B has full rank. This is needed to show that the discrete inf-sup (Ladyzhenskaya–Babuška–Brezzi) condition holds for the pair (V_h, Q_h) . That is, there exists a constant $\beta > 0$, independent of h , such that:

$$\inf_{q_h \in Q_h \setminus \{0\}} \sup_{\underline{v}_h \in V_h \setminus \{0\}} \frac{\int_{\Omega} q_h \nabla \cdot \underline{v}_h \, dx}{\|\underline{v}_h\|_{H^1} \|q_h\|_{L^2}} \geq \beta.$$

A sufficient condition for B to have full rank is to show that $\forall q_h \in Q_h$, $\exists \underline{v}_h \in V_h$ such that:

$$\int_{\Omega} q_h \nabla \cdot \underline{v}_h \, dx \neq 0.$$

Integration by parts gives:

$$-\int_{\Omega} q_h \nabla \cdot \underline{v}_h \, dx = \int_{\Omega} \underline{v}_h \cdot \nabla q_h \, dx - \int_{\partial\Omega} \underbrace{\underline{v}_h \cdot n}_{=0} q_h \, dx.$$

Since q_h is continuous and piecewise linear on \mathcal{T}_h , we have $\nabla q_h|_T \in [\mathbb{P}_0(T)]^2$.

Now, let us construct a test function $\underline{v}_h \in V_h$ supported in each triangle T using the bubble function $b_T(x) = \lambda_1(x)\lambda_2(x)\lambda_3(x)$.

Define, for a fixed triangle T , the local function:

$$\underline{v}_h^T = b_T \nabla q_h|_T.$$

Note that $\underline{v}_h^T \in [b^T]^2$ and vanishes on ∂T , so $\underline{v}_h^T \in V_h$.

Then:

$$\int_T \underline{v}_h^T \cdot \nabla q_h \, dx = |\nabla q_h|^2 \int_T b_T \, dx \geq 0 \quad \text{since } \nabla q_h \text{ is constant on } T.$$

To construct a global function, define:

$$\underline{v}_h(x) = \sum_{T \in \mathcal{T}_h} \underline{v}_h^T(x).$$

This function is in V_h because each \underline{v}_h^T is supported on T and belongs to $[P^1(T) \oplus \text{span}(b_T)]^2$.

Now :

$$\int_{\Omega} \underline{v}_h \cdot \nabla q_h \, dx = \sum_{T \in \mathcal{T}_h} \int_T \underline{v}_h^T \cdot \nabla q_h \, dx = \sum_{T \in \mathcal{T}_h} |\nabla q_h|^2 \int_T b_T(x) \, dx.$$

Since each term in the sum is non-negative and at least one term is strictly positive whenever $q_h \neq 0$, we conclude:

$$\int_{\Omega} \underline{v}_h \cdot \nabla q_h \, dx \neq 0.$$

This proves that B has full rank for the MINI Element.