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Exercise 1. We consider the wave equation
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Given a uniform grid of [0, T
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the fully discrete approximation of the wave equation with Finite Elements of degree r and the
explicit Newmark method to advance in time reads : starting from u% = I;up and 1)2 = lyvo
solve for n =0,1,2,..., N
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with the initialization
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Prove that the Newmark method is stable under the CFL condition
At< Lh
c -
=G

where C7 is the constant of the inverse inequality. In particular there exists a pure real
constant C' > 0 such that for allm=1,2,...,. N
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Hint 1: For the first step, choose vy = uhAtu b and prove that under the CFL condition it
holds
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where C' > 0 is a pure real constant.
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Hint 2: For n > 1, choose v), = “& _“h + up— uh
observe that
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as for the proof in the implicit case, and
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is a telescopic sum.

Then note that

Solution: -
Case 1 n=0: If we choose vy, = uhA_tuh, we have
uh, — U ’ c? 0 1 0 0 Uj, — up
—_— 4+ — | VupV(up —up) = | vy ———=.
- S ACACEOEY

Using the identity ab = %aQ + %bz — %(a —b)2, we obtain
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By Cauchy-Schwarz and inverse inequality it yields
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By Young’s inequality we have
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By using the CFL condition, we can pass the last term of the RHS to the LHS and we obtain
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Thus finally, multiplying by 4 we obtain
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Case 2 : n > 1 Observing that
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Thus choosing vy, = 7" + ~—4x{— we have
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Multiplying by At and rewritting the gradient term as a telescopic sum, we have
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Summing up overn =1,...,m — 1 we obtain
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By using again the identity ab = %a2 + %62 — %(a —b)2 and Young’s inequality yields
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We conclude as in the first step by using the inverse inequality and the CFL condition, and
we use the case 1 to bound
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