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Exercise 1. We consider the wave equation

∂2u

∂t2
− c2∆u = 0, in Ω× (0, T ],

u = 0 on ∂Ω× (0, T ],

u(0) = u0 in Ω,

∂u

∂t
(0) = v0 in Ω.

Given a uniform grid of [0, T ]

0 = t0 < t1 < ... < tN = T,

the fully discrete approximation of the wave equation with Finite Elements of degree r and the
explicit Newmark method to advance in time reads : starting from u0h = Irhu0 and v0h = Irhv0
solve for n = 0, 1, 2, ..., N∫

Ω

un+1
h − 2unh + un−1

h

∆t2
vh + c2

∫
Ω
∇unh∇vh = 0,∀vh ∈ Xr

h,0, n ≥ 1,

with the initialization∫
Ω

u1h − u0h
∆t

vh +
c2∆t

2

∫
Ω
∇u0h∇vh =

∫
Ω
v0hvh, ∀vh ∈ Xr

h,0.

Prove that the Newmark method is stable under the CFL condition

c∆t ≤ 1

CI
h

where CI is the constant of the inverse inequality. In particular there exists a pure real
constant C > 0 such that for all m = 1, 2, ..., N∥∥∥∥∥umh − um−1

h

∆t

∥∥∥∥∥
2

L2(Ω)

+ c2∥∇umh ∥2L2(Ω) ≤ C
(
∥v0h∥2L2(Ω) + c2∥∇u0h∥2L2(Ω)

)
.
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Hint 1: For the first step, choose vh =
u1
h−u0

h
∆t and prove that under the CFL condition it

holds ∥∥∥∥u1h − u0h
∆t

∥∥∥∥2
L2(Ω)

+ c2∥∇u1h∥2L2(Ω) ≤ C
(
∥v0h∥2L2(Ω) + c2∥∇u0h∥2L2(Ω)

)
where C > 0 is a pure real constant.

Hint 2: For n ≥ 1, choose vh =
un+1
h −un

h
∆t +

un
h−un−1

h
∆t as for the proof in the implicit case, and

observe that
un+1
h − unh

∆t
+

unh − un−1
h

∆t
=

un+1
h − un−1

h

∆t
.

Then note that ∫
Ω
∇unh∇(un+1

h − un−1
h ) =

∫
Ω
∇un+1

h ∇unh −
∫
Ω
∇unh∇un−1

h

is a telescopic sum.

Solution:
Case 1 n = 0: If we choose vh =

u1
h−u0

h
∆t , we have∥∥∥∥u1h − u0h

∆t

∥∥∥∥2
L2(Ω)

+
c2

2

∫
Ω
∇u0h∇(u1h − u0h) =

∫
Ω
v0h

u1h − u0h
∆t

.

Using the identity ab = 1
2a

2 + 1
2b

2 − 1
2(a− b)2, we obtain∥∥∥∥u1h − u0h

∆t

∥∥∥∥2
L2(Ω)

+
c2

4
∥∇u1h∥2L2(Ω)−

c2

4
∥∇u0h∥2L2(Ω) =

∫
Ω
v0h

u1h − u0h
∆t

+
∆t2c2

4

∥∥∥∥∇u1h −∇u0h
∆t

∥∥∥∥2
L2(Ω)

.

By Cauchy-Schwarz and inverse inequality it yields∥∥∥∥u1h − u0h
∆t

∥∥∥∥2
L2(Ω)

+
c2

4
∥∇u1h∥2L2(Ω)−

c2

4
∥∇u0h∥2L2(Ω) ≤ ∥v0h∥L2(Ω)

∥∥∥∥u1h − u0h
∆t

∥∥∥∥
L2(Ω)

+
∆t2c2C2

I

4h2

∥∥∥∥u1h − u0h
∆t

∥∥∥∥2
L2(Ω)

.

By Young’s inequality we have∥∥∥∥u1h − u0h
∆t

∥∥∥∥2
L2(Ω)

+
c2

4
∥∇u1h∥2L2(Ω)−

c2

4
∥∇u0h∥2L2(Ω) ≤ ∥v0h∥2L2(Ω)+

1

2

∥∥∥∥u1h − u0h
∆t

∥∥∥∥2
L2(Ω)

+
∆t2c2C2

I

4h2

∥∥∥∥u1h − u0h
∆t

∥∥∥∥2
L2(Ω)

.

By using the CFL condition, we can pass the last term of the RHS to the LHS and we obtain

1

4

∥∥∥∥u1h − u0h
∆t

∥∥∥∥2
L2(Ω)

+
c2

4
∥∇u1h∥2L2(Ω) −

c2

4
∥∇u0h∥2L2(Ω) ≤ ∥v0h∥2L2(Ω).

Thus finally, multiplying by 4 we obtain∥∥∥∥u1h − u0h
∆t

∥∥∥∥2
L2(Ω)

+ c2∥∇u1h∥2L2(Ω) ≤ 4∥v0h∥2L2(Ω) + c2∥∇u0h∥2L2(Ω).
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Case 2 : n ≥ 1 Observing that

un+1
h − 2unh + un−1

h

∆t2
=

1

∆t

(
un+1
h − unh

∆t
−

unh − un−1
h

∆t

)
.

Thus choosing vh =
un+1
h −un

h
∆t +

un
h−un−1

h
∆t we have

1

∆t

∥∥∥∥∥un+1
h − unh

∆t

∥∥∥∥∥
2

L2(Ω)

− 1

∆t

∥∥∥∥∥unh − un−1
h

∆t

∥∥∥∥∥
2

L2(Ω)

+ c2
∫
Ω
∇unh

(
∇un+1

h −∇un−1
h

∆t

)
= 0.

Multiplying by ∆t and rewritting the gradient term as a telescopic sum, we have∥∥∥∥∥un+1
h − unh

∆t

∥∥∥∥∥
2

L2(Ω)

−

∥∥∥∥∥unh − un−1
h

∆t

∥∥∥∥∥
2

L2(Ω)

+ c2
∫
Ω
∇un+1

h ∇unh − c2
∫
Ω
∇unh∇un−1

h = 0.

Summing up over n = 1, ...,m− 1 we obtain∥∥∥∥∥umh − um−1
h

∆t

∥∥∥∥∥
2

L2(Ω)

−
∥∥∥∥u1h − u0h

∆t

∥∥∥∥2
L2(Ω)

+ c2
∫
Ω
∇umh ∇um−1

h − c2
∫
Ω
∇u1h∇u0h = 0.

Thus ∥∥∥∥∥umh − um−1
h

∆t

∥∥∥∥∥
2

L2(Ω)

+ c2
∫
Ω
∇umh ∇um−1

h =

∥∥∥∥u1h − u0h
∆t

∥∥∥∥2
L2(Ω)

+ c2
∫
Ω
∇u1h∇u0h.

By using again the identity ab = 1
2a

2 + 1
2b

2 − 1
2(a− b)2 and Young’s inequality yields

∥∥∥∥∥umh − um−1
h

∆t

∥∥∥∥∥
2

L2(Ω)

+
c2

2
∥∇umh ∥2L2(Ω) +

c2

2
∥∇um−1

h ∥2L2(Ω)

≤
∥∥∥∥u1h − u0h

∆t

∥∥∥∥2
L2(Ω)

+
c2

2
∥∇u1h∥2L2(Ω) +

c2

2
∥∇u0h∥2L2(Ω) +

c2∆t2

2

∥∥∥∥∥∇umh −∇um−1
h

∆t

∥∥∥∥∥
2

L2(Ω)

We conclude as in the first step by using the inverse inequality and the CFL condition, and
we use the case 1 to bound ∥∥∥∥u1h − u0h

∆t

∥∥∥∥2
L2(Ω)

+
c2

2
∥∇u1h∥2L2(Ω).
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