
Short notes on functional analysis

These notes have been written by Prof. Fabio Nobile and modified by Prof. Annalisa
Buffa

1 Banach and Hilbert spaces

1.1 Norms

Let V be a linear space (i.e. a vector space) over R. A seminorm on V is a map ‖·‖ : V → R
such that

1. ‖v‖ ≥ 0 ∀v ∈ V ;

2. ‖αv‖ = |α|‖v‖ ∀α ∈ R, ∀v ∈ V ;

3. ‖u+ v‖ ≤ ‖u‖+ ‖v‖ ∀u, v ∈ V (triangular inequality).

A norm on V is a seminorm satisfying the condition that

‖v‖ = 0 if and only if v = 0.

The pair (V, ‖ · ‖) is a normed space, and we can define a distance function d on V via
d(u, v) = ‖u− v‖.

Example 1. For the space Rd, we can define the Euclidean norm

‖x‖2 =

(
d∑
i=1

x2
i

) 1
2

∀x = (x1, . . . , xd) ∈ Rd.

Two norms ‖ · ‖ and 9 · 9 on a linear space V are equivalent, if there exist two positive
constants C1 and C2 such that

C1‖x‖ ≤ 9x9 ≤ C2‖x‖ ∀x ∈ V.

1.2 Sequences and Banach spaces

Let {un}n∈N be a sequence in a normed space (V, ‖ · ‖). The sequence is said to be

• a Cauchy sequence, if
lim

n,m→∞
‖un − um‖ = 0 ,

• a convergent sequence, if

lim
n→∞

‖un − u‖ = 0 with u ∈ V .

A normed space (V, ‖·‖) is called a Banach space, if any Cauchy sequence in V converges
to an element of V (with respect to the ‖ · ‖ norm). In other words, a Banach space is a
complete normed vector space.
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1.3 Scalar product and Hilbert spaces

A scalar product in on linear space V is a form (·, ·) : V × V −→ R such that:

1. (u, u) ≥ 0 ∀u ∈ V and (u, u) = 0⇔ u = 0;

2. (u, v) = (v, u) ∀u, v ∈ V ;

3. (αu+ βv,w) = α(u,w) + β(v, w) ∀u, v, w ∈ V, α, β ∈ R.

We denote by (V, (·, ·)) a linear space with scalar product. Two vectors v, w ∈ V are said to
be orthogonal if (v, w) = 0. Moreover, we have the Cauchy–Schwarz inequality.

Theorem 1.1 (Cauchy–Schwarz inequality). Let (V, (·, ·)) be a linear space with scalar prod-
uct. Then,

|(u, v)| ≤
√

(u, u)
√

(v, v) ∀u, v ∈ V.

Observe that a scalar product induces a norm in natural way. Furthermore, as a conse-
quence of the Cauchy–Schwarz inequality we get the following result.

Theorem 1.2. Let (V, (·, ·)) be a linear space with scalar product, and set ‖v‖ =
√

(v, v) for
all v ∈ V . Then, the pair (V, ‖ · ‖) is a normed space and

|(u, v)| ≤ ‖u‖‖v‖ ∀u, v ∈ V.

A linear space with scalar product is said to be pre-Hilbertian. A pre-Hilbertian space
that is Banach with respect to a norm induced by a scalar product is called a Hilbert space.
Tools like orthonormal bases and projections are well defined in Hilbert spaces.

Example 2. The space (Rd, ‖ · ‖2) is a Hilbert space with norm

‖x‖2 =
√

(x,x) =

√√√√ d∑
i=1

x2
i ∀x = (x1, . . . , xd) ∈ Rd,

where (·, ·) is the Euclidean scalar product.

2 The Lp spaces

Let the space Lp(Ω), 1 ≤ p <∞, be defined as follows:

Lp(Ω) =

{
f : Ω→ R Lebesgue measurable :

∫
Ω
|f(x)|p dx <∞

}
.

More precisely, Lp are spaces of equivalence classes of measurable functions: f and g belong
to the same equivalence class, if they differ at most on a set of zero measure (“they are equal
almost everywhere”). In other words, if f and g are two Lp(Ω) functions whose difference is
non-zero only on a zero-measure set, then f and g are “indistinguishable” in the Lp topology
and should be identified as just one function (pretty much as 2/3, 4/6, 6/9 represent the same
rational number). Therefore, it does not make sense to look at the value of an Lp function
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on a zero-measure set. Consequently, it does not make sense to talk about point values for
elements of an Lp space.

For any 1 ≤ p <∞, the Lp space is a Banach space when equipped with the integral norm

‖f‖Lp(Ω) =

(∫
Ω
|f(x)|p dx

)1/p

.

Furthermore, L2 is a Hilbert space endowed with the scalar product

(f, g)L2(Ω) =

∫
Ω
f(x)g(x) dx,

which induces the norm

‖f‖L2(Ω) =

√∫
Ω
|f(x)|2 dx.

Finally, we denote by L∞(Ω) the set of equivalence classes of essentially bounded functions,
i.e. functions that are unbounded at most on a set of measure zero. The space L∞ is also a
Banach space when equipped with the norm

‖f‖∞ = ess sup
x∈Ω

f(x) = inf{C ≥ 0 : |f(x)| ≤ C for almost every x ∈ Ω}.

Theorem 2.1. If Ω is a bounded domain, then L∞(Ω) ⊂ . . . ⊂ Lp(Ω) . . . ⊂ L2(Ω) ⊂ L1(Ω).

3 Distributions

Let D(Ω) denote the space of functions with compact support (i.e. they are identically zero
outside some compact subset K ⊂ Ω) that admit infinite derivatives, i.e. D(Ω) = C∞0 (Ω). A
sequence {φn}n∈N in D(Ω) converges to φ ∈ D(Ω) in D(Ω) if:

1. there exists a compact subset K ⊂ Ω such that

supp φn ⊂ K ∀n ∈ N ,

2. there holds
∂αφn −→ ∂αφ ∀α ∈ Nd ,

with respect to the supremum norm ‖·‖∞. Here, we have used the multi-index notation

∂α = ∂|α|

∂x
α1
1 ...∂x

αd
d

for any multi-index α ≡ (α1, α2, . . . , αd) ∈ Nd. We note that ∂α is

sometimes also denoted by Dα.

Let T be a linear operator (i.e. a map) from D(Ω) to R. We denote by 〈T, ϕ〉 the value
obtained by applying T to ϕ ∈ D(Ω), i.e. 〈T, ϕ〉 = T (ϕ). We say that T is continuous, if

lim
n→∞

〈T, ϕn〉 = 〈T, ϕ〉

for any sequence {ϕn}n∈N in D(Ω) that converges to ϕ in D(Ω). A continuous linear operator
T : D(Ω) → R is called a distribution. The space of distributions on Ω is denoted by
D′(Ω).

A sequence of distributions {Tn} converges in D′(Ω) to a distribution T if

lim
n→∞

〈Tn, ϕ〉 = 〈T, ϕ〉 ∀ϕ ∈ D(Ω) .
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Example 3. For any function f ∈ L1
loc(Ω) it is natural to associate a distribution Tf ∈ D′(Ω) via

〈Tf , ϕ〉 =

∫
Ω

f(x)ϕ(x) dx , ∀ϕ ∈ D(Ω). (1)

Example 4. Let ω ∈ Ω. The Dirac delta δω associated with the point ω is the distribution defined
by the point evaluation

〈δω, ϕ〉 = ϕ(ω) , ∀ϕ ∈ D(Ω).

To present the intuition behind this definition, we first introduce the characteristic function on an
interval [a, b], which is given by

χ[a,b](x) =

{
1 , if x ∈ [a, b] ,
0 , elsewhere .

It can be easily seen that the sequence of distributions associated with fn =
n

2
χ[ω−1/n,ω+1/n] converges

to the distribution δω, so that we can recover the “intuitive” definition of δω (that is, δω viewed as a
“function”, which is zero everywhere except in x = ω where its value is infinite and whose integral is
one nonetheless). Indeed, in view of the previous example we find that

〈Tfn , ϕ〉 =
n

2

∫ ω+ 1
n

ω− 1
n

ϕ(x) dx =
n

2
(Φ(ω + 1/n)− Φ(ω − 1/n)) ∀ϕ ∈ D(Ω) ,

where Φ denotes the primitive of ϕ. Setting h = 1/n, we have

〈Tfn , ϕ〉 =
Φ(ω + h)− Φ(ω − h)

2h
,

which converges to Φ′(ω) = ϕ(ω) as h→ 0 (or, equivalently, n→∞). Thus,

lim
n→∞

〈Tfn , ϕ〉 = ϕ(ω) = 〈δω, ϕ〉 ,

as claimed. That is, Tfn −→ δω in D′(Ω). We remark that δω is not a function in a classical sense, i.e.
it is not possible to find a function f ∈ L1

loc(Ω) such that the associated distribution Tf satisfies

〈Tf , ϕ〉 = ϕ(ω) , ∀ϕ ∈ D(Ω) .

3.1 Derivatives of distributions

To define the derivative of a distribution, it is desirable to choose a definition that provides
the property that (Tf )′ = Tf ′ , provided f is sufficiently smooth. For example, if Ω ⊂ R and
ϕ ∈ D(Ω), then integration by parts yields

〈Tf ′ , ϕ〉 =

∫
Ω
f ′(x)ϕ(x) dx = −

∫
Ω
f(x)ϕ′(x) dx ,

provided f is sufficiently smooth. This formal calculation eventually motivates the following
definition.

Let Ω be an open subset of Rd and let T ∈ D′(Ω). The partial derivative of T with
respect to xi, 1 ≤ i ≤ d, in the sense of distributions is the distribution defined through

〈∂iT , ϕ〉 = −〈T, ∂iϕ〉 ∀ϕ ∈ D(Ω) .
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Similarly, we can define higher-order derivatives. In fact, for any multi-index α = (α1, . . . , αd) ∈
Nd, the derivative of T is defined through

〈∂αT, ϕ〉 = (−1)|α|〈T, ∂αϕ〉, ∀ϕ ∈ D(Ω) .

Example 5 (Important!). The Heaviside function Heav on R is defined by

Heav(x) =

{
1 if x > 0,
0 if x ≤ 0.

Its derivative in the sense of distributions is the Dirac distribution associated to the point x = 0, i.e.

Heav′ = δ0 in D′(R).

Indeed, applying the definition of the distributional derivative, we find that

〈Heav′, ϕ〉 = −〈Heav, ϕ′〉 = −
∫ ∞
−∞

Heav(x)ϕ′(x) dx = −
∫ ∞

0

ϕ′(x) dx = ϕ(0) = 〈δ0, ϕ〉

for every ϕ ∈ D(R). That is, Heav′ = δ, implying that Heav′ cannot be a function!

Example 6. Let Ω ⊂ R and [a, b] ⊂ Ω, and let χ[a,b] be the characteristic function on [a, b]. Its
derivative in the sense of distributions is δa − δb. Indeed, for every ϕ ∈ D(Ω) we have

〈T ′χ[a,b]
, ϕ〉 = −〈Tχ[a,b]

, ϕ′〉 = −
∫

Ω

χ[a,b]ϕ
′(x) dx = −

∫ b

a

ϕ′(x) dx = −ϕ(b) + ϕ(a) = 〈δa, ϕ〉 − 〈δb, ϕ〉 .

The set D′(Ω) is closed with respect to taking derivatives (in the sense of distributions).
This means that every distribution has infinite derivatives. It can be shown that the
derivative operator (in the sense of distributions) is continuous: indeed, if Tn −→ T in D′(Ω),
then ∂αTn −→ ∂αT in D′(Ω) for all multi-indices α ∈ Nd.

As motivated at the beginning of this subsection, the derivative in the sense of distributions
is indeed a generalisation of the classical derivative of functions. In fact, if a function f is of
class C1, then the derivative of its associated distribution Tf coincides with the distribution
Tf ′ associated to the classical derivative f ′ of f . We can schematically summarise this idea
as follows:

f //

��

Tf //

��

(Tf )′

}}
f ′ // Tf ′

==

4 Sobolev spaces

It is immediate to see that if Ω is a bounded domain, then L2 functions are distributions,
L2(Ω) ⊂ D′(Ω). However, it is not guaranteed that their derivatives (in the sense of distribu-
tions) will still belong to L2(Ω) (or even that they will be functions, see ,e.g., Heav′).

These considerations motivate to introduce Sobolev spaces W k,p of order k ∈ N0 and
1 ≤ p ≤ ∞ by

W k,p(Ω) = {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω) ∀|α| ≤ k} ,
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where the derivatives ∂αf are to be interpreted in the sense of distributions. The spaces
W k,p are Banach spaces when equipped with the norm

‖u‖Wk,p(Ω) :=


(∑

|α|≤k ‖∂αu‖
p
Lp(Ω)

) 1
p
, 1 ≤ p < +∞ ,

max|α|≤k ‖∂αu‖L∞(Ω) , p = +∞.

Of special interest are the Sobolev spaces Hk(Ω) = W k,2(Ω), which are thus given by

Hk(Ω) =
{
f ∈ L2(Ω) : ∂αf ∈ L2(Ω), |α| ≤ k

}
.

In particular, Hk+1(Ω) ⊂ Hk(Ω) for k ≥ 0, with H0(Ω) = L2(Ω). The space Hk(Ω) is a
Hilbert space with respect to the scalar product

(f, g)Hk(Ω) =
∑
|α|≤k

∫
Ω
∂αf(x)∂αg(x) dx ,

which induces the norm

‖f‖Hk(Ω) =
√

(f, f)Hk(Ω) =

√√√√∑
|α|≤k

∫
Ω
|∂αf(x)|2 dx .

We also define the seminorm | · |Hk(Ω) in Hk(Ω) as follows:

|f |Hk(Ω) =

√√√√∑
|α|=k

∫
Ω
|∂αf(x)|2 dx .

Then we have in particular that

‖f‖Hk(Ω) =

√√√√ k∑
m=0

|f |2Hm(Ω).

4.1 Regularity of functions in Hk(Ω)

The following example shows that a function in H1(Ω) is, in general, not continuous if Ω is
an open set in R2.

Example 7. Let Ω ⊂ R2 be the disk of radius r < 1 centred in the origin. Then the function f
defined in Ω\{(0, 0)} as

f(x, y) =

∣∣∣∣∣ln 1√
x2 + y2

∣∣∣∣∣
α

,

with 0 < α < 1/2, belongs to H1(Ω), but it is not continuous in (0, 0).

Concerning the regularity of the functions in Hk(Ω), the following general result holds.

Theorem 4.1 (Sobolev embedding theorem). Let Ω be an open subset of Rd with a Lipschitz
continuous boundary. Then, the following continuous embeddings hold:
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1. if 0 ≤ 2k < d, then Hk(Ω) ⊂ Lp∗(Ω), p∗ = 2d/(d− 2k);

2. if 2k = d, then Hk(Ω) ⊂ Lq(Ω), 2 ≤ q <∞;

3. if 2(k −m) > d, then Hk(Ω) ⊂ Cm(Ω).

Remark 4.1. In particular, if d = 1, then functions in H1(Ω) are continuous. If d ∈ {2, 3},
then functions in H2(Ω) are continuous.

4.2 Fractional Sobolev spaces

In the preceding sections, we have only looked at Sobolev space with k ∈ N0 so far. There are
various approaches on how to define Sobolev spaces with fractional order. The approach that
we will follow here mimics the idea of Hölder spaces. For Hölder spaces we know, for example,
that the space C0,θ with θ ∈ (0, 1) contains functions that are somewhat more regular than
just continuous functions, but provide less regularity than C1 functions. In other words,
C0,θ(Ω) lies between C0(Ω) and C1(Ω) (cf. interpolation spaces).

To carry the aforementioned intuition over, let 1 ≤ p <∞, θ ∈ (0, 1), and f ∈ Lp(Ω) with
Ω being an open subset of Rd. First, we define the Slobodeckij seminorm

[f ]θ,p,Ω :=

(∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|θp+d
dx dy

) 1
p

.

Next, for 0 < s 6∈ N0, we set θ := s − bsc ∈ (0, 1). Here, bxc = max{m ∈ Z : m ≤ x}. Then
the Sobolev–Slobodeckij space W s,p(Ω) for the non-integer s is defined as

W s,p(Ω) :=

{
f ∈W bsc,p(Ω): sup

|α|=bsc
[∂αf ]θ,p,Ω <∞

}
.

One can show that W s,p(Ω) is a Banach space when equipped with the norm

‖f‖W s,p(Ω) := ‖f‖W bsc,p(Ω) + sup
|α|=bsc

[∂αf ]θ,p,Ω .

5 Trace Inequality and Trace space

From the considerations above, it is clear that if v ∈ H1(Ω), we cannot define the “value” of
v on the boundary ∂Ω of Ω (the so-called “trace”) in a straightforward way, if the dimension
is greater than one. Therefore, we need to introduce the following important result.

Theorem 5.1 (Trace theorem). Let Ω be a bounded open domain in Rd with Lipschitz bound-
ary ∂Ω. There exists a unique linear map

γ0 : H1(Ω) −→ L2(∂Ω),

such that γ0v = v|∂Ω for all functions v ∈ H1(Ω) ∩C0(Ω). Here, γ0v is called the trace of v
on the boundary ∂Ω. Moreover, there exists a positive constant CT > 0 such that

‖γ0v‖L2(∂Ω) ≤ CT ‖v‖H1(Ω).

7



Remark 5.1. The trace of a non-continuous H1(Ω) function is usually assigned by means of
a “density argument”. That is, although functions in H1(Ω) are not necessarily continuous,
it is possible to show that they can always be approximated accurately (with respect to the
H1(Ω) norm) by C∞(Ω) functions, provided that the boundary of Ω is sufficiently smooth
(e.g. Lipschitz continuous), in the sense that

∀u ∈ H1(Ω), ∃{vn}n∈Ω ∈ C∞(Ω) : lim
n→∞

‖u− vn‖H1(Ω) = 0 .

In other words, C∞(Ω) is dense in H1(Ω). As the functions vn are continuous, their boundary
value is given by γ0(vn) = vn|∂Ω (see the Trace theorem just stated), and since the trace
operator is continuous, the value of γ0u is simply γ0u = limn→∞ γ0vn. Observe that the
trace γ0u does not depend on the specific choice of the sequence {vn}n∈N, i.e. any sequence
{vn}n∈N ⊂ C∞(Ω) converging to u ∈ H1 with respect to the H1 norm will provide the same
trace γ0u. Consequently, γ0u is well defined.

Remark 5.2. The same result holds when considering the trace space over a Lipschitz con-
tinuous subset Γ ⊂ ∂Ω with positive measure.

5.1 Trace space

The trace operator is not surjective on L2(∂Ω). In particular, the set of functions in L2(∂Ω)
that are traces of functions of H1(Ω) is a subspace of L2(∂Ω), which is denoted by H1/2(∂Ω).
Similarly, for all k ≥ 1, there exists a unique map

γ∂Ω : Hk(Ω)→ Hk−1/2(∂Ω)

such that γ∂Ωv = v|∂Ω for all v ∈ Hk(Ω) ∩ C0(Ω̄) with

‖γ∂Ωu‖Hk−1/2(∂Ω) ≤ C
∂Ω
k ‖u‖Hk(Ω)

for some positive constant C∂Ω
k . Notice that we use the notation γ∂Ω instead of γ0 here, in

order to emphasise the dependence on the boundary of the domain (cf. C∂Ω
k ).

5.2 The space H1
0 (Ω)

Let Ω be an open subset of Rd. We define the space H1
0 (Ω) as

H1
0 (Ω) =

{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
,

where v = 0 on ∂Ω is to be interpreted in the trace sense γ0v = 0. A similar characterisation
holds for the space

H1
Γ(Ω) = {v ∈ H1(Ω) : v = 0 on Γ}, Γ ⊂ ∂Ω, meas(Γ) > 0 .

6 The Poincaré inequality

A list of very useful inequalities that relate the L2 norm of an H1 function to its H1 seminorm
are commonly referred to as Poincaré inequalities.
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Theorem 6.1 (Poincaré inequality). Let Ω be a bounded open subset of Rd. Then there exists
a positive constant CΩ such that

‖v‖L2(Ω) ≤ CΩ|v|H1(Ω) , ∀v ∈ H1
0 (Ω) . (2)

Proposition 6.1 (Friedrichs’ inequality). The Poincaré inequality is still valid if the function
v vanishes only on a part of the boundary Γ ⊂ ∂Ω with meas(Γ) > 0. In this case, it holds
that

‖v‖L2(Ω) ≤ C∗Ω|v|H1(Ω) , ∀v ∈ H1
Γ(Ω) =

{
v ∈ H1(Ω) : v = 0 on Γ

}
.

Proposition 6.2 (Poincaré–Wirtinger inequality). Let Ω be a bounded open subset of Rd.
For all v ∈ H1(Ω) with

∫
Ω v(x) dx = 0 there exists a positive constant CΩ such that

‖v‖L2(Ω) ≤ CΩ|v|H1(Ω) . (3)

7 Linear functionals

Let V and W be two linear spaces over R. A map L : V →W is said to be linear if:

L(u+ v) = L(u) + L(v), ∀u, v ∈ V,
L(αv) = αL(v), ∀α ∈ R.

Let (V, ‖ · ‖) be a normed space and F : V −→ R a linear map. We say that:

• F is bounded, if there exists a positive constant C < ∞ such that |F (v)| ≤ C‖v‖ for
all v ∈ V .

• F is continuous, if for all ε > 0 there exists δε > 0 such that if ‖u − v‖ < δε, then
|F (u)− F (v)| < ε.

• F is Lipschitz continuous, if |F (v − w)| ≤M‖v − w‖, M <∞.

A linear and continuous operator F : V −→ R is said to be a linear functional. Fur-
thermore, the following result holds.

Lemma 7.1. If F : V −→ R is linear, then F is (Lipschitz) continuous if and only if F is
bounded.

7.1 The dual space

We define the dual space of a normed space (V, ‖ · ‖) as the space (V ′, ‖ · ‖V ′) with

V ′ = {F : V → R : F linear and continuous} ,

‖F‖V ′ = sup
v∈V,v 6=0

|F (v)|
‖v‖

, ∀F ∈ V ′.

It can be shown that ‖ · ‖V ′ is a norm on V ′. In particular, the supremum exists as F is
bounded. Thus, (V ′, ‖ · ‖V ′) is a bounded normed linear space. Moreover, it can be shown
that V ′ is a Banach space (regardless of whether or not V is a Banach space).
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7.2 The Riesz Representation Theorem

For Hilbert spaces, we have the following fundamental result concerning the representation
of elements of the dual space.

Lemma 7.2 (Riesz representation theorem). Let H be a Hilbert space with norm ‖ · ‖H and
scalar product (·, ·)H . For all F ∈ H ′ (the dual space of H), there exists a unique v ∈ H such
that

F (x) = (v, x)H , ∀x ∈ H .

Moreover, ‖F‖H′ = ‖v‖H .

7.3 Closed Range Theorem

Let us now consider a more general setting. To this end, let V and W be two Banach spaces.
Then, consider a linear operator (i.e. a map) L : D(L) ⊂ V →W , which is defined on a linear
subspace D(L) ⊂ V with values in W . The set D(L) is called the domain of L. For such an
operator L, we introduce:

• the range (or image) of L:

R(L) ≡ Im(L) := {Lv : v ∈ D(L)} ⊂W ,

• the kernel (or null space) of L:

N(L) ≡ Ker(L) := {v ∈ D(L) : Lv = 0} ⊂ V ,

• the graph of L:
G(L) := {(v, Lv) : v ∈ D(L)} ⊂ V ×W .

A map L is said to be closed, if its graph G(L) is closed in V ×W . To prove that an operator
L is closed, one typically proceeds as follows. Consider a sequence {vn}n∈N ⊂ D(L) with
vn → v in V and Lvn → w in W . One then needs to check that both v ∈ D(L) and w = Lv
hold.

Most practically relevant operators are indeed closed and also densely defined, in the sense
that D(L) is dense in V . For these operators, we introduce the adjoint L? : D(L?) ⊂W ′ → V ′,
which is the linear operator satisfying

F (Lv) = (A?F )(v) , ∀v ∈ D(L) , ∀F ∈ D(L?) .

The domain of the adjoint is

D(L?) := {F ∈W ′ : ∃c ≥ 0 s.t. |F (Lv)| ≤ c‖v‖ , ∀v ∈ D(L)} ,

which is a linear subspace of W ′. Now, we can state the main result concerning the range of
L and L?.

Theorem 7.1 (Closed range theorem). Let L : D(L) ⊂ V → W be a linear operator that is
closed and densely defined. Then the following properties are equivalent:

1. R(L) is closed,
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2. R(L?) is closed,

3. R(L) = N(L?)⊥ ≡
{
w ∈W : F (w) = 0 ∀F ∈ N(L?)

}
,

4. R(L?) = N(L)⊥ ≡
{
F ∈ V ′ : F (v) = 0 ∀v ∈ N(L)

}
.

Notice the resemblance to the fundamental theorem of linear algebra.
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