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Exercise 1. Let
(
H1

0 (Ω)
)′

be the space of functionals f over H1
0 (Ω), i.e.,

(
H1

0 (Ω)
)′

contains
all distributions f such that ⟨f, u⟩ ∈ R. Here ⟨ · , · ⟩ denotes the application of f to u. The
space

(
H1

0 (Ω)
)′

is endowed with its natural norm

∥f∥(H1
0 (Ω))

′ = sup
u∈H1

0 (Ω)

⟨f, u⟩
∥u∥H1

0 (Ω)

.

Consider the weak formulation of the heat equation. Discuss, conceptually, why it makes
sense to view ∂tu as a function

∂tu : [0, T ] → H1
0 (Ω)

′

from the time interval into the dual space.
Suppose that u ∈ L2(0, T ;H1

0 (Ω)) is a Galerkin solution, and assume for simplicity that

u ∈ C(0, T ;H1
0 (Ω)), ∂tu ∈ C(0, T ;H1

0 (Ω)
′).

Prove that ∫ T

0
∥∂tu∥2H1

0 (Ω)′dt ≤ C

(
∥u0∥2L2(Ω) +

∫ T

0
∥f∥2L2(Ω)dt

)
.

Exercise 2. Consider the heat equation over a domain Ω,

∂tu−∆u = 0

with homogeneous Dirichlet boundary conditions and with initial data u0 ∈ L2(Ω).
Suppose that uh : [0, T ] → Vh is a semidiscrete approximation with some Galerkin space Vh

and initial data uh,0 ∈ Vh. Show that ∥uh(t)∥L2(Ω) is non-increasing in time.

Exercise 3. Prove the following identity: when vh = θun+1
h + (1− θ)unh, then∫

Ω

(
un+1
h − unh

)
vh =

1

2
∥un+1

h ∥2L2 −
1

2
∥unh∥2L2 + (θ − 1

2
)∥un+1

h − unh∥2L2 .

Exercise 4. Let Ω = [0, 1]2 and T = 10. Consider the heat equation with Neumann bound-
ary conditions and vanishing source term:

∂tu− div(∇u) = 0 over Ω× (0, T )

∂u

∂n

∣∣∣∣
ΓN

= 0 along ∂Ω

u(x, 0) = 1 + sin(2πx) sin(2πy) at t = 0.
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• Find the semidiscrete formulation using the piecewise linear finite element space.

• We are interested in the integral

H(t, u) :=

∫
Ω
u(x, t)dx.

We know that H(t, u) is constant in t for the solution u of the heat equation. Does
H(t, uh) stay constant, where uh is the solution of the semi-discrete formulation?

• Use the templates on GitHub (the link is on the Moodle page) to investigate compu-
tationally for which time discretizations this integral remains constant. Prove that it
stays constant when using the explicit Euler and Crank-Nicolson method.

• A common difficulty with finite elements for the heat equation is that the time-discretization
methods require solving a system with the mass matrix M . It is therefore common to
replace the mass matrix by a diagonal matrix M̃ , which is then called lumped mass
matrix. One way of doing this to define the diagonal entries of M̃ as

M̃ii =
∑
j

Mij .

That is, we lump the entries on each row into one. Implement the explicit Euler and
Crank-Nicolson scheme with the lumped mass matrix and assess how these compare to
the original versions. Use conjuate gradient method to solve the linear system at each
iteration. Compare the solution of the lumped scheme to the solution of the non-lumped
scheme by computing the L2(Ω)-discrepancy between the two soltutions at select time
instances.
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