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Exercise 1. We consider the wave equation

∂2u

∂t2
− c2∆u = 0, in Ω× (0, T ],

u = 0 on ∂Ω× (0, T ],

u(0) = u0 in Ω,

∂u

∂t
(0) = v0 in Ω.

Given a uniform grid of [0, T ]

0 = t0 < t1 < ... < tN = T,

the fully discrete approximation of the wave equation with Finite Elements of degree r and the
explicit Newmark method to advance in time reads : starting from u0h = Irhu0 and v0h = Irhv0
solve for n = 0, 1, 2, ..., N∫

Ω

un+1
h − 2unh + un−1

h

∆t2
vh + c2

∫
Ω
∇unh∇vh = 0,∀vh ∈ Xr

h,0, n ≥ 1,

with the initialization∫
Ω

u1h − u0h
∆t

vh +
c2∆t

2

∫
Ω
∇u0h∇vh =

∫
Ω
v0hvh, ∀vh ∈ Xr

h,0.

Prove that the Newmark method is stable under the CFL condition

c∆t ≤ 1

CI
h

where CI is the constant of the inverse inequality. In particular there exists a pure real
constant C > 0 such that for all m = 1, 2, ..., N∥∥∥∥∥umh − um−1

h

∆t

∥∥∥∥∥
2

L2(Ω)

+ c2∥∇umh ∥2L2(Ω) ≤ C
(
∥v0h∥2L2(Ω) + c2∥∇u0h∥2L2(Ω)

)
.
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Hint 1: For the first step, choose vh =
u1
h−u0

h
∆t and prove that under the CFL condition it

holds ∥∥∥∥u1h − u0h
∆t

∥∥∥∥2
L2(Ω)

+ c2∥∇u1h∥2L2(Ω) ≤ C
(
∥v0h∥2L2(Ω) + c2∥∇u0h∥2L2(Ω)

)
where C > 0 is a pure real constant.

Hint 2: For n ≥ 1, choose vh =
un+1
h −un

h
∆t +

un
h−un−1

h
∆t as for the proof in the implicit case, and

observe that
un+1
h − unh

∆t
+

unh − un−1
h

∆t
=

un+1
h − un−1

h

∆t
.

Then note that ∫
Ω
∇unh∇(un+1

h − un−1
h ) =

∫
Ω
∇un+1

h ∇unh −
∫
Ω
∇unh∇un−1

h

is a telescopic sum.
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