
Implementing Dirichlet boundary conditions and selecting
boundary vertices in Python

Experience teaches us that the students tend to struggle with the implementation of the (if
present) Dirichlet boundary conditions in their Python code.
While we provided you with a function that solves a linear problem subject to Dirichlet data in
this year’s iteration of the course (i.e. solve_with_dirichlet_data in solve.py) , several people have
approached me and asked me to provide a detailed explanation of the concept, which I will do in
this document.

Implementing BCs on a discrete level

While there is no unique way to strongly enfore Dirichlet data, there exists one way that should
always work. Implementing Dirichlet BCs can be cumbersome without this trick but becomes
manageable once you know it.
As a downside, this approach may not always be the most efficient choice but since we do not
focus on efficient implementations in this course, we encourage you to use this approach as
much as possible, as it will minimise the difficult-to-debug coding mistakes associated with
the BCs.

Assume we are confronted with a PDE whose weak form is associated with a bilinear form a(·, ·)
and a right hand side f(·). There may be a nonempty Neumann-boundary ΓN whose associated
Neumann data is absorbed into a(·, ·) and f(·). Assume that the Dirichlet boundary ΓD 6= ∅.
Suppose you have implemented ah(·, ·) and fh(·), the discretised counterparts of a(·, ·) and f(·)
in your code, i.e., your code is capable of evaluating ah(φi, φj) and fh(φi) for any choice of
(φi, φj) ∈ Vh × Vh and φi ∈ Vh, where Vh denotes your finite-dimensional basis (in this course,
typically P1 over your mesh).
By A, we denote the matrix with entries Aij = ah(φi, φj) over all (φi, φj) ∈ Vh × Vh, i.e.,
including those that are nonvanishing on ΓD. Similarly, f denotes the discrete load vector
under the same conditions. Your code should be capable of assembling both A and f for you. If
there were no Dirichlet bundary, obtaining the solution vector u would amount to solving

Au = f . (1)

Now assume that on the Dirichlet boundary ΓD, we have u(x) = uD. Given A, f , how do we
enforce that in our solution vector ?
The first ingredient we need is the index-set of boundary nodes, i.e., the collection of indices
Iboundary = {i | φi|ΓD

6= 0}. You will find a concrete example of how to obtain this index-set in
the examples.py of the Python code. Given uD, we now require ui = uD(xi), ∀i ∈ Iboundary,
where xi ∈ ΓD is the vertex-position associated with φi ∈ Vh. Without loss of generality, let us

1

assume that the i ∈ Iboundary are ordered such that we can decompose

u =

[
u0

uD

]
, (2)

where u0 is the (unknown) vector of inner weights, while uD is a vector containing the discrete
evaluations of the Dirichlet data uD(xi) in the boundary vertices xi ∈ ΓD. Similarly, we can
decompose A and f

A =

[
Ã B
C D

]
, f =

[
f0
fD

]
(3)

into appropriately-sized blocks whose dimensions match the decomposition of u. In the presence
of a Dirichlet boundary, we only test against φi with i /∈ Iboundary. As A and f result from
evaluating ah(φi, φj) and fh(φi) for all φi, the reduced system matrix and load vector simply
results from slicing out the bottom block-row of A and f[

Ã B
C D

] [
u0

uD

]
=

[
f0
fD

]
becomes

[
Ã B

] [u0

uD

]
= f0

=⇒ Ãu0 = f0 −BuD = f̃ . (4)

Hence, we implement the BCs by replacing A→ Ã, f → f̃ = f0 −BuD and solving for the
sub-vector u0 of u.
In your Python code, you can generally not assume that you can decompose u in the way
sketched above. However, given an (ordered) array containing the indices i ∈ Iboundary, you can
accomplish the same by using scipy / numpy’s slicing functionality. The function
solve_with_dirichlet_data has been updated with many additional comments that explain the
various sub-steps of this document’s explanation. If you require more assistance, feel free to ask
questions online or come to Friday’s exercise class. The staff will be more than happy to help.

2

