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Chapter 1

Weak formulation of elliptic
problems

1.1 The Poisson problem

We start by considering a simple Poisson equation. Let Ω ⊂ Rd be a bounded open domain with
Lipschitz boundary ∂Ω. In Ω we set the problem{

−∆u = f, in Ω

u = 0, on ∂Ω.
(1.1)

The numerical methods that we will study rely on the so called weak formulation of the problem.
Take a function v : Ω → R sufficiently smooth. We multiply equation (1.1) by v, integrate

over Ω and integrate by parts the second derivatives,∫
Ω
−∆u · v = −

∫
Ω

div(∇u)v =

∫
Ω
∇u · ∇v −

∫
∂Ω

(∇u · n︸ ︷︷ ︸
∂u
∂n

)v.

Therefore problem (1.1) becomes∫
Ω
∇u · ∇v −

∫
∂Ω

∂u

∂n
v =

∫
Ω
fv, ∀v sufficiently smooth.

In mechanics, such a procedure leads to the principle of virtual works. Thus the “test
function” v should be interpreted as a virtual displacement and should preserve the constraints
on the solution. Since the value of the solution is prescribed on the boundary, it is reasonable
to take test functions that vanish on the boundary. Moreover, for the term

∫
Ω∇u · ∇v to be

bounded, it is enough to require that both ∇u and ∇v are square integrable.

1.1.1 Brief review of Sobolev spaces

We recall now the definition of the following functional spaces:

• Space L2:

L2(Ω) = {v : Ω→ R :

∫
Ω
v2 < +∞}.
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6 CHAPTER 1. WEAK FORMULATION OF ELLIPTIC PROBLEMS

It is a Hilbert space with inner product (f, g) =
∫

Ω fg and associated norm ‖f‖L2(Ω) =

(
∫

Ω f
2)1/2.

We recall moreover the important Cauchy-Schwarz inequality

(f, g) ≤ ‖f‖‖g‖.

• Space H1:

H1(Ω) = {v : Ω→ R : v ∈ L2(Ω),∇v ∈ L2(Ω)}.

This is also a Hilbert space with inner product (f, g)H1 =
∫

Ω fg +
∫

Ω∇f · ∇g and norm

‖f‖H1 =
√
‖f‖2

L2 +
∫

Ω |∇f |2 =
(
‖f‖2L2 +

∑d
i=1 ‖

∂f
∂xi
‖2L2

) 1
2
.

Functions in H1(Ω) are not necessary C1(Ω), so the derivatives have to be interpreted in
a weak (distributional) sense:

< ∂xiv, φ >= − < v, ∂xiφ > ∀φ ∈ D(Ω),

where D(Ω) = C∞0 (Ω) is the space of infinitely differentiable functions with compact

support in Ω. Similarly, < ∇v, ~φ >= − < v,div ~φ > ∀ ~φ ∈ (D(Ω))d.

• Space Hm, with m ∈ N+. More generally, let α = (α1, . . . , αd) ∈ Nd be a multi-index and

Dαv =
∂|α|v

∂α1
x1 . . . ∂

αd
xd

with |α| =
d∑
i=1

αi

The space Hm is then defined as

Hm(Ω) = {v : Ω→ R : Dαv ∈ L2(Ω), ∀α : |α| ≤ m}.

It is a Hilbert space with respect to the inner product (f, g)Hm =
∑
|α|≤m(Dαf,Dαg)L2

and norm ‖f‖Hm =
(∑

|α|≤m ‖Dαf‖2L2(Ω)

)1/2
. We will also need the semi-norm defined

as |f |Hm =
(∑

|α|=m ‖Dαf‖2L2(Ω)

)1/2
.

• Space H1
0 :

H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}.

Here the condition v|∂Ω = 0 has to be understood in terms of traces. We recall that the
space C1(Ω) is dense in H1(Ω), therefore, ∀v ∈ H1, we can build a sequence vε ∈ C1(Ω)

such that vε
H1

−−→ v as ε→ 0. We can then define the trace of v on ∂Ω denoted by γ(v) as

γ(v) = lim
ε→0

vε|∂Ω.

Here γ is a linear bounded operator from H1(Ω) to L2(∂Ω), i.e. there exists CT > 0 such
that

‖γ(v)‖L2(∂Ω) ≤ C‖v‖H1(Ω), ∀v ∈ H1(Ω).
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The operator γ is not surjective and one can find functions g ∈ L2(∂Ω) that are not traces
of any H1 function. The image space of γ is called H1/2(∂Ω) and can be endowed with
the “induced” norm

‖g‖H1/2(∂Ω) = inf
v∈H1(Ω)
γ(v)=g

‖v‖H1(Ω).

With such a norm, H1/2(∂Ω) is a Banach space.

• Poincaré inequality : there exists Cp > 0, depending only on the domain Ω such that

∀ v ∈ H1
0 (Ω); ‖v‖L2 ≤ Cp‖∇v‖L2 . (1.2)

Such inequality implies in particular that in H1
0 (Ω) the full H1-norm

‖v‖H1 =
√
‖v‖2

L2 + ‖∇v‖2
L2

and the H1-semi norm |v|H1 = ‖∇v‖L2 are equivalent. Indeed

|v|2H1 = ‖∇v‖2L2 ≤ ‖v‖2L2 + ‖∇v‖2L2︸ ︷︷ ︸
=‖v‖2

H1

≤ (1 + C2
p)‖∇v‖2L2 = (1 + C2

p)|v|2H1

In H1
0 we can therefore define the alternative norm ‖v‖H1

0
= |v|H1 = ‖∇v‖L2 .

1.1.2 Weak formulation and well posedness of the Poisson problem

We now come back to the weak formulation of the Poisson problem. The right space for the test
functions and the solution itself is H1

0 (Ω):

Find u ∈ H1
0 (Ω) :

∫
Ω
∇u · ∇v =

∫
Ω
fv ∀ v ∈ H1

0 (Ω). (1.3)

Setting V = H1
0 (Ω), a(u, v) =

∫
Ω∇u · ∇v, F (v) =

∫
Ω fv, the previous problem (1.3) can

be written in abstract form:

find u ∈ V : a(u, v) = F (v) ∀ v ∈ V. (1.4)

We will see that many other problems can be set in the abstract form (1.4) with V a Hilbert
space.

Formulation (1.3) can also be obtained following another path, from a minimization principle.
We define the energy functional

J(v) =
1

2

∫
Ω
|∇v|2 −

∫
Ω
fv

and we observe that the functional is well defined for functions v ∈ H1(Ω) and forcing term
f ∈ L2(Ω). We then set the minimization problem:

find u = argmin
w∈H1

0 (Ω)

J(w). (1.5)
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This problem is indeed equivalent to (1.3). The optimality conditions are given by the Euler-
Lagrange equations and correspond to

∂

∂ε
J(u+ εv) = 0 =

∫
Ω
∇u · ∇v −

∫
Ω
fv ∀ v ∈ H1

0 (Ω).

We see from here that the space H1
0 (Ω) of test functions appears naturally as the space of

functions with bounded energy and such that u+ εv satisfies the correct boundary conditions.
We remark, however, that not all problems in weak form can be derived as a minimization

of a proper energy functional.
To establish the well posedness of problem (1.3), we recall here the important Lax-Milgram

theorem. Let

• V be a Hilbert space.

• F : V → R be a linear bounded form (functional), i.e.

F (αv1 + βv2) = αF (v1) + βF (v2)

‖F‖V ′ := sup
v∈V

|F (v)|
‖v‖V

< +∞

where V ′ is the dual space of V .

• a : V × V → R be a bilinear, continuous, coercive form, i.e.

a(αu1 + βu2, v) = αa(u1, v) + βa(u2, v)

similarly a(u, αv1 + βv2) = αa(u, v1) + βa(u, v2)

∃ M > 0 : a(u, v) ≤M‖u‖V ‖v‖V (continuity)

∃ α > 0 : a(u, u) ≥ α‖u‖2V (coercivity).

Theorem 1.1 (Lax-Milgram theorem). Given a Hilbert space V , a linear bounded functional F
and a bilinear, continuous, coercive form a, the problem

find u ∈ V : a(u, v) = F (v) ∀ v ∈ V (1.6)

admits a unique solution. Moreover such solution satisfies the stability property

‖u‖V ≤
1

α
‖F‖V ′ , (1.7)

For the proof see e.g. [8]. Inequality (1.7) follows immediately from the coercivity of a and
boundedness of F :

α‖u‖2V ≤ a(u, u) = F (u) ≤ ‖F‖V ′‖u‖V .
We now apply Theorem 1.1 to problem (1.3). Verifying the hypotheses of the theorem is

straightforward:

continuity of a : a(u, v) =

∫
Ω
∇u · ∇v ≤ ‖∇u‖L2‖∇v‖L2 = ‖u‖H1

0
‖v‖H1

0
;

coercivity of a : a(u, u) =

∫
Ω
|∇u|2 = ‖u‖2H1

0
;

continuity of F : (assuming f ∈ L2(Ω)) : F (v) =

∫
Ω
fv ≤ ‖f‖L2‖v‖L2 ≤ Cp‖f‖L2‖v‖H1

0
.
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It follows that problem (1.3) has a unique solution in H1
0 (Ω) that satisfies ‖u‖H1

0
≤ Cp‖f‖L2 .

1.1.3 Mixed boundary conditions

We consider now the Poisson equation with mixed boundary conditions
−∆u = f in Ω

u = g on ΓD

∂nu = d on ΓN

(1.8)

where the boundary ∂Ω is partitioned in two non overlapping portions, i.e. ∂̄Ω = Γ̄D ∪ Γ̄N and
ΓD ∩ ΓN = ∅. We call the condition u = g essential or Dirichlet and the condition ∂nu = d
natural or Neumann.

It is natural in this case to look for the solution u in the affine space Vg = {v ∈ H1(Ω) :
v|ΓD = g}. On the other hand, the “virtual displacements” have to be compatible with the
boundary conditions, i.e. u + v ∈ Vg for any virtual displacement. This implies the condition
v|ΓD = 0. We define therefore the space

V0 = H1
ΓD

(Ω) = {v ∈ H1(Ω) : v|ΓD = 0}.

Observe that V0 is a closed subspace of H1(Ω). On the other hand, Vg is not a subspace since

∀ u1, u2 ∈ Vg =⇒ u1 + u2 ∈ V2g.

To derive the weak formulation we proceed in the usual way: multiply the equation by v ∈ V0,
integrate over the domain and use integration by parts for the 2nd derivatives:

⇒
∫

Ω
∇u · ∇v −

∫
∂Ω
∂nu v =

∫
Ω
fv ∀v ∈ V0(= H1

ΓD
(Ω)).

We observe now that ∫
∂Ω
∂nu v =

∫
ΓD

∂nu v +

∫
ΓN

∂nu v = 0 +

∫
ΓN

d v

The term on ΓD vanishes since we have chosen test functions v such that v|ΓD = 0. On the
other hand, on ΓN the normal derivative of the solution is known, so what remains is a known
term. The weak formulation reads therefore

Find u ∈ Vg :

∫
Ω
∇u · ∇v =

∫
Ω
fv +

∫
ΓN

d v ∀v ∈ V0. (1.9)

The same weak formulation can be derived from a minimization principle: we define the energy
functional

J(v) =
1

2

∫
Ω
|∇v|2 −

∫
Ω
fv −

∫
ΓN

d v.

Observe that, this time, the functional has to include the work done by the boundary forces on
ΓN . Then u satisfies

u = argmin
w∈Vg

J(w). (1.10)
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Observe also that the minimization is done on the constrained space Vg of functions that satisfy
the non homogeneous Dirichlet boundary condition w = g on ΓD. Again, we can take w = u+εv
with u ∈ Vg, the solution to (1.10) and v ∈ V0 so that u + εv ∈ Vg for all ε ∈ R and write the
variations

∂

∂ε
J(u+ εv) =

∫
Ω
∇u · ∇v −

∫
Ω
fv −

∫
ΓN

d v = 0

from which we find back formulation (1.9).

The weak form (1.9) can be put in the abstract form

find u ∈ Vg such that a(u, v) = F (v) ∀ v ∈ V0

with a(u, v) =
∫

Ω∇u · ∇v and F (v) =
∫

Ω fv +
∫

ΓN
dv. Here V = H1(Ω) is a Hilbert space,

V0 ⊂ V is a closed subspace of V (and hence it is also a Hilbert space), Vg ⊂ V is an affine
subspace of V .

The Lax-Milgram theorem cannot be applied straightforwardly to show the well posedness
of (1.9) since the solution u is sought in an affine space different from that of test functions.
However, one can proceed in the following way: assuming that g ∈ H1/2(ΓD), i.e. it is the
trace of some function G ∈ H1(Ω) such that ‖G‖H1(Ω) ≤ γΓ‖g‖H1/2(ΓD), then we can write the
problem for the unknown ů = u−G ∈ V0

find ů ∈ V0 :

∫
Ω
∇ů∇v︸ ︷︷ ︸
a(ů,v)

=

∫
Ω
fv +

∫
ΓN

d v −
∫

Ω
∇G · ∇v︸ ︷︷ ︸

F̃ (v)

∀v ∈ V0.

Hence, in abstract form:

find ů ∈ V0 s.t. a(u, v) = F̃ (v) ∀ v ∈ V0.

To apply the Lax-Milgram theorem, we observe that

• the Poincaré inequality holds also in H1
ΓD

as long as |ΓD| > 0.

∀ v ∈ H1
ΓD

(Ω) ‖v‖L2(Ω) ≤ Cp‖∇v‖L2(Ω).

Hence, ‖∇u‖L2(Ω) = ‖u‖H1
0 (Ω) is equivalent to the full norm ‖u‖H1(Ω) and a(u, u) =

‖u‖2
H1

0 (Ω)
is coercive. Continuity is also immediate.

• the functional F̃ (v) is bounded as long as f ∈ L2(Ω) and d ∈ L2(ΓN ). Indeed

|F̃ (v)| ≤
∣∣∣∣∫

Ω
fv

∣∣∣∣+

∣∣∣∣∫
ΓN

d v

∣∣∣∣+

∣∣∣∣∫
Ω
∇G · ∇v

∣∣∣∣
≤‖f‖L2(Ω)‖v‖L2(Ω) + ‖d‖L2(ΓN )‖v‖L2(ΓN ) + ‖∇G‖L2(Ω)‖∇v‖L2(Ω)

≤
(
Cp‖f‖L2(Ω) + CT

√
1 + C2

p ‖d‖L2(ΓN ) + γΓ‖g‖H1/2(ΓD)

)
‖∇v‖L2(Ω)

where we have used the trace inequality ‖v‖L2(ΓN ) ≤ CT ‖v‖H1(Ω).
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We have therefore the following:

Lemma 1.2. Given f ∈ L2(Ω), d ∈ L2(ΓN ), g ∈ H1/2(ΓD), the problem

find u ∈ Vg s.t.
∫

Ω
∇u · ∇v =

∫
Ω
fv −

∫
ΓN

d v ∀ v ∈ V0

admits a unique solution.

The assumptions on the data can actually be weakend. We recall the definition of the dual
space. Let V be a Banach space, denote by V

′
the space of all linear bounded functionals on V ,

i.e. F : V → R s.t.

F (αv1 + βv2) = αF (v1) + βF (v2), |F (v)| ≤ c‖v‖V .

V
′

is a Banach space with respect to the norm

‖F‖V ′ = sup
v∈V,v 6=0

|F (v)|
‖v‖V

.

With the above definitions, problem (1.9) is well posed for any f ∈ V ′0 .

1.1.4 Pure Neumann problem

{
−∆u = f in Ω

∂nu = d on ∂Ω
(1.11)

It is easy to realize that in this case if u is a solution to (1.11) then u + c with c an arbitrary
constant, is also a solution. Therefore, the solution is not unique. On the other hand, if we
integrate the equation and use the Gauss theorem and the boundary conditions we get∫

Ω
f =

∫
Ω
−∆u = −

∫
∂Ω
∂nu = −

∫
∂Ω
d, =⇒

∫
Ω
f +

∫
∂Ω
d = 0. (1.12)

We see that the data have to satisfy the compatibility condition (1.12). From a mechanical
point of view, this condition corresponds to requiring that the resultant of all forces applied to
the system is zero.

To prove well posedness one can set the problem in the quotient space H1(Ω)\R = {v ∈
H1(Ω) :

∫
Ω v = 0}. One can show that in the quotient space a Poincaré inequality

‖v‖L2(Ω) ≤ c‖∇v‖L2(Ω) ∀ v ∈ H1(Ω)\R

still holds. Hence the bilinear form is coercive and the problem is well posed under condition
(1.12).
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1.1.5 Regularity of the solution

We ask now the question whether the solution u has some extra regularity than simply u ∈ H1.
For the pure Dirichlet and pure Neumann problems, the following result holds.

Theorem 1.3 (Shift theorem). For m ≥ 0, assume the domain has smooth boundary ∂Ω ∈
Cm+2, f ∈ Hm(Ω), g ∈ Hm+3/2(∂Ω) (for the pure Dirichlet problem) or d ∈ Hm+1/2(∂Ω) (for
the pure Neumann problem). Then, u ∈ Hm+2(Ω).

Two remarks are in order:

• If the data are smooth (where smoothness is measured in a proper Sobolev norm), the solu-
tion is smooth. This result is however true only if the domain has also suitable smoothness.
Problems defined in domains with corners are problematic.

• The result holds for pure Dirichlet and pure Neumann problems. The mixed case is more
problematic and the solution might not be smooth even with smooth data and domain.

2D Domains with corners

Consider the domain in the figure, having a corner of angle ω, with π
ω /∈ N.

Ω

ω

Γ

Γ
1

Γ2

3

A

The solution of the Poisson equation −∆u = f in Ω will develop a singularity at the point A
(i.e. some derivatives will go to infinity in A). Locally, around the corner A the solution behaves
as u(r, θ) = rαf(θ) for some α > 0, where (r, θ) are the polar coordinates centered in A.

Dirichlet problem: u = 0 on ∂Ω.

The corner singularities have the form

Φk(r, θ) = rkπ/w sin

(
kπθ

w

)
, k ∈ N =⇒ u ∈ Hs with s < 1 +

π

w

In particular for a re-entrant corner ω > π, the solution u /∈ H2(Ω)!

Neumann problem: ∂nu = 0 on ∂Ω.

The corner singularities have the form

Φk(r, θ) = rkπ/w cos

(
kπθ

w

)
, k ∈ N =⇒ u ∈ Hs with s < 1 +

π

w
.

Also in this case, for a re-entrant corner ω > π, the solution u /∈ H2(Ω)!
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Mixed problem: u = 0 on Γ1, ∂nu = 0 on Γ2 and π
2ω /∈ N.

The corner singularities have the form

Φk(r, θ) = r(k+ 1
2

)π/w sin((k +
1

2
)πθ/w) =⇒ u ∈ Hs with s < 1 +

π

2w

Even for a flat boundary w = π, the solution u /∈ H2!

1.2 Advection-diffusion reaction equation

We consider now the general second order linear elliptic equation Lu = f with

Lu = −
d∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+

d∑
i=1

bi
∂u

∂xi
+ cu

with aij = aji. We can introduce the matrix field A : Ω → Rd×d as (A(x))ij = aij(x) and the

vector field ~b : Ω→ Rd; ~b(x)i = bi(x).

The operator L can then be written in compact form as

Lu = −div(A∇u) +~b · ∇u+ c u. (1.13)

The operator L is said to be elliptic if the matrix A is positive definite, i.e. there exists α0 > 0
such that

~ξTA(x)~ξ ≥ α0|~ξ|2 ∀ ~ξ ∈ Rd, ∀ x ∈ Ω.

When applying the divergence theorem to the first term∫
Ω
−div(A∇u) =

∫
∂Ω

(A∇u) · n

we see that the natural ”flux” appearing on the boundary is (A∇u) · n. Therefore the natural
boundary conditions (Neumann b.cs) will be of the type (A∇u) · n = d.

The advection-diffusion-reaction problem with mixed boundary conditions reads therefore
−div(A∇u) +~b · ∇u+ c u = f in Ω,

(A∇u) · n = d on ΓN ,

u = g on ΓD.

(1.14)

The weak formulation can be obtained with the usual procedure. Since only second order
derivatives appear in the operator, the natural functional setting is again H1(Ω). Observe that
whenever ~b 6= 0, the weak formulation cannot be derived from a minimization principle (the
resulting bilinear form is not symmetric).

Weak formulation: find u ∈ Vg such that∫
Ω
A∇u · ∇v +

∫
Ω

~b · ∇u v +

∫
Ω
c u v︸ ︷︷ ︸

a(u,v)

=

∫
Ω
fv +

∫
ΓN

d v︸ ︷︷ ︸
F (v)

∀ v ∈ V0. (1.15)
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The continuity of a(·, ·) is guaranteed for any A, b, c ∈ L∞(Ω). Indeed, denoting σA(x) =

|A(x)| = supξ∈Rd
|A(x)~ξ|
|~ξ|

and |~b(x)| =
√∑

i bi(x)2,

a(u, v) ≤
∫

Ω
|(A∇u) · ∇v|+

∫
Ω
|~b · ∇u||v|+

∫
Ω
|c u v|

≤
∫

Ω
σA(x)|∇u| |∇v|+

∫
Ω
|~b(x)| |∇u| |v|+

∫
Ω
|c(x)| |u| |v|

≤ sup
x∈Ω

σA(x)‖∇u‖L2(Ω)‖∇v‖L2(Ω) + sup
x∈Ω
|~b(x)|‖∇u‖L2(Ω)‖v‖L2(Ω)

+ sup
x∈Ω
|c(x)|‖u‖L2(Ω)‖v‖L2(Ω)

≤
(
‖A‖L∞(Ω) + ‖~b‖L∞(Ω) + ‖c‖L∞(Ω)

)
‖u‖H1(Ω)‖v‖H1(Ω)

where ‖c‖L∞(Ω) = supessx∈Ω|c(x)|, ‖b‖L∞(Ω) = supessx∈Ω|~b(x)| and ‖A‖L∞(Ω) = supessx∈ΩσA(x).

To show coerciveness we need further assumptions onA, b, c. Observe that the form as(u, v) =∫
ΩA∇u · ∇v is coercive if |ΓD| > 0

as(u, u) =

∫
Ω

(A∇u) · ∇u =

∫
Ω

(∇u)TA∇u ≥ α0

∫
Ω
|∇u|2 = α0‖∇u‖2L2(Ω).

Sufficient conditions for the well posedness of the problem are the following (verify as an exercise):

• f ∈ L2(Ω) (or V ′0), d ∈ L2(ΓN ), g ∈ H1/2(ΓD)

• A ∈ [L∞(Ω)]d×d, ~ξTA(x)~ξ ≥ α0|~ξ|2 ∀ ~ξ ∈ Rd, x ∈ Ω

• b ∈ [L∞(Ω)]d, div~b ∈ L∞(Ω), c ∈ L∞(Ω)

• infessx∈Ω(c(x)− 1
2 div~b(x)) ≥ 0 if |ΓD| > 0 (strict inequality if |ΓD| = 0)

• ∂Ω− = {x ∈ ∂Ω : ~b(x) · ~n(x) < 0} ⊂ ΓD, where ~n(x) is the unit outward normal vector in
x ∈ ∂Ω.

1.3 Linear infinitesimal elasticity

Consider a body occupying the domain Ω ⊂ Rd that undergoes a small (infinitesimal) deforma-
tion under the action of a force field ~f : Ω → Rd. Denote by ~u : Ω → Rd the deformation field
of each material point (see Figure1.1).

Strain measure

Given two material points close to each other ~X1 = ~X, ~X2 = ~X + d ~X, after deformation they
will occupy the positions ~x1 = ~X1 + ~u( ~X1) and ~x2 = ~X2 + ~u( ~X2), respectively. The change of
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Figure 1.1: Deformation of a bi-dimensional material body. ~u : Ω→ R2 represents the deforma-
tion field

length is given by

|~x2 − ~x1|2

| ~X2 − ~X1|2
=
| ~X2 + ~u( ~X2)− ~X1 − ~u( ~X1)|2

|d ~X|2
≈ |d

~X +∇~u( ~X1) · d ~X|2

|dX|2
=
|(I +∇~u)d ~X|2

|dX|2

=~vT (I +∇~u)T (I +∇~u)~v having set ~v =
d ~X

|d ~X|
=~vT (I +∇~u+ (∇~u)T + (∇~u)T∇~u)~v.

For infinitesimal displacements we neglect the quadratic term (∇~u)T∇~u. The relative elongation
is thus given by

|~x2 − ~x1|2 − |d ~X|2

|d ~X|2
≈ ~vT (∇~u+ (∇~u)T )~v

In infinitesimal elasticity it is customary to take as a measure of strain the tensor

ε(~u) =
∇~u+ (∇~u)T

2
.

Observe that if ~u( ~X) is a pure rotation or translation, ~u( ~X) = ~c+ ~w× ( ~X − ~X0) then the strain
is zero.

Stress tensor

σ : Ω → Rd×d represents the internal stresses due to the deformation. In linear infinitesimal
elasticity the stress tensor is related linearly to the strain tensor,

σij =
∑
kl

Cijklεkl.

This is the tensorial equivalent of the well-known Hooke’s law for the elongation ∆L of a spring
under a force F , F = −k∆L.
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If a material is isotropic, i.e. its elastic properties are the same in each directions, many
of the coefficients Cijkl will be equal, and it is possible to simplify the previous strain-stress
relation. It can actually be shown that the most general linear relation that can be written for
an isotropic material has the form

σ = 2µε+ λ tr(ε)I,

where µ and λ are known as the Lamé constants and I ∈ Rd×d is the identity matrix.

Balance equations

The balance of volumetric forces translates into the equation

−div σ = ~f.

Indeed, on any volume ω ⊂ Ω,
∫
ω −div σ =

∫
∂ω −σ · ~n represents the resultant of the internal

forces acting on the volume ω, which has to balance the volume forces
∫
ω
~f acting on it.

Infinitesimal linear elasticity equations with mixed boundary conditions


−div σ(~u) = ~f, in Ω

σ(~u) · ~n = ~d, on ΓN

~u = ~g, on ΓD

(1.16)

with σ(~u) = 2µε(~u) + λ tr ε(~u)I, and ε(~u) =
∇~u+ (∇~u)T

2
. (1.17)

Here ~f represents the volumetric forces (e.g. the weight), ~d represents the boundary traction and
~g represents the imposed deformation on the boundary (typically ~g = 0 for a clamped structure).

Weak formulation

To write the weak formulation, we need some additional notation. Given two equal sized matrices
A and B, we define A : B =

∑
ij AijBij = tr(ATB) = tr(BTA).

We can now take a smooth test function ~v : Ω→ Rd with ~v|ΓD = 0 and proceed as usual∫
Ω
−divσ(~u) · ~v =

∫
Ω
σ(~u) : ∇~v −

∫
∂Ω

(σ(~u) · ~n) · ~v

=

∫
Ω

(2µε(~u) + λ tr ε(~u)I) : ∇~v −
∫

ΓN

~d · ~v

=

∫
Ω

2µε(~u) : ∇~v +

∫
Ω
λ div ~udiv~v −

∫
ΓN

~d · ~v

=

∫
Ω

2µε(~u) : ε(~v) +

∫
Ω
λ div ~udiv~v −

∫
ΓN

~d · ~v

where we have used the following observations:

• ε(~u) : ∇~v = ε(~u) : ε(~v). In fact, since ε(~u) is a symmetric tensor we can take only the

symmetric part of ∇~v, i.e. ∇~v+(∇~v)T

2 = ε(~v)
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• tr ε(~u) = div ~u

• I : ∇~v = div~v.

Again, after integration by parts only first derivatives appear, so that a natural functional
space is [H1(Ω)]d, i.e.

[H1(Ω)]d = {~v : Ω→ Rd : vi ∈ H1(Ω) for i = 1, . . . , d}.

Each component of the vector is an H1 function, so we can define traces and in particular the
space Vg = {~v ∈ [H1(Ω)]d : ~v|ΓD = ~g}. We are thus lead to the following weak form of (1.16):

Find ~u ∈ Vg such that a(~u,~v) = F (~v) ∀~v ∈ V0 (1.18)

where

a(~u,~v) =

∫
Ω

(2µε(~u) : ε(~v) + λ div ~udiv~v )

F (~v) =

∫
Ω

~f · ~v +

∫
ΓN

~d · ~v

The continuity of a(·, ·) is quite straightforward and left as an exercise. The coerciveness of
a(·, ·) is not obvious a priori. Observe in particular that ε(~u) (and div(~u) as well) vanishes on
the space of roto-translatory motions

VRT = {~v : Ω→ Rd : ~v(~x) = ~c+ ~w × ~x, with ~c, ~w ∈ Rd}

therefore a(u, u) = 0 ∀ u ∈ VRT. We should therefore not expect coerciveness α‖~u‖2H1(Ω) ≤
a(~u, ~u) unless ~u is orthogonal to VRT. The following result asserts that it is actually enough to
remove all possible functions in VRT from the space where we look for the solution to ensure
coerciveness. In particular, rototranslations are excluded if we enforce no deformation on a
portion of ∂Ω, i.e. if we work in [H1

ΓD
(Ω)]d:

Theorem 1.4 (Korn inequality). There exists κ > 0 such that

‖∇~v‖2[L2(Ω)]d ≤ κ
∫

Ω
ε(~v) : ε(~v), ∀~v ∈ [H1

ΓD
(Ω)]d (1.19)

Thanks to the Korn and Poincaré inequalities, one can show that all assumptions of the
Lax-Milgram theorem are satisfied and therefore problem (1.18) is well posed.

Finally, since the bilinear form a(·, ·) is symmetric, the weak formulation can be derived from
a minimization principle

~u = argmin
~w∈Vg

J(~w)

with energy functional

J(~w) =

∫
Ω
µε(~w) : ε(~w) +

∫
Ω

λ

2
(div ~w)2 −

∫
Ω

~f · ~w −
∫

ΓN

~d · ~w. (1.20)
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Chapter 2

Approximation of variational
problems – Galerkin method

All the problems that we have introduced so far can be recast (after eventually a suitable lifting
of the Dirichlet boundary datum) in the following abstract form

find u ∈ V such that a(u, v) = F (v) ∀ v ∈ V (2.1)

with V a Hilbert space. We assume here that the assumptions of the Lax-Milgram theorem
are satisfied so that problem (2.1) admits a unique solution. To approximate problem (2.1) we
proceed as follows:

1. We introduce a sequence of finite dimensional spaces Vh with Nh = dimVh such that

Vh ⊂ V ∀ h (conformity) (2.2)

∀ w ∈ V lim
h→0

(
inf

wh∈Vh
‖w − wh‖V

)
= 0 (approximability). (2.3)

The second assumption is essential and says that in the limit h → 0 the space Vh be-
comes dense in V , i.e. any element in V can be approximated arbitrary well by a sequence
wh ∈ Vh for h→ 0.

2. We set the problem (Galerkin approximation):

find uh ∈ Vh s.t. a(uh, vh) = F (vh) ∀ vh ∈ Vh. (2.4)

More generally, we could think of a discrete problem where also the bilinear form a(·, ·) is
approximated by ah(·, ·), the right hand side F (·) by Fh(·). This will typically be the case when
using quadrature formulas to approximate the integrals appearing in the bilinear form a(·, ·) and
right hand side F (·).

Even further, we could also remove the conformity assumption Vh ⊂ V and introduce a
Generalized Galerkin approximation

find uh ∈ Vh s.t. ah(uh, vh) = Fh(vh) ∀ vh ∈ Vh (2.5)

19
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Some nomenclature

A (generalized) Galerkin approximation is said to be

• Conforming if Vh ⊂ V and non-conforming if Vh * V .

• Strongly consistent if the exact solution satisfies the discrete problem, i.e.

ah(u, vh) = Fh(vh) ∀ vh ∈ Vh

• Asymptotically consistent if the exact solution satisfies the discrete problem only in
the limit h→ 0, i.e.

lim
h→0

sup
vh∈Vh

Fh(vh)− ah(u, vh)

‖vh‖V
= 0.

This definition and the previous one are valid if one can extend the bilinear form ah(·, ·)
as a continuous form on the whole space V .

2.1 Properties of the conforming Galerkin problem

We consider here the standard (conforming) Galerkin approximation (2.4)

find uh ∈ Vh ⊂ V s.t. a(uh, vh) = F (vh) ∀ vh ∈ Vh ⊂ V.

Since Vh ⊂ V is finite dimensional, it is a closed subspace of V and therefore it is a Hilbert space
with respect to the same norm defined in V .

By assumption, a(·, ·) is continuous and coercive in V . A fortiori, it will be continuous and
coercive in Vh, and the same argument holds for the continuity of F . We conclude that problem
(2.4) satisfies all the hypotheses of the Lax-Milgram theorem and therefore admits a unique
solution. Moreover, the solution uh satisfies the stability inequality

‖uh‖V ≤
1

α
‖F‖V ′ .

2.1.1 Reduction to an algebraic system

We now introduce a basis {ϕj}Nhj=1 of Vh, so that every element v ∈ Vh can be expanded as

v =
∑Nh

i=1 viϕi. If we define the vector ~v = (v1, . . . , vNh) ∈ RNh , we can establish a bijection
between Vh and RNh as

v ∈ Vh ←→ ~v = (v1, . . . , vNh) ∈ RNh with v =

Nh∑
i=1

viϕi.

We now expand the solution uh of (2.4) on the basis u =
∑

j ujϕj and test the equation (2.4)
for all basis functions ϕi, i = 1, . . . ,Nh, i.e. we take vh = ϕi. It is actually enough to test (2.4)
only on the basis functions as all other functions v ∈ Vh can be obtained by linear combination
of the {ϕi}:

a
( Nh∑
j=1

ujϕj , ϕi

)
= F (ϕi) i = 1, . . . ,Nh.
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By the linearity of a(·, ·) this is equivalent to

Nh∑
j=1

uja(ϕj , ϕi) = F (ϕi) i = 1, . . . ,Nh. (2.6)

Defining now the matrix A ∈ RNh×Nh , Aij = a(ϕj , ϕi) and the vector ~f ∈ RNh , fi = F (ϕi),
then (2.6) is equivalent to

A~u = ~f. (2.7)

For the Poisson/linear elasticity problem, the matrix A is typically called the stiffness matrix.

2.1.2 Positivity of the stiffness matrix

The matrix A is positive definite. This follows immediately from the coerciveness of a(·, ·)

~uTA~u =
∑
ij

ujAijui =
∑
ij

uja(ϕj , ϕi)ui

=a
(∑

j

ujϕj︸ ︷︷ ︸
uh

,
∑
i

uiϕi

)
= a(uh, uh) ≥ α‖uh‖2V > 0

Moreover, if the bilinear form a is symmetric, i.e. a(u, v) = a(v, u) for all u, v ∈ V , it follows
immediately that the stiffness matrix A is symmetric.

2.2 Convergence analysis of the conforming Galerkin method

We now aim at comparing the exact solution u of (2.1) with the approximate solution uh of
(2.4). We first observe that

a(u, v) = F (v) ∀ v ∈ V

a(uh, vh) = F (vh) ∀ vh ∈ Vh.

If we take only test functions in Vh in the exact problem and subtract the two, we have

a(u− uh, vh) = 0 ∀ vh ∈ Vh. (2.8)

This relation is called Galerkin orthogonality. If a(·, ·) is symmetric (and continuous and coer-
cive), it actually defines an inner product equivalent to the standard one defined on V (the proof
of this statement is left as an exercise), and the corresponding norm ‖u − uh‖a is often called
“a-norm” or “energy norm”. Then equation (2.8) is actually an orthogonality relation, i.e. the
function u − uh is orthogonal to the subspace Vh, with respect to the energy inner product.
Consequently, the approximate solution uh ∈ Vh is the one for which the distance ‖u − uh‖a is
minimal. Concerning the approximation error, the following result holds:

Lemma 2.1 (Cea’s Lemma).

‖u− uh‖V ≤
M

α
inf
vh∈V

‖u− vh‖V (2.9)
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Proof.

‖u− uh‖2V ≤
1

α
a(u− uh, u− uh) =

1

α
a(u− uh, u− vh + vh − uh) (vh ∈ Vh)

=
1

α
a(u− uh, u− vh) +

1

α
a(u− uh, vh − uh)︸ ︷︷ ︸

=0 (by Galerkin orthogonality)

≤M
α
‖u− uh‖V ‖u− vh‖V

from which the thesis follows given the arbitrariness of vh ∈ Vh.

The Cea’s lemma relates the actual approximation error ‖u− uh‖V with the

best approximation error inf
vh∈Vh

‖u− vh‖V (BAE)

i.e. the best approximation of u that can be achieved in the subspace Vh. This quantity
is not related to the differential problem that we are solving but only to the properties of
the solution u. Proving approximation rates for the (BAE) for a given class of functions and
approximating subspaces Vh is a classical topic of approximation theory. Results for finite
element approximation spaces will be given in Chapter 5.



Chapter 3

Finite element spaces

A finite element space is a space of functions that are piecewise polynomials over a partition of
the domain Ω into non-overlapping polyhedra, called a mesh. Finite element spaces may differ
for the polynomial degree used, the type of polyhedra in the mesh and the overall continuity
properties between the elements of the partition. In this chapter we assume that the domain
Ω ⊂ Rd is a polygon in 2D or a polyhedron in 3D.

3.1 The mesh

Definition 3.1. A polyhedral mesh Th is the union of a finite number of polyhedra Kj such
that

• Ω̄ =
⋃

Kj∈Th

Kj

• K̊i ∩ K̊j = ∅ if i 6= j.

The polyhedra Ki are called the elements of the mesh.

The most used polyhedra are triangles or quadrilaterals in 2D and tetrahedra, hexahedra
and sometimes prisms in 3D.

Figure 3.1: Examples of polyhedra typically used in 2D and 3D problems

Definition 3.2. A geometrical conformal mesh is a mesh for which if E = Ki ∩ Kj 6= ∅
then E is a common vertex or a common edge (or a common face in 3D).

23
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Figure 3.2: Example of a conformal mesh (left) and a non-conformal mesh (right)

Figure 3.2 shows an example of a conformal mesh (left) and a non-conformal mesh (right).
We introduce now three important parameters that characterize the elements of a mesh:

• Element (outer) diameter:

hK = diam(K) = max
x,y∈K

|x− y|, K ∈ Th

• Element inner diameter (also called chunkiness or sphericity):

ρK = diameter of the largest ball contained in K, K ∈ Th

The aspect ratio γK = hK/ρK is a measure of how much the element K is stretched.

• Mesh size:
h = max

K∈Th
hK .

The parameter h controls the overall size of the elements.

We consider now a family of meshes {Th}h↘0 with smaller and smaller mesh size. The
following definitions characterize different types of sequences of meshes.

Definition 3.3. Family of regular meshes {Th}h↘0: is a family of meshes for which ∃ γ > 1
such that

hK ≤ γρK ∀K ∈ Th
with γ independent of h.

In other words, for a sequence of regular meshes, the aspect ratio of each element is bounded
by γ uniformly in the family with respect to h.

Definition 3.4. Family of quasi-uniform meshes {Th}h↘0: is a family of regular meshes
for which ∃ 0 < δ < 1 such that

hK ≥ δh ∀K ∈ Th
with δ independent of h.

For quasi-uniform meshes, the diameter of the smallest element compares with the diameter
of the largest one, i.e. all elements have more or less the same diameter. This is not necessary a
nice feature as it prevents from having local mesh refinements. On the contrary, regular meshes
do not have this restriction and allow for local mesh refinement, however with a control on the
aspect ratio of the elements.
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As we will see, approximation properties of a finite element space hold, in general, for regular
meshes, i.e. they apply also to the case of highly refined meshes, provided the elements are not
too stretched.

Anisotropic meshes, for which the aspect ratio hK/ρK can be large and might go to infinity
as h → 0, are also sometimes used, typically to describe boundary layers or sharp gradients of
the solution only in certain directions. The theory, however, is more difficult and will not be
addressed in these notes. Figure 3.3 shows an example of a quasi-uniform mesh, a regular mesh
and an anisotropic mesh.

Figure 3.3: Example of a quasi-uniform mesh (left), regular mesh (center) and anisotropic mesh
(right).

It is useful to introduce the concept of reference element K̂. This will be

• for triangular elements: K̂ is the triangle of vertices (0, 0), (1, 0) and (0, 1).

• for quadrilateral elements: K̂ is the unit square [0, 1]2.

• for tetrahedral elements: K̂ is the tetrahedron of vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and
(0, 0, 1).

• for hexahedral elements: K̂ is the unit cube [0, 1]3.

Definition 3.5. An affine mesh is a mesh for which each element K can be mapped onto the
reference element K̂ by an affine transformation,

x = FK(x̂) = BK x̂+ bK

for some matrix BK ∈ Rd×d and vector bK ∈ Rd such that K = FK(K̂).

Some remarks are in order:

• A triangle (tetrahedron in 3D) with straight edges can always be mapped by an affine
transformation onto the reference triangle K̂.

• A quadrilateral can not be mapped, in general, onto the square K̂ = [0, 1]2 by an affine
transformation, unless it is a parallelogram.

For a general quadrilateral (with straight edges), the transformation K = FK(K̂) will be
linear in each variable but could have quadratic terms xy in 2D or cubic terms xyz in 3D.
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Figure 3.4: Examples of affine transformations (top row) and non-affine transformations (bottom
row).

• In some cases also for triangular meshes one is interested in using non affine transforma-
tions. This is the case, for instance, to generate “triangles with curved boundaries” to
better fit the boundary of the domain. In such a case the map is typically polynomial of
degree greater than one.

The figure 3.4 shows examples of affine and non affine transformations from the reference to
the current element.

3.1.1 Map to the reference element

We detail here the construction and main properties of the transformation from the reference
to the current element in the case of an affine triangular mesh. Let K̂ be the reference triangle

e1

e2

b

c

a v = b − a

w
 =

 c
 −

 a

x

K

y
K

Figure 3.5: Map from reference to current element

of vertices {(0, 0), (1, 0), (0, 1)} and K ∈ Th a triangle of the mesh of vertices {~a = (a1, a2),~b =
(b1, b2),~c = (c1, c2)}. If we denote ~v = ~b − ~a and ~w = ~c − ~a, we can construct the map
FK(x̂) = BK(x̂) + bK in such a way that the canonical vector e1 = (1, 0) is mapped into ~a + ~v
and e2 = (0, 1) is mapped into ~a+ ~w (see Figure 3.5). Such a map is given by

bK = ~a =

[
a1

a2

]
, BK =

[
~v ~w

]
=

[
b1 − a1 c1 − a1

b2 − a2 c2 − a2

]
The Jacobian matrix satisfies the following properties



3.2. CONTINUOUS FINITE ELEMENTS ON TRIANGULAR AFFINE MESHES 27

Lemma 3.6 (Properties of BK). Let hK and ρK be the outer and inner diameter of K and ĥ
and ρ̂ the diameters of K̂. Then

‖BK‖ ≤
hK
ρ̂
, ‖B−1

K ‖ ≤
ĥ

ρK
, detBK =

|K|
|K̂|

(3.1)

where ‖BK‖ = supξ∈R2,ξ 6=0
|BKξ|
|ξ| is the spectral norm of BK .

Proof. It is easy to verify that

detBK = |~v × ~w| = 1

2
|K| = |K|

|K̂|
.

Moreover, for any ξ ∈ R2, |ξ| = ρ̂, we can find two points x̂, ŷ ∈ K̂ such that ξ = x̂− ŷ. Letting
now x = FK(x̂) and y = FK(ŷ), we have

|BK(x̂− ŷ)| = |x− y| ≤ hK

and

‖BK‖ = sup
ξ∈R2,ξ 6=0

|BKξ|
|ξ|

= sup
ξ∈R2,|ξ|=ρ̂

|BKξ|
|ξ|

≤ hK
ρ̂
.

The bound on ‖B−1
k ‖ can be obtained in a similar way.

3.2 Continuous Finite Elements on triangular affine meshes

A finite element space is a space of piecewise polynomial functions over the elements of a mesh
Th. Let us denote by Pr(K) the space of polynomial functions in K ⊂ Rd, of degree less or equal
to r:

Pr(K) = span{xk1
1 x

k2
2 . . . xkdd ,

d∑
j=1

kj ≤ r, kj ≥ 0, (x1, . . . , xd) ∈ K} (3.2)

For example:

in 2D P1(R2) = span{1, x, y}, P2(R2) = span{1, x, y, x2, xy, y2},
in 3D P1(R3) = span{1, x, y, z}, P2(R3) = span{1, x, y, z, x2, y2, z2, xy, xz, yz}.

One can show by combinatorial arguments that the dimension of Pr(Rd) is

dim(Pr(Rd)) =

(
r + d

d

)
. (3.3)

Definition 3.7. The space of continuous Finite Elements of degree r over a triangular
affine mesh Th, hereafter called Xr

h or, sometimes, for brevity simply Pr, is defined for r ≥ 1
as

Xr
h = {v ∈ C0(Ω) : v|K ∈ Pr(K) ∀K ∈ Th} (3.4)

We remark that the finite element space defined above satisfies the property

Xr
h ⊂ H1(Ω).

Indeed, a function vh ∈ Xr
h is continuous by definition and have bounded (distributional) deriva-

tives since vh is a polynomial in each element of the mesh. It follows that vh,∇vh ∈ L2(Ω).
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3.2.1 Degrees of freedom, basis functions and interpolation operator

Let us start our study of continuous finite elements by the simplest case of piecewise linear finite
elements (often called P1) in 2D.

P1 finite elements in 2D

The dimension of P1(R2) is dim(P1(R2)) = 3, see (3.3). Therefore, to uniquely identify a linear
polynomial in each triangle K ∈ Th, we have to provide three values; these could be the three
coefficients of the polynomial or its value on three non aligned points. The second option is
more common and leads to the so called Lagrangian finite elements. The corresponding values
of the polynomial in these points are called nodal degrees of freedom (dofs).

Let us follow the second approach: as we have just discussed, by prescribing arbitrary values
on 3 non-aligned points per triangle, we can uniquely identify a linear function on each triangle.
However, by doing so, we have no guarantee that the overall function thus defined is globally
continuous over the whole mesh .

There is, however, a particularly clever choice of points that automatically enforces the
continuity of the function. This choice corresponds to taking the values of the function on the
vertices of each triangle as degrees of freedom (see Figure 3.6). Indeed, on each edge the function
is linear and to identify uniquely a linear function on an edge (1D domain) one only needs two
point values, e.g. the vertices. Hence, the set of nodal values on the vertices of the mesh uniquely
identifies a globally continuous piecewise linear function. Let Nv denote the number of vertices

K2

K1

K

Figure 3.6: Set of nodal degrees of freedom for P1 finite elements in 2D. The choice of vertices
as dofs guarantees automatically the inter-element continuity.

of the mesh Th and {aj}Nvj=1 the set of vertices. By prescribing arbitrary values (v1, . . . , vNv) on

those vertices, we can construct a unique function vh ∈ X1
h that matches those nodal values, i.e.

such that vh(aj) = vj . On the other hand, given any function vh ∈ X1
h, we can always evaluate

it on the vertices and associate to it a unique set of degrees of freedom vj = vh(aj). This shows
that there is a one-to-one correspondence between X1

h and RNv and, in particular,

dim(X1
h) = Nv.

We now aim at constructing a basis for X1
h. Exploiting the one-to-one correspondence

X1
h ↔ RNv , we could take as basis of X1

h the image of the canonical basis of RNv . We can
therefore introduce the following basis of X1

h, that is usually called Lagrangian basis

basis of X1
h : {ϕj ∈ X1

h, j = 1, . . . , Nv} : ϕj(ak) =

{
1 if j = k

0 otherwise
(3.5)
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Figure 3.7: A basis function for the space X1
h.

i.e. the basis function ϕj takes the value 1 on the vertex aj and 0 on all other vertices (and, of
course, it is a globally continuous piecewise linear function on the mesh). Figure 3.7 shows one
such basis function.

Any function vh can be expanded on the basis as

vh(x) =

Nv∑
i=1

vjϕj(x), with vj = vh(aj).

Finally, once we have a set of degrees of freedom and a basis for the space X1
h, it is easy to

introduce an interpolation operator, denoted I1
h, that, given a function u ∈ C0(Ω), associates a

function uh ∈ X1
h. It is indeed enough to evaluate u on the vertices and reconstruct a continuous

piecewise linear interpolation.

interpolant operator : I1
h : C0(Ω)→ X1

h, uh = I1
h(u) =

Nv∑
j=1

u(aj)ϕj . (3.6)

Pr finite elements

We now generalize the above construction to finite elements of arbitrary degree r. Let us consider
the case r = 2 in 2D. In this case we have

dim(P2(R2)) = 6, dim(P2(R1)) = 3.

Therefore, we need 6 nodal values per triangle to identify uniquely a quadratic function in 2D
and 3 nodal values per edge to identify uniquely a quadratic function on a line. Hence, the set of
vertices and mid points is unisolvent for P2(K) (i.e. identifies uniquely a polynomial of degree
2 on K) and guarantees the global continuity of the function. Denoting by {aj}Nvj=1 the set of

vertices and {ck}Nek=1 the set of midpoints of each edge, we have

dim(X2
h) = Nv +Ne.

Proceeding as for P1 finite elements, we can introduce a basis

{ϕj ∈ X2
h}
Nv+Ne
j=1 = {ϕ(v)

j ∈ X
2
h}
Nv
j=1 ∪ {ϕ

(e)
j ∈ X

2
h}
Ne
j=1
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with

vertex basis function


ϕ

(v)
j (aj) = 1,

ϕ
(v)
j (al) = 0 l 6= j,

ϕ
(v)
j (ck) = 0 ∀k,

edge basis function


ϕ

(e)
j (cj) = 1,

ϕ
(e)
j (ck) = 0 l 6= j,

ϕ
(e)
j (al) = 0 ∀l.

In the case r = 3 in 2D we have dim(P3(R2)) = 10 and dim(P3(R1)) = 4. Therefore we need
10 nodes per triangle and 4 per edge to identify a globally continuous piecewise cubic function.
Figure 3.8-(top-right) shows a possible choice of dofs.

P1 P2 P3

Figure 3.8: Choice of nodal dofs for finite elements of degree r = 1, 2, 3 in 2D on triangles (top
row) and 3D on tetrahedra (bottom row).

The construction that we have presented in 2D can be extended without difficulty also in 3D
on tetrahedra. The second row of Figure 3.8 shows a proper choice of dofs for Finite Elements
of degree r = 1, 2, 3 in 3D.

3.3 Discontinuous finite elements on triangular affine meshes

In some cases one might want to remove the continuity requirement in the definition of the finite
element space.

Definition 3.8. The space of discontinuous Finite Elements of degree r over a trian-
gular affine mesh Th, hereafter called Xr,dc

h or, sometimes, for brevity simply Pdcr , is defined
as

Xr,dc
h = {v ∈ L2(Ω) : v|K ∈ Pr(K) ∀K ∈ Th} (3.7)

The construction of a set of dofs and a basis for this space is easier than in the continuous
case. Indeed, we do not need to care about inter-element continuity and it is enough to choose(
r+d
d

)
points inside each element K to uniquely identify a polynomial of degree r.
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In particular, one may choose the same points as in the continuous case (see Figure 3.8).
Observe, however, that since the function is globally discontinuous, we will have to prescribe
multiple values on each point, one for each element sharing that point. The dimension of the
space Xr

h,dc is

dim(Xr
h,dc) =

(
r + d

d

)
Nel

where Nel is the number of elements in the mesh.

3.4 Non affine meshes and isoparametric finite elements

In the case of a non affine mesh, if x = FK(x̂) denotes the mapping from the reference element
(triangle in 2D, tetrahedron in 3D) to the current curved element (see Figure 3.4), the definition
of continuous finite elements (3.4) changes as

Xr
h = {v ∈ C0(Ω̄) : v|K ◦ FK ∈ Pr(K̂) ∀K ∈ Th} (3.8)

i.e. the mapped basis functions are polynomial on the reference element.
In practice, one has to build an invertible mapping for each curved element K of the mesh.

A common way to describe such a mapping is to use again a polynomial space: FK ∈ Ps(K̂)d. If
s is taken equal to r (i.e. the degree of the mapping is equal to the degree of the finite elements),
the resulting finite element space is called isoparametric.

Definition 3.9. A isoparametric finite element space over a triangulation Th is the space

Xr,iso
h = {v ∈ C0(Ω) : v|K ◦ FK ∈ Pr(K̂), FK ∈ Pr(K̂), ∀K ∈ Th}.

The advantage of using isoparametric finite elements is that the mapping can be expanded
on the same basis functions used for the finite element functions. Let ϕ̂j , j = 1 . . . ,dim(Pr) be
the set of Lagrangian basis functions constructed on the reference element K̂. Then

FK(x̂) =

dim(Pr)∑
j=1

xjϕ̂j(x̂),

where xj ∈ Rd are the coordinates of the points (geometric degrees of freedom) defining the
curved element K as the figure below shows

P2 P3P1

Clearly, the isoparametric P1 finite element space coincides with the standard P1 space. This is
not the case anymore for a degree r > 1.
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3.5 Continuous finite elements on quadrilateral meshes

We now turn to quadrilateral meshes in 2D, hexahedral in 3D. The definition we gave in (3.4)
can not be extended directly to this case. Let us consider for instance linear finite elements in
2D. In this case we should define 3 degrees of freedom per element. However, being the function
linear on each edge, we should provide 2 values per edge to guarantee overall continuity. Even if
we chose the vertices of the quadrilateral, we will have a mismatch as we would have to prescribe
4 nodal values, which are too many to define a linear function in 2D.

For this type of finite elements, one has to work with richer polynomial spaces than the usual
Pr ones. Let K̂ = [0, 1]d be the unit cube in Rd and let us denote by Qr the tensor product
polynomial space of degree less than or equal to r:

Qr(K̂) = span{xk1
1 x

k2
2 . . . xkdd , kj ≤ r, ∀j = 1, . . . , d, (x1, . . . , xd) ∈ K̂} (3.9)

It is easy to see that
dim(Qr) = (r + 1)d.

The set of nodal degrees of freedom, on the reference element, which allows us to enforce
automatically the overall continuity of the function is depicted in Figure 3.9 for the spaces Q1,
Q2 and Q3 in 2 and 3 dimensions. Notice that, in general, a quadrilateral (in 2D) can not be

Q
1

Q
2

Q
3

Figure 3.9: Choice of nodal dofs for finite elements of degree r = 1, 2, 3 in 2D on quadrilateral
(top row) and 3D on hexahedra (bottom row).

mapped into a cube by an affine transformation unless it is a parallelogram. We have therefore
to use the more general definition of finite element spaces for non affine meshes.

Definition 3.10. The space of continuous Finite Elements of degree r over a quadri-
lateral mesh Th, hereafter called Y r

h or, for brevity simply Qr, is defined for r ≥ 1 as

Y r
h = {v ∈ C0(Ω) : v|K ◦ FK ∈ Qr(K̂) ∀K ∈ Th}. (3.10)

The Lagrangian basis and interpolant operator are defined as for triangular meshes.



Chapter 4

Finite element approximation of
elliptic problems – implementation
aspects

In this chapter we consider again the simple Poisson equation with mixed boundary conditions
−∆u = f in Ω ⊂ Rd

∂nu = d on ΓN

u = g on ΓD

(4.1)

and will detail its finite element approximation, the practical construction of the algebraic system
and the main properties of the system matrix (stiffness matrix). We recall the weak formulation
of (4.1):

find u ∈ Vg s.t. a(u, v) = F (v) ∀ v ∈ V0 (4.2)

with

V0 = H1
ΓD

(Ω) = {v ∈ H1(Ω), v|ΓD = 0}
Vg = {v ∈ H1(Ω), v|ΓD = g}

a(u, v) =

∫
Ω
∇u · ∇v, F (v) =

∫
Ω
fv +

∫
ΓD

dv.

Let Th be a conforming regular triangulation of Ω. We assume hereafter that the domain Ω
is polygonal and that both ΓD and ΓN are reproduced exactly as the union of straight edges of
triangles in Th (resp. faces of tetrahedra in 3D).

4.1 The full Neumann problem

We start by considering the full Neumann problem ΓD = ∅. The solution is defined only up to a
constant and one should set the problem in the space V = H1(Ω)\R = {v ∈ H1(Ω),

∫
Ω v = 0}.

However, we forget this issue for the moment and we set the problem in V = H1(Ω):

find u ∈ H1(Ω) s.t.

∫
Ω
∇u · ∇v =

∫
Ω
fv +

∫
ΓN

dv ∀ v ∈ H1(Ω). (4.3)

33
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We consider the finite element space of continuous piecewise polynomials of degree r:

Xr
h = {v ∈ C0(Ω) : v|K = Pr(K), ∀K ∈ Th}.

We have seen that Xr
h ⊂ H1(Ω), so we can use it to construct a conforming Galerkin approxi-

mation to (4.3):

find uh ∈ Xr
h s.t.

∫
Ω
∇uh · ∇vh =

∫
Ω
fvh +

∫
ΓN

dvh ∀ vh ∈ Xr
h. (4.4)

Let {ϕi, i = 1, . . . ,Nh} be the Lagrangian basis of Xr
h, with Nh = dim(Xr

h). Then the solution
uh can be expanded on the basis as

uh(x) =

Nh∑
i=1

uiϕi(x)

with ui = uh(xi) the nodal values (degrees of freedom) and xi the corresponding nodes in the
mesh (set of vertices for P1 finite elements; vertices + mid points of edges for P2 finite elements,
etc.). Having introduced such a basis, (4.4) is equivalent to the

Algebraic system : A~u = ~f

with

~u ∈ RNh , ~u = (u1, . . . , uNh)T (nodal values)

A ∈ RNh×Nh , Aij =

∫
Ω
∇ϕj · ∇ϕi (stiffness matrix)

~f ∈ RNh , fi =

∫
Ω
fϕi +

∫
ΓN

dϕi (load vector).

4.1.1 Construction of the stiffness matrix

Each element of the stiffness matrix is given by

Aij =

∫
Ω
∇ϕj · ∇ϕi =

∑
K∈Th

∫
K
∇ϕj · ∇ϕi.

The computation of Aij reduces to the computation of
∫
K ∇ϕj · ∇ϕi on each triangle K ∈ Th.

The actual way this is done in many finite element codes is the following. (For simplicity we
limit to P1 finite elements on triangles, but the argument generalizes to many more finite element
spaces). Consider an element K ∈ Th. The triangle K has 3 vertices, which we denote by a1,K ,
a2,K and a3,K . Let N1, N2, N3 be the global numbering of those vertices in Th (see Figure 4.1).
One can thus establish a local to global map for each K between the local numbering of the
vertices and the corresponding global numbering (see Table 4.1).

On the triangle K, we can compute the local stiffness matrix AK ∈ R3×3,

(AK)ij =

∫
K
∇ϕaj,K · ∇ϕai,K .
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a 1,K

a 2,K

a 3,K

N
1

N
2

N
3

K

Figure 4.1: Local to global map

triangle K local numbering global numbering

1 (vertex a1,K) −→ N1

2 (vertex a2,K) −→ N2

3 (vertex a3,K) −→ N3

Table 4.1: Illustration of the local to global map for an element K ∈ Th.

Then, the term (AK)ij will contribute to the global entry ANiNj of the stiffness matrix A

ANiNj ← ANiNj + (AK)ij

Similar considerations hold also for the right hand side.
A general implementation of a finite element solver consists of:

loop over the elements K ∈ Th

– compute the local stiffness matrix AK and right hand side fK

– Assemble the local matrix into the global matrix and the local r.h.s. into the global
one:
for i = 1, . . . , 3

for j = 1, . . . , 3

ANiNj = ANiNj + (AK)ij

end

fNi = fNi + (fK)i

end

end

4.1.2 Computation of the local matrix

In the example we have considered, each entry of the local stiffness matrix is (AK)ij =
∫
K ∇ϕj ·

∇ϕi. For P1 finite elements on an affine mesh, ∇ϕi is constant over K and the computation of
(AK)ij can be done directly starting from the coordinates of the vertices of K.
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In more general cases of higher order finite elements and/or non affine meshes, the construc-
tion and evaluation of ∇ϕi on K might not be straightforward. In this case, one can first recast
the integral onto the reference element K̂, by introducing the map x = FK(x̂) = BK x̂ + bK ,
K = FK(K̂). Then

(AK)ij =

∫
K
∇ϕj · ∇ϕi =

∫
K̂
B−TK ∇̂ϕ̂j ·B

−T
K ∇̂ϕ̂i |detBK | dx̂. (4.5)

Note that on the reference element K̂ the expression of the basis functions ϕ̂i is known an-
alytically and all derivatives can be calculated easily. For instance, for P1 finite elements we
have:

3

2

x

K

y

1

ϕ̂1(x̂, ŷ) = 1− x̂− ŷ, ∇ϕ̂1 = [−1,−1]T

ϕ̂2(x̂, ŷ) = x̂, ∇ϕ̂2 = [1, 0]T

ϕ̂3(x̂, ŷ) = ŷ, ∇ϕ̂3 = [0, 1]T

Moreover, for triangles with straight edges, the map x = FK(x̂) can also be easily constructed
starting from the coordinates of the vertices a1,K , a2,K and a3,K as we have seen in Section 3.1.1.

Then, a quadrature formula can be used to compute the integral on the right hand side of
(4.5). A quadrature formula on the reference element K̂ will have the form:

QK̂(f) =

nqp∑
l=1

f(x̂l)ωl

where QK̂(f) ≈
∫
K̂ f(x̂)dx̂ and nqp is the number of quadrature points used by the quadrature

formula. One typically chooses a quadrature formula that is exact in computing the stiffness
matrix

∫
K̂ ∇̂ϕ̂j · ∇̂ϕ̂idx̂ or the mass matrix

∫
K̂ ϕ̂jϕ̂idx̂. Then, the approximation of the local

stiffness matrix will be

(AK)ij ≈
nqp∑
l=1

B−TK ∇̂ϕ̂j(x̂l) ·B
−T
K ∇̂ϕ̂i(x̂l) |detBK |ωl.

One has therefore to compute on K̂, once and for all, the matrix

DΦlj = ∇̂ϕ̂j(x̂l)

which will then be used in the computation of the local stiffness matrix on each element K ∈ Th.
In the case of the mass matrix, one will have to compute and store also the matrix

Φlj = ϕ̂j(x̂l).

An example of a quadrature formula on the reference triangle K̂ is the following

QK̂(f) = |K̂|
(

9

20
f(b) +

2

15
(f(m1) + f(m2) + f(m3)) +

1

20
(f(a1) + f(a2) + f(a3))

)
(4.6)
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where b is the barycenter, mi, i = 1, 2, 3, the mid-points of the edges and ai, i = 1, 2, 3, the
vertices of the triangle. This formula has degree of exactness 3 hence it will integrate exactly
the local stiffness matrix (in the case of constant coefficients and affine meshes) when using P2

finite elements.
If the map x = FK(x̂) is non-affine, then the Jacobian matrix JK = ∇FK will not be a

constant matrix. Therefore the contribution

(AK)ij =

∫
K̂
J−TK ∇̂ϕ̂j · J

−T
K ∇̂ϕ̂i |det JK | dx̂ (4.7)

will have to be computed a fortiori with a quadrature formula, as for instance the formula (4.6).
Remember that in the non-affine case, the space Xr

h is defined as

Xr
h = {v ∈ C0(Ω) : v|K ◦ FK ∈ Pr(K̂) ∀K ∈ Th}.

and the mapped basis functions ϕ̂i = ϕi|K ◦FK are the usual Lagrangian basis functions on the
reference element K̂ and can be easily evaluated at any point.

4.2 Treatment of non-homogeneous Dirichlet boundary condi-
tions

We consider again problem (4.1) and its weak formulation (4.2). Referring to the figure below,

Γ
D

Γ
N

let us denote by xBi , i = 1, . . . ,NB
h the nodes of the mesh that fall on the Dirichlet boundary

and by xIj , j = 1, . . . , N I
h the nodes that fall inside the domain or on the Neumann boundary.

On the Dirichlet nodes xBi , we would like to impose the condition uh(xBi ) = g(xBi ). We can
therefore define the two spaces

Xr
h,0 = {vh ∈ Xr

h : vh(xBi ) = 0}
Xr
h,g = {vh ∈ Xr

h : vh(xBi ) = g(xBi )}

Observe that, if the domain is polygonal and the Dirichlet boundary is exactly represented by
edges of the mesh, then the functions in Xr

h,0 will vanish on ΓD and Xr
h,0 ⊂ V0. On the other

hand, in general, Xr
h,g * Vg since vh ∈ Xr

h,g on the Dirichlet boundary will be equal to the
interpolation of the Dirichlet datum g in the finite element space Xr

h(ΓD) and not to g itself.
The finite element formulation of problem (4.2) is

find uh ∈ Xr
h,g s.t. a(uh, vh) = F (vh) ∀vh ∈ Xr

h,0. (4.8)
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Strictly speaking, this is a non conforming approximation since uh ∈ Xr
h,g * Vg. In practice, to

impose the Dirichlet boundary conditions and derive the algebraic system, we can follow three
alternative approaches.

1. Eliminate the boundary Dirichlet nodes and reduce the system

Let {ϕIj}
N Ih
j=1 be the set of basis functions corresponding to the interior and Neumann nodes

xIj , which is clearly a basis of Xr
h,0. Let moreover {ϕBj }

NBh
j=1 be the set of basis functions

corresponding to Dirichlet nodes xBj . We have

uh(x) =

Nh∑
j=1

ujϕj(x) =

N Ih∑
j=1

ujϕ
I
j (x) +

NBh∑
l=1

ulϕ
B
l (x)

=

N Ih∑
j=1

ujϕ
I
j (x)︸ ︷︷ ︸

ůh ∈ Xr
h,0, unknown

+

NBh∑
l=1

g(xl)ϕ
B
l (x)︸ ︷︷ ︸

Gh ∈ Xr
h,g , known

With this splitting, we can rewrite the problem (4.8) as

find ůh ∈ Xr
h,0 s.t. a(̊uh, vh) = F (vh)− a(Gh, vh) ∀ vh ∈ Xr

h,0. (4.9)

Notice that the function Gh plays the same role as the lifting of the Dirichlet datum that
we have already used in Chapter 1 to analyze the well posedness of the Poisson equation
with non-homogeneous Dirichlet boundary conditions. However, in this case, the lifting
Gh is confined only in the layer of elements with an edge on ΓD (so it will not be bounded
in H1 as h→ 0).

At the algebraic level, problem (4.9) leads to the linear system

AII ~̊u = ~f I −AIB~g

where

AII ∈ RN
I
h×N

I
h , AIIij = a(ϕIj , ϕ

I
i )

AIB ∈ RN
B
h ×N

I
h , AIBij = a(ϕBj , ϕ

I
i )

~f I ∈ RN
I
h , f Ij = F (ϕIj )

~̊u ∈ RN
I
h , ůj = ůh(xIj ) (vector of dofs on interior and Neumann nodes)

~g ∈ RN
B
h , gl = g(xBl ), (boundary Dirichlet values).

This strategy has the disadvantage that one has to introduce two numbering of nodes. The
global numbering (of all nodes) and the reduced numbering of only the interior+Neumann
nodes.

Also, in the assembling of the local matrices into the global one, one has to check on each
triangle K if it has Dirichlet nodes and assemble this contribution in the right hand side
instead of the matrix. This implies adding conditional statements in the loop of elements
with corresponding slow down of performances.
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2. Ignore the Dirichlet conditions when assembling the matrix and enforce them afterward.

We assemble the matrix A ∈ RNh×Nh without Dirichlet boundary conditions, so no con-
ditional statements are inserted in the loop over the elements.

Afterward, say that xi is a Dirichlet node. Then, we want to replace row i in the matrix
with the simple equation ui = g(xi).

We can therefore modify the system matrix and the right hand side in the following way.

Let Ã = A and
~̃
f = ~f :

for all Dirichlet nodes xi set

– Ãii = 1, Ãij = 0, ∀j 6= i, and f̃i = g(xi)

end

This corresponds to “zeroing” the i−th row, putting 1 on the diagonal and changing the
corresponding term on the right hand side to the Dirichlet value g(xi). Hence the i−th
equation becomes ui = g(xi).

Once all the rows corresponding to Dirichlet nodes have been modified, one solves the
linear system

Ã~u =
~̃
f

where ~u is the unknown vector containing all degrees of freedom, including those on the
Dirichlet boundary.

In case the original matrix A is symmetric, the disadvantage of this technique is that the
symmetry is lost in the matrix Ã since few rows have been zeroed but not the correspond-
ing columns. Hence, we can not use a symmetric factorization method as a Cholesky
factorization. On the other hand, the loss of symmetry might not be a problem if we use
an iterative solver (even Conjugate Gradient) provided that the initial solution satisfies
exactly the boundary values.

3. Zero also the columns to recover symmetry of the matrix.

Let xi be a Dirichlet node. In the modified system Ã~u =
~̃
f constructed before, the i-th

equation is trivial and ui is not really an unknown.

Consider now the row j of the system, not corresponding to a Dirichlet node:
∑Nh

j=1 Ãjkuk =

f̃j (notice that in this row, the entries of the matrix and right hand side have not been
changed so Ãjk = Ajk for all k and f̃j = fj ).

If we isolate the element Ãji, we have

Nh∑
j=1,j 6=i

Ãjkuk + Ãjiui = f̃j

Since ui is known, this can be written as

Nh∑
j=1,j 6=i

Ãjkuk = f̃j − Ãjig(xi)
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which can be further rewritten as

Nh∑
j=1

Âjkuk = f̂j

having set Âjk = Ãjk for all k 6= i, Âji = 0 and f̂j = f̃j −Ajig(xi).

This step corresponds actually to zeroing the i-th column of the matrix (except for the
diagonal term) and correcting accordingly the right hand side. Observe that, in general,
many entries of the i-th column are already zero (the stiffness matrix is sparse, see next
section), so only the rows corresponding to nodes in the neighborhood of xi have to be
modified.

After doing this procedure for all Dirichlet nodes xi we obtain a modified matrix Â where
both rows and columns corresponding to Dirichlet nodes have been zeroed and a modified

right hand side
~̂
f to account for the non homogeneous Dirichlet data. Finally, the system

to solve is

Â~u =
~̂
f.

Observe that, if A is symmetric, so will be the matrix Â.

This procedure together with the previous one can be written in algorithmic form as

follows. Set Â = A and
~̂
f = ~f .

for all Dirichlet nodes xi

– zero the i− th row: Âii = 1, Âij = 0, ∀j 6= i, f̂i = g(xi)

– for all interior or Neumann nodes xj neighboring xi, set

∗ f̂j = f̂j − Âjig(xi)

∗ Âji = 0

end

end

4.3 Some properties of the stiffness matrix

We discuss now some properties of the stiffness matrix Aij = a(ϕj , ϕi) corresponding to the
bilinear form a(u, v) =

∫
Ω∇u · ∇v. We focus, in particular, on the submatrix AII related to

interior or Neumann nodes, since the extra rows corresponding to Dirichlet nodes, that are added
to the matrix in the approaches 2) and 3) above are trivial ones.

For convenience, we rename the submatrix AII simply as A, i.e.

Aij = a(ϕIj , ϕ
I
i ), ∀i, j = 1, . . .N I

h (4.10)

• (symmetry) The matrix A is symmetric. This follows immediately from the symmetry
of the bilinear form.
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• (positivity) The matrix A is positive definite. This is a consequence of the coercivity

of the bilinear form. Indeed given ~v = (v1, . . . , vN Ih
) ∈ RN Ih , form the function vh =∑N Ih

i=1 viϕi ∈ H1
ΓD

(Ω). Then,

~vTA~v = a(vh, vh) =

∫
Ω
|∇vh|2 ≥ 0,

and ~vTA~v = 0 iff ~v = 0 thanks to the Dirichlet boundary conditions imposed.

• (Sparsity) The matrix A is sparse, i.e. the number of non-zero entries in each row is
O(1). Indeed Aij =

∫
Ω∇ϕ

I
j · ∇ϕIi = 0 whenever the supports of ϕIj and ϕIi have empty

intersection.

If we consider, to fix ideas, P1 continuous finite elements and a Lagrangian basis, an entry
Aij can be non zero only if the vertices i and j are connected by an edge. Therefore,
the number of non-zero entries in row i is smaller or equal to the number of vertices j
connected to i by an edge. For a sequence of regular meshes this number is bounded
uniformly with respect to the mesh size h, and is usually small. Referring to the meshes
in Figure 3.3 in Chapter 3, the number of non-zero entries per row is about 6.

Since the matrix is sparse, one will typically use a sparse representation of the matrix, i.e.
only the non-zero entries are stored and the memory occupation is only O(Nh) instead of
O(N 2

h ) for a full representation.

Moreover, since every row contains only O(1) non-zero entries, a matrix-vector multiplica-
tion will entailO(Nh) floating point operations (instead ofO(N 2

h ) for a full representation).

This makes iterative methods particularly attractive to solve finite element problems,
especially for low order approximations.

Notice that the first two properties (symmetry and positivity) are only related to the prop-
erties of the bilinear form and not to the choice of the discretization space. On the other hand,
the sparsity property is a consequence of the particular choice of the discretization space (finite
elements) and the use of a Lagrangian basis. Other discretizations (as for instance spectral
methods) might not have this property.

4.4 Condition number of the stiffness matrix

We consider again the stiffness matrix (4.10) corresponding to interior and Neumann nodes only.
Let {Th}h↘0 be a family of regular and quasi-uniform affine meshes such that hK ≤ γρK and
hK ≥ δh for all K ∈ Th and all h > 0, where ρK is the diameter of the largest ball contained
in K, hK the diameter of K and h = maxK∈Th hK (see Chapter 3 for the exact definitions).
We set moreover ρmin = minK∈Th ρK . Finally, for a basis function ϕIi of Xr

h,0, let ζi be the

number of elements in the mesh with non zero intersection with the support of ϕIi , namely
ζi = #{K ∈ Th : K ∩ supp(ϕIi ) 6= ∅}, and set ζ = maxi=1,...,NI

h
ζi. We prove the following

result:

Theorem 4.1. The condition number of the stiffness matrix A in (4.10) can be bounded by

κ(A) ≤ Cζ
(

h

ρmin

)d
ρ−2
min, (4.11)
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where C > 0 does not depend on the mesh Th. Moreover, for a quasi uniform family of meshes
it holds

κ(A) ≤ C̃h−2, (4.12)

with C̃ = Cζ (γ/δ)d+2 and ζ, γ, δ independent of h.

Before proving this theorem, we need some preliminary observations and lemmas. Consider
the reference element K̂ and the space Pr(K̂) of polynomials of degree at most r. Let {ϕ̂i, i =
1, . . . ,Nr} be a Lagrangian basis of Pr(K̂). Here Nr is the local number of degrees of freedom.
Then, any polynomial v̂ ∈ Pr(K̂) can be expanded on the basis v̂(x̂) =

∑Nr
i=1 viϕ̂i(x̂) and Pr(K̂)

is in 1-to-1 correspondence with RNr

v̂ ∈ Pr(K̂) ⇔ ~v = (v1, . . . , vNr) ∈ RNr .

Being Pr(K̂) (and RNr) finite dimensional, all norms are equivalent. Therefore, there exist
C1, Cm, CM > 0 such that

‖v̂‖L2(K̂) ≤ ‖v̂‖H1(K̂) ≤ C1‖v̂‖L2(K̂) and Cm|~v| ≤ ‖v̂‖L2(K̂) ≤ CM |~v|, ∀ v̂ ∈ Pr(K̂), (4.13)

the last being the euclidean norm of the vector ~v.
Consider now an element K ∈ Th and the mapping x = BK x̂+ bK from K̂ to K. We recall

the following properties of the matrix BK (see Lemma 3.6):

| detBK | =
|K|
|K̂|

, ‖BK‖ ≤
hK
ρK̂

, ‖B−1
K ‖ ≤

hK̂
ρK

which imply
ρK
hK̂
≤ ‖BK‖ ≤

hK
ρK̂

,
ρK̂
hK
≤ ‖B−1

K ‖ ≤
hK̂
ρK

, (4.14)

and, for any v ∈ Pr(K)

‖v‖2L2(K) =

∫
K̂
v̂2 |detBK | =

|K|
|K̂|
‖v̂‖2

L2(K̂)
. (4.15)

The following lemma is necessary to analyze the condition number of the stiffness matrix.

Lemma 4.2 (Local inverse inequality). For all K ∈ Th and v ∈ Pr(K)

‖∇v‖L2(K) ≤ Cρ−1
K ‖v‖L2(K) (4.16)

where C = C1hK̂ and C1 is defined in (4.13).

Proof. It holds

‖∇v‖2L2(K) =

∫
K̂
|B−TK ∇̂v̂|

2 | detBK | ≤
|K|
|K̂|

h2
K̂

ρ2
K

‖∇̂v̂‖2
L2(K̂)

≤ C2
1

|K|
|K̂|

h2
K̂

ρ2
K

‖v̂‖2
L2(K̂)

= Cρ−2
K ‖v‖

2
L2(K).
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As an immediate consequence we have

Lemma 4.3 (Global inverse inequality). For any vh ∈ Xr
h it holds

‖∇vh‖L2(Ω) ≤ Cρ−1
min‖vh‖L2(Ω). (4.17)

Moreover, if the family of meshes {Th}h is quasi-uniform (hence regular), i.e. ρK ≥ 1
γhK ≥

δ
γh

for all K ∈ Th and all h > 0, then

‖∇vh‖L2(Ω) ≤ C
(γ
δ

)
h−1‖vh‖L2(Ω), ∀vh ∈ Xr

h. (4.18)

Observe that the inequality will not be true if we replace the (finite dimensional) space
Xr
h with the (infinite dimensional) space H1

ΓD
(Ω). This type of inequalities are called inverse

inequalities and it has to be expected that the bound in (4.18) degenerates as h→ 0.
We are now ready to prove Theorem 4.1.

Proof. (of Theorem 4.1)
Being A symmetric and positive definite, its eigenvalues are all real and positive and can be

estimated via the Rayleigh quotient

λmin(A) ≤ ~vTA~v

|~v|2
≤ λmax(A) ∀~v ∈ RN

I
h

We split the Rayleigh quotient in two factors

R(~v) =
~vTA~v

|~v|2
=
~vTA~v

~vTM~v︸ ︷︷ ︸
RA(~v)

· ~v
TM~v

|~v|2︸ ︷︷ ︸
RM (~v)

where M is the mass matrix Mij =
∫

Ω ϕiϕj . Observe that M is also symmetric, positive definite
and

∀uh ∈ Xr
h, uh(x) =

N Ih∑
i=1

uiϕi(x), ~uTM~u =

∫
Ω
u2
h = ‖uh‖2L2(Ω).

Estimate for RA(~v).

For any ~v = (v1, . . . , vN Ih
) and associated finite element function vh(x) =

∑N Ih
i=1 viϕi(x), we

easily see that RA(~v) has the following characterization:

RA(~v) =
‖∇vh‖2L2(Ω)

‖vh‖2L2(Ω)

.

A lower bound for RA(~v) is therefore given by the Poincaré inequality‖vh‖L2(Ω) ≤ Cp‖∇vh‖L2(Ω).
Therefore

RA(~v) ≥ C−2
p .

On the other hand, an upper bound follows from the global inverse inequality (4.17):

RA(~v) ≤ C2ρ−2
min
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Therefore
C−2
p ≤ RA(~v) ≤ C2ρ−2

min (4.19)

Estimate for RM (~v).
Recall that

~vTM~v = ‖vh‖2L2(Ω) =
∑
K

‖vh‖2L2(K) =
∑
K

|K|
|K̂|
‖v̂h‖2L2(K̂)

.

Let now ΘK = {i ∈ {1, . . . , N I
h} : K ∩ supp(ϕIi ) 6= ∅}. From the norm equivalence (4.13) we

have
C2
m

∑
i∈ΘK

v2
i ≤ ‖v̂h‖2L2(K̂)

≤ C2
M

∑
i∈ΘK

v2
i ,

and

|~v|2 ≤
∑
K∈Th

∑
i∈ΘK

v2
i ≤

NI
h∑

i=1

ζiv
2
i ≤ ζ|~v|2.

Therefore, recalling that ĈρdK ≤ |K| ≤ hdK , we have

C2
m

Ĉ ρdmin

|K̂|
≤ RM (~v) =

‖vh‖2L2(Ω)

|~v|2
≤ C2

Mζ
hd

|K̂|
. (4.20)

Finally
C2
m Ĉ

|K̂|C2
p

ρdmin ≤ R(~v) ≤
C2
MC

2

|K̂|
ρ−2

minh
d

and

κ(A) ≤ Cρ−(d+2)
min hd. (4.21)

with C =
C2
MC

2C2
p

C2
mĈ

. Finally, for a family of quasi uniform meshes with ρK ≥ 1
γhK ≥

δ
γh, ∀K ∈ Th

and h > 0, the bound (4.12) follows.

Remark 4.4. The result (4.19) provides a bound on κ(M−1A), useful when the mass matrix is
used as a preconditioner for the stiffness matrix.



Chapter 5

Approximation results for Finite
Elements spaces

We look at the case of continuous triangular finite elements on affine meshes

Xr
h = {v ∈ C0(Ω), v|K ∈ Pr(K) ∀ K ∈ Th}.

although many of the arguments generalize to other finite elements as well. We are interested
in studying the approximability properties of this space for smooth functions v ∈ Hs(Ω) with
s > 1, namely we would like to quantify the best approximation error

H1-BAE = inf
wh∈Xr

h

‖v − wh‖H1(Ω),

L2-BEA = inf
wh∈Xr

h

‖v − wh‖L2(Ω)

for v in Hs(Ω), with s > 1. Observe that since Xr
h ⊂ H1 but Xr

h * Hr, r ≥ 2, it does not make
sense to measure the best approximation error in a norm higher than H1. However, on each
element K ∈ Th, a function vh ∈ Xr

h is polynomial and hence infinitely differentiable. We could,
therefore, measure the BEA in higher norms element-wise. Let us introduce the so called broken
Hm space:

Hm
bro(Ω) = {v ∈ L2(Ω) : ‖v|K‖Hm(K) < +∞, ∀K ∈ Th}

endowed with the norm ‖v‖2Hm
bro

=
∑

K∈Th ‖v|K‖
2
Hm(K).

For m > 0, Hm is strictly contained in Hm
bro, whereas for m = 0 (L2 space) the two spaces

coincide. Moreover, it holds

‖v‖Hm(Ω) = ‖v‖Hm
bro(Ω), ∀v ∈ Hm(Ω).

With this definition, we could also try to estimate the best approximation error in Hm-broken
norms

Hm
bro-BAE = inf

wh∈Xr
h

‖v − wh‖Hm
bro(Ω), m = 0, . . . , r.

Observe that it is not worth going beyond m = r. Indeed, for any wh ∈ Xr
h, we have Dαwh|K = 0

for all |α| > r since wh is a polynomial of degree r in K and the function wh is not capable of
providing any approximation of derivatives of v higher than r.

45
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The typical procedure to obtain estimates on the best approximation error for a given func-
tion v ∈ Hs consists in building a particular function vh ∈ Xr

h starting from v, that is a good
approximation of it. Then, the best approximation error in, say, the Hm

bro-norm will be bounded
by ‖v − vh‖Hm

bro(Ω).
A natural candidate for the approximating function vh is to use the finite element interpolant :

vh = Irhv that we have introduced in Chapter 3. This is however not the only choice (although
it is the only one we will discuss). Notice that since the interpolant operator involves point
evaluations of the function v, this procedure is well suited only if the function v is at least
continuous. This is guaranteed if v ∈ Hs(Ω) for s > d/2, d being the physical dimension. For
2D and 3D applications, we can take s ≥ 2. To obtain best approximation error estimates for
functions v ∈ Hs(Ω) with s < 2, other reconstructions vh than the interpolant will have to be
used, as e.g. the Clément or the Scott and Zhang interpolants (see e.g. [5, 2]).

We anticipate here the main result concerning the interpolation error, whose proof will be
the subject of the next sections.

Theorem 5.1 (Intepolation error for smooth functions). Given a family of regular triangulations
{Th}h>0 of a polygonal domain Ω ⊂ Rd, d ≤ 3, and the space Xr

h of continuous finite elements
of degree r ≥ 1, there exist Cm > 0, m = 0, . . . , r, such that for any function v ∈ Hs, s ≥ r + 1

‖v − Irhv‖L2(Ω) ≤ C0h
r+1|v|Hr+1(Ω) (5.1)

‖v − Irhv‖H1(Ω) ≤ C1h
r|v|Hr+1(Ω) (5.2)

‖v − Irhv‖Hm
bro(Ω) ≤ Cmhr+1−m|v|Hr+1(Ω), 2 ≤ m ≤ r, (5.3)

with Cm that depend on γ = maxK∈Th
hK
ρK

, r and m, but are otherwise independent of h.

Observe that we could have just written (5.3) for m = 0, . . . , r, thanks to the fact that under
the hypotheses of the theorem, ‖v − Irhv‖Hm = ‖v − Irhv‖Hm

bro
for m = 0, 1.

In the case where the function v does not have the required regularity to achieve the maximum
convergence rate, the previous result generalizes as

Theorem 5.2 (Interpolation error for possibly non-smooth functions). Given a family of regular
triangulations {Th}h>0 of a polygonal domain Ω ⊂ Rd, d ≤ 3, and the space Xr

h of continuous
finite elements of degree r ≥ 1, for s ≥ 2, and setting η = min{s, r + 1}, there exist Cm > 0,
m = 0, . . . , η, such that for any function v ∈ Hs

‖v − Irhv‖Hm
bro(Ω) ≤ Cmhη−m|v|Hη(Ω), 0 ≤ m ≤ η,

with Cm that depend on γ = maxK∈Th
hK
ρK

, r, s and m, but are otherwise independent of h.

5.1 Local approximation estimates

The first step to prove Theorems 5.1 and 5.2 is to understand what are the local approximation
properties of the space Xr

h on a single element K ∈ Th. Remember that on each element the
space Xr

h is made of polynomials of degree r. Therefore, the question we ask is how well we can
approximate a given function v ∈ Hs(K) by a polynomial in Pr in a domain K.

The following result is valid on any bounded convex Lipschitz domain K ⊂ Rd with outer
diameter hK and inner diameter ρK .
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Lemma 5.3 (Deny-Lions). Given any bounded convex Lipschitz domain K ⊂ Rd and s ≥ 0,
setting η = min{s, r + 1}, there exists CDL > 0 such that

∀v ∈ Hs(K), inf
p∈Pr(K)

‖v − p‖Hm(K) ≤ CDL|v|Hη , m = 0, 1, . . . , η, (5.4)

with constant CDL = CDL(hK , ρK ,m, s, d). Moreover, asymptotically as hK → 0, the constant

CDL scales as CDL ∼ hη−mK

(
hK
ρK

)m
.

Constructive proof in 1D. The proof can be done by contradiction (see e.g. [8, Proposition
3.4.4]). We propose here a constructive proof in the 1D case, i.e. K is an interval in R.

The statement is obviously true for m = s = 0 as we can just take p = 0. We focus then
on the case s ≥ 1. Let x0 ∈ K and notice that in 1D a function v ∈ Hs(K) has at least η − 1
continuous derivatives. We consider the Taylor expansion of v in x0, of degree η − 1:

v(x) = T ηx0
v(x)+Rη(x), T ηx0

v(x) =

η−1∑
k=0

v(k)(x0)

k!
(x−x0)k, Rη(x) =

∫ x

x0

vη(t)

(η − 1)!
(x−t)η−1dt.

If we differentiate the previous formula m < η times we have

v(m)(x) =
dm

dxm
T ηx0

v(x) +
dm

dxm
Rη(x), with

dm

dxm
Rη(x) =

∫ x

x0

vη(t)

(η − 1−m)!
(x− t)η−1−mdt.

Notice that

| d
m

dxm
Rη(x)|2 ≤

∫ x

x0

(vη(t))2dt

∫ x

x0

(x− t)2(η−1−m)

((η − 1−m)!)2
dt ≤ ‖vη‖L2(K)

|K|2(η−m)−1

(2(η −m)− 1)((η − 1−m)!)2

so that

|v − T ηx0
v|Hm(K) = ‖v(m) − dm

dxm
T ηx0

v‖L2(K) = ‖ d
m

dxm
Rη(x)‖L2(K) ≤ Cm|v|Hη(K)

with Cm = |K|η−m√
2(η−m)−1(η−1−m)!

. Finally

inf
p∈Pr(K)

‖v − p‖Hm(K) ≤ ‖v − T ηx0
v‖Hm(K) ≤ (m+ 1)Cm|v|Hη(K).

The key point of the Lemma is that the best approximation error infp∈Pr ‖v − p‖Hm(K) is
related to the derivatives of v of order r+ 1 (seminorm |v|2Hr+1(K) =

∑
|α|=r+1 ‖Dαv‖2L2(K)) if v

is smooth enough. On the other hand, if v is not smooth enough, that is v ∈ Hs with s < r+ 1,
the best approximation error is related to the highest derivatives of v.

The constructive proof of Lemma 5.3 that we have given in 1D, can be generalized with some
care to the multidimensional case. Let K ⊂ Rd and consider a Taylor expansion up to degree
η − 1, with η = min{s, r + 1} in a point x0 ∈ K

T ηx0
v(~x) =

∑
|α|≤η−1

1

α!
Dαv(~x0)(~x− ~x0)α (5.5)
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where we have used the multi-index notation: α = (α1, . . . , αd), α! =
∏d
i=1 αi!, (~x − ~x0)α =∏d

i=1(~xi − ~x0,i)
αi , and Dαv = ∂α1+...+αd

∂x
α1
1 ...∂x

αd
d

v. Using the integral formula for the residual of the

Taylor expansion, we have

Rηv(~x) =v(~x)− T ηx0
v(~x) =

∫ 1

0

(1− s)η−1

(η − 1)!

dη

dsη
v(~x0 + s(~x− ~x0))ds

=η
∑
|α|=η

(~x− ~x0)α
∫ 1

0

(1− s)η−1

α!
Dαv(~x0 + s(~x− ~x0))ds

provided v ∈ Cη(K). From this we can easily prove a version of Lemma 5.3 in the spaces
Cm(K), m = 0, . . . , η, defined as

Cm(K) = {v : K → Rd, max
|α|≤m

‖Dαv(~x)‖C0(K) < +∞}

endowed with the norm ‖v‖Cm(K) = max|α|≤m ‖Dαv‖C0(K) and semi-norm |v|Cm(K) = max|α|=m ‖Dαv‖C0(K).

Lemma 5.4 (Deny-Lions – version in Cm-spaces). Given any bounded convex Lipschitz domain
K ⊂ Rd, and s ≥ 0, setting η = min{s, r + 1}, there exists CDL > 0 such that

∀v ∈ Cs(K), inf
p∈Pr(K)

‖v − p‖Cm(K) ≤ CDL|v|Cη ; m = 0, 1, . . . , η (5.6)

with CDL ∼ hη−mK as hK → 0.

Proof. Take p = T ηx0v and estimate

‖v − T ηx0
v‖C0(K) =‖Rηv‖C0(K)

= max
~x∈K

∣∣∣∣∣∣η
∑
|α|=η

(~x− ~x0)α
∫ 1

0

(1− s)η−1

α!
Dαv(~x0 + s(~x− ~x0))ds

∣∣∣∣∣∣
≤
∑
|α|=η

‖Dαv‖C0(K) max
~x∈K

∣∣∣∣η(~x− ~x0)α
∫ 1

0

(1− s)η−1

α!
ds

∣∣∣∣
≤C(η)hηK |v|Cη(K)

Since DβT ηx0v = T
η−|β|
x0 Dβv, for any |β| < η

‖Dβ(v − T ηx0
v)‖C0(K) = ‖Dβv − T η−|β|x0

Dβv‖C0(K) ≤ C(η − |β|)hη−|β|K |v|Cη(K),

hence, for m = 0, . . . , η,

|v − T ηx0
v|Cm(K) = max

|α|=m
‖Dα(v − T ηx0

v)‖C0(K)

≤ max
|α|=m

C(η − |α|)hη−|α|K |v|Cη(K) ≤ Ch
η−m
K |v|Cη

and therefore
inf

p∈Pr(K)
‖v − p‖Cm(K) ≤ ‖v − T ηx0

v‖Cm(K) ≤ Ch
η−m
K |v|Cη .
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Estimates in Hm(K): The argument based on Taylor expansion can be extended with some
care also to prove Lemma 5.3 in the Sobolev spaces Hm(K). Indeed, since the pointwise (η−1)-
th derivative is not well defined for functions in Hη, the idea is to build an averaged Taylor
expansion. Let BK be the largest ball contained in K, with radius ρK , and ∀~y ∈ BK consider
the Taylor expansion of degree η − 1 centered in ~y:

T η~y v(~x) =
∑

|α|≤η−1

1

α!
Dαv(~y)(~x− ~y)α.

Then, we can define an averaged Taylor expansion over BK as

T ηavv(~x) =
1

|BK |

∫
BK

T η~y v(~x)d~y =
1

|BK |
∑

|α|≤η−1

1

α!

∫
BK

Dαv(~y)(~x− ~y)αd~y.

which is well defined now for functions v ∈ Hη. Observe that it still holds

Dβ T ηav v = T η−|β|av Dβ v

Moreover, the reminder is given by

Rηavv(~x) =v(~x)− T ηavv(~x) =
1

|BK |

∫
BK

(
v(~x)− T η~y v(~x)

)
d~y

=
η

|BK |
∑
|α|=η

∫
BK

(~x− ~y)α
∫ 1

0

(1− s)η−1

α!
Dαv(~y + s(~x− ~y))ds d~y

which is also well defined ∀v ∈ Hη(K). Proceeding in a similar way as for the Cm case (but
with integral norms), one can prove the result

|v − T ηavv|Hm(K) ≤ C|v|Hη , for m = 0, . . . , η

with constant C ∼ hη−mK

(
hK
ρK

)m
. For details, see [2, Chapter 4].

5.2 Local interpolation estimates

Let us consider now a function v ∈ Hs, s ≥ 2 and its interpolant Irhv ∈ Xr
h. In this section we

focus on quantifying the error v − Irhv on a single element K ∈ Th. Let us denote by vK and
Irh,Kv the restrictions of v and Irhv on K, respectively. We aim at estimating |vK − Irh,Kv|Hm(K)

with m ≤ η := min{s, r + 1}.
The path that we follow is to map the quantity |vK − Irh,Kv|Hm onto the reference element

K̂ using the affine map x = FK(x̂) = BK x̂ + bK introduced in Section 3.1.1. We denote

v̂K = vK ◦ FK and Îrh,Kv = Irh,Kv ◦ FK . Notice that

Îrh,Kv = Irh,Kv ◦ FK =

Nr∑
i=1

v(ai,K)ϕi|K ◦ FK =

Nr∑
i=1

v̂K(âi)ϕ̂i = Ir
K̂
v̂K

where {ai,K , i = 1, . . . , Nr} is the set of nodes defining the degrees of freedom on K (vertices
for P1 elements, vertices and midpoints for P2 elements, etc.) and ϕi|K the corresponding
Lagrangian basis functions restricted to K. Similarly, {âi} and ϕ̂i denote the nodes and basis
functions on the reference element K̂.

The first result we need is how the Hm-seminorm transforms through the mapping FK .
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Lemma 5.5 (Seminorm transformation). For any v ∈ Hm(K), m ≥ 0, let v̂ = v ◦ FK . Then
v̂ ∈ Hm(K̂) and there exists Csn = Csn(m) > 0 such that

|v|Hm(K) ≤ Csn‖B−1
K ‖

m|detBK |
1
2 |v̂|Hm(K̂) (5.7)

|v̂|Hm(K̂) ≤ Ĉsn‖BK‖
m| detBK |−

1
2 |v|Hm(K) (5.8)

where ‖BK‖ is the spectral norm of the matrix BK . Moreover, Csn = Ĉsn = 1 for m = 0, 1.

Proof for m = 0, 1 only. we give here the proof only for the cases m = 0, 1. For m = 0 we have

‖v‖2L2(K) =

∫
K
v2(x)dx =

∫
K̂
v̂2(x̂)| detBK |dx̂ = | detBK |‖v̂‖2L2(K̂)

which proves (5.7) for m = 0 with constant Csn = 1. Inequality (5.8) can be proved analogously.
For m = 1 observe first that

∂x̂iv =

d∑
j=1

∂xjv
∂xj
∂x̂i

, =⇒ ∇̂v = BT
K∇v

where ∇̂ denotes the gradient with respect to the variables x̂. Hence, we have

|v|2H1(K) =

∫
K
|∇v(x)|2dx =

∫
K̂
|B−TK ∇̂v̂(x̂)|2|detBK |dx̂

≤
∫
K̂

(‖B−1
K ‖|∇̂v̂(x̂)|)2|detBK |dx̂ ≤ ‖B−1

K ‖
2|detBK ||v̂|2H1(K̂)

which proves (5.7) for m = 1, again with constant Csn = 1. Inequality (5.8) can be proved
analogously.

Bounds on the spectral norms of BK and B−1
K have been given in Lemma 3.6. The second

result we need concerns the continuity of the interpolant operator Ir
K̂

on the reference element.

Lemma 5.6 (Continuity of interpolant operator). Let Ir
K̂

: C0(K̂)→ Pr(K̂) be the finite element

interpolant operator on the reference element K̂ ⊂ Rd. Then, for d ≤ 3, Ir
K̂

is a linear bounded

operator from H2(K̂) to any Hm(K̂) with 0 ≤ m ≤ r + 1, i.e. there exists CI,m > 0 such that

‖Ir
K̂
v̂‖Hm(K̂) ≤ CI,m‖v‖H2(K̂), ∀v̂ ∈ H2(K̂)

Proof. We have

‖Ir
K̂
v̂‖Hm(K̂) = ‖

Nr∑
i=1

v̂(âi)ϕ̂i‖Hm(K̂) ≤
Nr∑
i=1

|v̂(âi)|‖ϕ̂i‖Hm(K̂) ≤ ‖v̂‖C0(K̂)

(
Nr∑
i=1

‖ϕ̂i‖Hm(K̂)

)

Since the embedding H2(K̂) ↪→ C0(K̂) is continuous for d ≤ 3, there exists CI > 0 such that
‖v̂‖C0(K̂) ≤ CI‖v̂‖H2(K̂). Moreover the functions ϕ̂i are polynomials, hence infinitely differen-

tiable, and the quantity Cϕ,m =
∑Nr

i=1 ‖ϕ̂i‖Hm(K̂) is bounded. The thesis then follows with
CI,m = CICϕ,m.
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We finally need the important observation that

Lemma 5.7 (Exactness of Ir
K̂

on Pr(K̂)). The interpolant operator Ir
K̂

: C0(K̂) → Pr(K̂) is

exact on Pr(K̂), i.e.

Ir
K̂
p̂ = p̂, ∀p̂ ∈ Pr(K̂).

Proof. This comes directly from the unisolvency of the set of degrees of freedom on K̂, i.e. if a
polynomial p̂ is such that p̂(âi) = 0 for all i = 1, . . . , Nr, then p̂ = 0.

We have now all the ingredients to prove the following local error estimate

Lemma 5.8 (Local error estimate). Let K ∈ Th be an element of the mesh with outer diameter
hK and inner diameter ρK . Then for s ≥ 2 and any 0 ≤ m ≤ η := min{s, r + 1} there exists
Cl = Cl(s, r,m, K̂) > 0 such that

|v − Irh,Kv|Hm(K) ≤ Cl
(
hK
ρK

)m
hη−mK |v|Hη(K), v ∈ Hs(K).

Proof. We use in sequence: the seminorm transformation (5.7) in Lemma 5.5, the exactness of
Ir
K̂

on Pr(K̂) and the boundedness of Ir
K̂

: H2(K̂)→ Hm(K̂). In what follows p̂ is an arbitrary

polynomial in Pr(K̂). We have

|v − Irh,Kv|Hm(K) ≤ Csn‖B−1
K ‖

m|detBK |
1
2 |v̂ − Ir

K̂
v̂|Hm(K̂)

≤ Csn‖B−1
K ‖

m|detBK |
1
2 (|v̂ − p̂|Hm(K̂) + |p̂− Ir

K̂
v̂|Hm(K̂))

≤ Csn‖B−1
K ‖

m|detBK |
1
2 (|v̂ − p̂|Hm(K̂) + |Ir

K̂
(p̂− v̂)|Hm(K̂))

≤ Csn‖B−1
K ‖

m|detBK |
1
2 (|v̂ − p̂|Hm(K̂) + CI,m‖p̂− v̂‖H2(K̂))

≤ Csn(1 + CI,m)‖B−1
K ‖

m| detBK |
1
2 ‖v̂ − p̂‖Hmax{m,2}(K̂)

Since p̂ is arbitrary, we deduce

|v − Irh,Kv|Hm(K) ≤ Csn(1 + CI,m)‖B−1
K ‖

m| detBK |
1
2 inf
p̂∈Pr(K̂)

‖v̂ − p̂‖Hmax{m,2}(K̂).

Using now the local approximation estimate in Lemma 5.3 (Deny-Lions) and the seminorm
transformation (5.8) in Lemma 5.5 we obtain

|v − Irh,Kv|Hm(K) ≤ Csn(1 + CI,m)CDL‖B−1
K ‖

m|detBK |
1
2 |v̂|Hη(K̂)

≤ CsnĈsn(1 + CI,m)CDL‖B−1
K ‖

m‖BK‖η|v|Hη(K)

≤ CsnĈsn(1 + CI,m)CDL

(
ĥ

ρK

)m(
hK
ρ̂

)η
|v|Hη(K)

≤ Cl
(
hK
ρK

)m
hη−mK |v|Hη(K)

with Cl = CsnĈsn(1 + CI,m)CDLĥ
mρ̂−η.



52 CHAPTER 5. APPROXIMATION RESULTS FOR FINITE ELEMENTS SPACES

5.3 Global interpolation estimates

We finally derive estimates for the global error (v − Irhv). The following result holds, that
generalizes Theorem 5.2.

Theorem 5.9. Given a family of regular triangulations {Th}h>0 of a polygonal domain Ω ⊂ Rd,
d ≤ 3 and the space Xr

h of continuous finite elements of degree r, for s ≥ 2 and 0 ≤ m ≤ η :=
min{s, r + 1} it holds

‖v − Irhv‖Hm
bro(Ω) ≤ Clγm

∑
K∈Th

h
2(η−m)
K |v|2Hη(K)

 1
2

, ∀v ∈ Hs(Ω), (5.9)

where Cl is the constant appearing in Lemma 5.8 and γ = maxK∈Th hK/ρK .

Proof. Exploiting the fact that the triangulation is regular, hence hK/ρK ≤ γ for all K ∈ Th
and h > 0, we have

‖v − Irhv‖2Hm
bro(Ω) =

∑
K∈Th

‖v − Irhv‖2Hm(K)

≤
∑
K∈Th

C2
l

(
hK
ρK

)2m

h
2(η−m)
K |v|2Hη(K)

≤ C2
l γ

2m
∑
K∈Th

h
2(η−m)
K |v|2Hη(K).

By introducing the global mesh size parameter h = maxK hK in (5.9) one easily proves
Theorems 5.1 and 5.2, stated at the beginning of the Chapter.

We remark that the result of Theorem 5.9 is stronger than that of Theorem 5.2. The
advantage of Theorem 5.9 is that it provides a representation of the interpolation error as the
sum of local contributions from each element of the mesh. This is a starting point for mesh
adaptivity. One could indeed try to drive an adaptive algorithm based on local estimates of the
Hmin{s,r+1}-seminorm of the solution on each element K and refine the mesh in those elements
for which the estimated seminorm, weighted by the corresponding factor h

(η−m)
K , is large.



Chapter 6

Finite element approximation of
elliptic problems – Convergence
analysis

We consider again the model problem
−∆u = f in Ω

u = g on ΓD

∂nu = d on ΓN

(6.1)

and its weak formulation:

find u ∈ Vg s.t. a(u, v) = F (v) ∀v ∈ V0

with Vg = {v ∈ H1(Ω) : v|ΓD = g}, a(u, v) =
∫

Ω∇u · ∇v, and F (v) =
∫

Ω fv +
∫

ΓN
dv. We recall

moreover the coercivity and continuity estimates

a(u, u) ≥ α‖u‖2H1 , ∀u ∈ V0, a(u, v) ≤M‖u‖H1‖v‖H1 , ∀u, v ∈ V.

with α = 1
1+C2

p
and M = 1.

Assume Ω polygonal and Th a suitable triangulation of Ω which reproduces exactly the
boundary ∂Ω as well as ΓD and ΓN . Let Xr

h = {vh ∈ C0(Ω̄), vh|K = Pr(K) ∀ K ∈ Th} be the
space of continuous piecewise polynomials of degree r. Let Vh,0 = Xr

h ∩ V0 and Vh,g = {vh ∈
Xr
h, vh|ΓD = Irhg} where Irhg is a suitable interpolation of the Dirichlet boundary datum. We

recall the finite element formulation

Find uh ∈ Vh,g s.t. a(uh, vh) = F (vh) ∀ vh ∈ Vh,0. (6.2)

6.1 Case of homogeneous Dirichlet boundary conditions

We start by considering the case of homogeneous Dirichlet boundary conditions

Find uh ∈ Vh,0 s.t. a(uh, vh) = F (vh) ∀ vh ∈ Vh,0.

53
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6.1.1 Error estimate in H1

In this case, since Vh,0 ⊂ V0, we can apply Ceá’s Lemma 2.1

‖u− uh‖H1 ≤
M

α
inf

vh∈Vh,0
‖u− vh‖H1 .

The best approximation error can further be bounded by the interpolation error for which
estimates have been derived in Chapter 5:

inf
vh∈Vh,0

‖u− vh‖H1 ≤ ‖u− Irhu‖H1 ≤ Chη−1|u|Hη , η = min{r + 1, s}

Putting everything together we have the estimate for the error in the H1-norm

‖u− uh‖H1 ≤ Chη−1|u|Hη , η = min{r + 1, s}.

6.1.2 Error estimate in L2 (Aubin-Nitsche trick)

Let e = u− uh. We aim at estimating ‖e‖L2 . Define the dual problem:

find φ ∈ V0 s.t. a(v, φ) =

∫
Ω
e v ∀ v ∈ V0. (6.3)

Since e ∈ L2(Ω) and problem (6.2) has smoothing properties (at least in the case of Ω convex
and either a full Dirichlet or a full Neumann problem), one has φ ∈ H2(Ω) and ‖φ‖H2 ≤ C‖e‖L2 .
Then

‖e‖2L2 =a(e, φ) = a(u− uh, φ)

=a(u− uh, φ− wh) by Galerkin orthogonality

≤M‖u− uh‖H1‖φ− wh‖H1

Hence

‖e‖2L2 ≤M‖u− uh‖H1 inf
wh∈Vh,0

‖φ− wh‖H1

Since φ ∈ H2, we have infwh∈Vh,0 ‖φ− wh‖H1 ≤ Ch|φ|H2 and

‖e‖2L2 ≤M‖u− uh‖H1Ch|φ|H2 ≤ Ch‖u− uh‖H1‖e‖L2 .

We have proven the following result:

‖u− uh‖L2 ≤ Ch‖u− uh‖H1 ≤ Chη|u|Hη , η = min{r + 1, s}. (6.4)

Observe that this improved convergence for the L2 error has been obtained thanks to the smooth-
ing properties of the operator −∆−1 for which

f ∈ L2(Ω) −→ u = (−∆−1)f ∈ H2(Ω)

which holds if Ω is either a convex polygonal domain or a domain with C2 boundary and for the
full Dirichlet or full Neumann problem. One should be careful when mixed boundary conditions
are employed or when the domain is a non convex polygon (reentry corners) as the H2 regularity
might not hold.
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6.1.3 Error estimate on functionals of the solution

Many times one is interested in computing some specific quantities of interest associated to the
solution. Examples are:

Q(u) =

∫
Ω
u, Q(u) =

∫
Ω

∂u

∂xi
, Q(u) =

∫
∂Ω
u.

Let Q : V0 → R be a linear functional on V0. We aim at estimating |Q(u) −Q(uh)|. As for
the estimate in the L2 norm, we introduce the dual (or adjoint) problem

find φ ∈ V0 s.t. a(v, φ) = Q(v) ∀ v ∈ V0

Then

Q(u)−Q(uh) = Q(u− uh) = a(u− uh, φ) = a(u− uh, φ− wh), ∀wh ∈ Vh,0.

The last step follows from the Galerkin orthogonality. Therefore

|Q(u)−Q(uh)| ≤M‖u− uh‖ inf
wh∈Vh,0

‖φ− wh‖. (6.5)

Assume now that both the primal solution u and the dual solution φ are smooth and in particular
u, φ ∈ Hr+1(Ω). Then,

|Q(u)−Q(uh)| ≤ Ch2r|u|Hr+1 |φ|Hr+1 (6.6)

i.e. the quantity of interest converges twice as fast as the H1 norm of the error.
In the case of possibly non smooth solutions, if u ∈ Hs and φ ∈ Hs′ the previous result

generalizes as
|Q(u)−Q(uh)| ≤ Chη+η′−2|u|Hη |φ|Hη′

with η = min{r + 1, s} and η′ = min{r + 1, s′}.

6.1.4 Error estimate in negative norms

Another way to read the previous result is the following. AssumeQ(u) =
∫

Ω ψu with ψ ∈ Hm(Ω),
then the solution to the adjoint problem is

−∆φ = ψ

φ = 0 on ΓD

∂nφ = 0 on ΓN .

Assume a shift theorem holds, i.e. ∂Ω is sufficiently smooth and the boundary conditions are
such that

ψ ∈ Hm(Ω) −→ φ = (−∆−1)ψ ∈ Hm+2.

Then,

Q(u)−Q(uh) =

∫
Ω
ψ(u− uh) ≤ C‖u− uh‖H1 inf

wh∈Vh,0
‖φ− wh‖H1

≤Chmin{r,m+1}‖u− uh‖H1 |φ|Hm+2 ≤ Chmin{r,m+1}‖u− uh‖H1‖ψ‖Hm .



56 CHAPTER 6. CONVERGENCE ANALYSIS OF THE FINITE ELEMENT METHOD

It follows that

‖u− uh‖H−m = sup
ψ∈Hm

∫
Ω ψ(u− uh)

‖ψ‖Hm
≤ Chmin{r,m+1}‖u− uh‖H1 . (6.7)

The convergence in negative norms is faster than the convergence in H1 and the more negative
the norm is, the faster the convergence provided a shift theorem holds. However, there is a limit
in the gain, as we can not gain more than a factor hr. If we detail the result in (6.7) we have

‖u− uh‖H−m ≤ Chm+1‖u− uh‖H1 , 0 ≤ m ≤ r − 1

‖u− uh‖H−m ≤ Chr‖u− uh‖H1 , m ≥ r.

6.2 Case of non-homogeneous Dirichlet boundary conditions

In this case, the finite element approximation (6.2) is non conforming since Vh,g * Vg and

uh|ΓD = Irhg 6= u|ΓD .

However, a Galerkin orthogonality still holds

a(u− uh, vh) = 0 ∀ vh ∈ Vh,0 ⊂ V0.

6.2.1 Error estimates in H1

We can not apply Ceá’s Lemma straightforwardly but we have to proceed in a slightly different
way. Denote by Irhu the finite element interpolant of the exact solution u. Then

|u− uh|2H1 ≤ a(u− uh, u− uh) = a(u− uh, u− Irhu) + a(u− uh, Irhu− uh)

Observe now that both uh and Irhu are in the space Vh,g so that Irhu−uh ∈ Vh,0 and by Galerkin
orthogonality a(u− uh, Irhu− uh) = 0. Therefore

|u− uh|2H1 ≤ a(u− uh, u− Irhu) ≤ |u− uh|H1 |u− Irhu|H1

and finally

|u− uh|H1 ≤ |u− Irhu|H1 ≤ Chη−1|u|Hη , η = min{r, s− 1},

which is the same result as in the case of homogeneous Dirichlet boundary conditions. A result
in the full H1 norm can be recovered using the following Poincaré type inequality (see e.g. [5])

‖u‖H1(Ω) ≤ Cp(|u|H1(Ω) + ‖u‖L2(ΓD)), ∀u ∈ H1(Ω), if |ΓD| > 0.

We have then

‖u− uh‖H1(Ω) ≤ Cp(|u− uh|H1(Ω) + ‖u− uh‖L2(ΓD))

≤ Cp(|u− Irhu|H1(Ω) + ‖g − Irhg‖L2(ΓD))

≤ C(hmin{r,s−1}|u|Hs + hmin{r+1,s′}|g|Hs′ ).
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6.2.2 Error estimate in L2

For a general problem it is not obvious that one can obtain an improved convergence rate when
looking at the L2 norm. However, this is true for the specific problem (6.1) as the following
Lemma shows.

Lemma 6.1. Assuming that the exact solution of problem (6.1) satisfies u ∈ Hs(Ω) and g ∈
Hs′(ΓD), s′ ≥ s− 1/2, the finite element solution uh satisfies the estimate

‖u− uh‖L2(Ω) ≤ Chmin{r+1,s,s′}
(
|u|Hs(Ω) + |g|Hs′ (ΓD)

)
provided that problem (6.1) has smoothing properties, i.e. u ∈ H2(Ω) whenever f ∈ L2(Ω) and
d, g = 0.

Proof. Let eh = Irhu−uh ∈ Vh,0. We first estimate ‖eh‖L2 and conclude by triangular inequality
‖u− uh‖L2 ≤ ‖u− Irhu‖L2 + ‖eh‖L2 . Define the dual problem:

find φ ∈ V0 s.t. a(v, φ) =

∫
Ω
eh v ∀v ∈ V0. (6.8)

Since eh ∈ L2(Ω), if problem (6.8) has smoothing properties, then φ ∈ H2(Ω) and ‖φ‖H2 ≤
C‖eh‖L2 . Observe that the following inequalities hold:

‖∆φ‖L2(Ω) ≤ C‖φ‖H2(Ω)

‖∂nφ‖L2(∂Ω) ≤ C‖∇φ‖H1(Ω) ≤ C‖φ‖H2(Ω)

Then

‖eh‖2L2(Ω) = a(eh, φ) = a(Irhu− u, φ) + a(u− uh, φ)

≤ a(Irhu− u, φ) + a(u− uh, φ− wh)︸ ︷︷ ︸
by Galerkin orth.

≤ a(Irhu− u, φ) +M‖u− uh‖H1 inf
wh∈Vh,0

‖φ− wh‖H1

≤ a(Irhu− u, φ) + Ch‖u− uh‖H1 |φ|H2

We focus now on the term a(Irhu− u, φ):

a(Irhu− u, φ) =

∫
Ω
∇(Irhu− u) · ∇φ = −

∫
Ω

(Irhu− u)∆φ+

∫
∂Ω

(Irhu− u)∂nφ︸ ︷︷ ︸
∂nφ=0 on ΓN

≤‖Irhu− u‖L2(Ω)‖∆φ‖L2(Ω) + ‖Irhu− u‖L2(ΓD)‖∂nφ‖L2(ΓD)

≤C(‖u− Irhu‖L2(Ω) + ‖g − Irhg‖L2(ΓD))‖φ‖H2(Ω).

Putting this estimate in the previous one and recalling that ‖φ‖H2 ≤ C‖eh‖L2 we have

‖eh‖2L2(Ω) ≤ C(h‖u− uh‖H1(Ω) + ‖u− Irhu‖L2(Ω) + ‖g − Irhg‖L2(ΓD))‖eh‖L2(Ω)

and by triangular inequality

‖u− uh‖L2(Ω) ≤ C(h‖u− uh‖H1(Ω) + ‖u− Irhu‖L2(Ω) + ‖g − Irhg‖L2(ΓD)). (6.9)
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Assuming now u ∈ Hr+1(Ω) and g ∈ Hr+1(ΓD), we have

‖u− uh‖L2(Ω) ≤ Chr+1
(
|u|Hr+1(Ω) + |g|Hr+1(ΓD)

)
(6.10)

and for possibly non smooth functions u ∈ Hs(Ω), g ∈ Hs′(ΓD)

‖u− uh‖L2(Ω) ≤ Chmin{r+1,s,s′}
(
|u|Hs(Ω) + |g|Hs′ (ΓD)

)
(6.11)

which again is a similar estimate as in the case of homogeneous data.

6.3 Variational crimes: numerical integration

As we have already discussed, in many cases the integrals appearing in the weak / finite element
formulation can not be computed exactly and one often uses quadrature formulas to approximate
them. A typical situation is the case of a Poisson problem with non constant coefficients{

−div(µ∇u) = f in Ω

u = 0 on ∂Ω.
(6.12)

The weak formulation of this problem in the functional space V = H1
0 (Ω) reads

find u ∈ V s.t. a(u, v) = F (v), ∀v ∈ V

with a(u, v) =
∫

Ω µ(x)∇u(x) · ∇v(x)dx and F (v) =
∫

Ω f(x)v(x)dx, and its finite element formu-
lation in the space Vh = Xr

h ∩ V = {vh ∈ Xr
h : vh|∂Ω

= 0} reads

find uh ∈ Vh s.t. a(uh, vh) = F (vh) ∀vh ∈ Vh.

Here we assume again that no approximation of the domain Ω is induced by the triangulation Th.
The practical computation of the stiffness matrix Aij = a(ϕj , ϕi) =

∫
Ω µ(x)∇ϕj(x)∇ϕi(x)dx

and the right hand side Fi = F (ϕi) =
∫

Ω f(x)ϕi(x)dx, often require the use of quadrature
formulas. Let us consider a quadrature formula on an element K ∈ Th

QK(f) =

nqp∑
l=1

ωl,K f(zl,K) ≈
∫
K
f(x)dx (6.13)

where zl,K are the quadrature knots and ωl,K the corresponding weights, and the composite
formula

Qh(f) =
∑
K∈Th

QK(f).

Typically, the elementary quadrature formula QK(f) is first defined on the reference element K̂

QK̂(f̂) =

nqp∑
l=1

ω̂l f̂(ẑl) ≈
∫
K̂
f(x̂)dx̂.

Then, introducing the mapping x = BK x̂+ bK from K̂ to K,∫
K
f(x)dx = | detBK |

∫
K̂
f̂(x̂)dx̂ ≈ |detBK |QK̂(f̂)

and formula (6.13) will have ωl,K = | detBK | ω̂l and zl,K = BK ẑl + bK . We give here three
examples of quadrature formulas on triangles. Let us denote by cK the barycenter of the triangle
K, by mi,K , i = 1, 2, 3 the mid-points of the edges of K and by ai,K , i = 1, 2, 3 the vertices of K.
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• Formula exact on P1

QK(f) = |K|f(cK),

• formula exact on P2

QK(f) =
|K|
3

3∑
i=1

f(mi,K),

• formula exact on P3

QK(f) = |K|

 1

20

3∑
i=1

f(ai,K) +
2

15

3∑
j=1

f(mj,K) +
9

20
f(cK)

 .
We define now an approximate bilinear form ah(·, ·) and forcing term Fh(·) as

ah(uh, vh) = Qh(µ∇uh · ∇vh) =
∑
K∈Th

nqp∑
l=1

ωl,K µ(zl,K)∇uh(zl,K) · ∇vh(zl,K)

Fh(vh) = Qh(fvh) =
∑
K∈Th

nqp∑
l=1

ωl,K f(zl,K)vh(zl,K)

and introduce the generalized Galerkin formulation

find u∗h ∈ Vh s.t. ah(u∗h, vh) = Fh(vh) ∀vh ∈ Vh. (6.14)

Observe that, in general, ah(·, ·) is well defined only in the discrete space Vh (which contains
only continuous functions) but not in the continuous space H1

0 (Ω). Indeed H1
0 (Ω) * C0(Ω) for

d > 1, so we are not allowed to take point values for H1 functions and the bilinear form ah(·, ·)
is not continuous in H1(Ω).

A general result on the generalized Galerkin formulation is the following:

Lemma 6.2 (Strang’s Lemma). Assume that

• ah : Vh × Vh → R is continuous and uniformly coercive in Vh, i.e. ∃ α∗ > 0:

ah(vh, vh) ≥ α∗‖vh‖2V ∀ h > 0, ∀ vh ∈ Vh (6.15)

• Fh : Vh → R is bounded.

Then

1. there exists a unique solution u∗h ∈ Vh to problem (6.14) that satisfies

‖u∗h‖V ≤
1

α∗
sup
vh∈Vh

Fh(vh)

‖vh‖V

2. it holds

‖u− u∗h‖V ≤ inf
wh∈Vh

{
(1 +

M

α∗
)‖u− wh‖V +

1

α∗
sup
vh∈Vh

a(wh, vh)− ah(wh, vh)

‖vh‖V

}

+
1

α∗
sup
vh∈Vh

F (vh)− Fh(vh)

‖vh‖V
(6.16)



60 CHAPTER 6. CONVERGENCE ANALYSIS OF THE FINITE ELEMENT METHOD

Proof. The first part is just an application of Lax-Milgram’s Lemma in Vh. For the second part,
let wh ∈ Vh be arbitrary, then

α∗‖u∗h − wh‖2V ≤ah(u∗h − wh, u∗h − wh) = Fh(u∗h − wh)− ah(wh, u
∗
h − wh)

=a(u, u∗h − wh)− F (u∗h − wh) + Fh(u∗h − wh)− ah(wh, u
∗
h − wh)± a(wh, u

∗
h − wh)

=a(u− wh, u∗h − wh) + [a(wh, u
∗
h − wh)− ah(wh, u

∗
h − wh)]

+ [Fh(u∗h − wh)− F (u∗h − wh)]

≤M‖u− wh‖V ‖u∗h − wh‖V + ‖u∗h − wh‖V sup
vh∈Vh

a(wh, vh)− ah(wh, vh)

‖vh‖V

+ ‖u∗h − wh‖V sup
vh∈Vh

Fh(vh)− F (vh)

‖vh‖V

from which the thesis follows by triangular inequality.

Estimate (6.16) contains 3 terms. The first one infwh∈Vh(1+M/α∗)‖u−wh‖V is the standard
best approximation error in Vh. The other two

sup
vh∈Vh

a(wh, vh)− ah(wh, vh)

‖vh‖V
, sup

vh∈Vh

F (vh)− Fh(vh)

‖vh‖

represent consistency errors due to the quadrature formula.

The important questions are: whether these two errors are of the same order of the best
approximation error; and whether the quadrature formula leads to a uniformly coercive discrete
bilinear form ah(·, ·). The following result holds (see e.g. [4]):

Lemma 6.3. Assume that the quadrature formula QK̂ is exact on Pp(K̂), p ≥ r, and the mesh
is regular with γρK ≥ hK , ∀K ∈ Th. Then, for any u ∈ Hr+1 and its finite element interpolation
Irhu ∈ Xr

h, it holds

sup
vh∈Vh

a(Irhu, vh)− ah(Irhu, vh)

‖vh‖V
≤ Cγ2hp−r+2‖µ‖W p−r+2,∞(Ω)‖u‖Hr+1(Ω) (6.17)

sup
vh∈Vh

F (vh)− Fh(vh)

‖vh‖V
≤ Chp−r+2‖f‖Hp−r+2(Ω) (6.18)

Proof. For any ĝ ∈ C0(K̂), let us define EK̂(ĝ) =
∫
K̂ ĝ(x̂)dx̂−QK̂(ĝ). By assumption EK̂(ĝ) = 0,
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∀ĝ ∈ Pp(K̂). Let us consider first the term involving the bilinear form a(·, ·).

a(wh, vh)− ah(wh, vh) =
∑
K∈Th

∫
K
µ∇wh · ∇vh −QK(µ∇wh · ∇vh)

=
∑
K∈Th

|detBK |EK̂(µ̂K B
−T
K ∇̂ŵh,K︸ ︷︷ ︸

p̂K

·B−TK ∇̂v̂h,K︸ ︷︷ ︸
q̂K

) [with p̂K , q̂K ∈ Pr−1(K̂)]

=
∑
K∈Th

|detBK |EK̂((µ̂K p̂K − Ip−r+1

K̂
(µ̂K p̂K)) · q̂K)

≤
∑
K∈Th

|detBK |C|µ̂K p̂K |W p−r+2,∞(K̂)‖q̂K‖L∞(K̂)

≤C
∑
K∈Th

|detBK |

p−r+2∑
j=0

|µ̂K |W p−r+2−j,∞(K̂)|p̂K |W j,∞(K̂)

 ‖q̂K‖L∞(K̂)

≤C
∑
K∈Th

|detBK |

p−r+2∑
j=0

|µ̂K |W p−r+2−j,∞(K̂)|p̂K |Hj,∞(K̂)

 ‖q̂K‖L2(K̂)

[by equivalence of norms in finite dimensional spaces]

≤C
∑
K∈Th

|detBK | ‖B−1
K ‖

2
r−1∑
j=0

|µ̂K |W p−r+2−j,∞(K̂)|∇̂ŵh,K |Hj(K̂)‖∇̂v̂h,K‖L2(K̂)

≤C
∑
K∈Th

|detBK | ‖B−1
K ‖

2
r−1∑
j=0

|µ̂K |W p−r+2−j,∞(K̂)|ŵh,K |Hj+1(K̂)|v̂h,K |H1(K̂)

Then take wh = Irhu and note that for i = 0, . . . , r,

|Îr
K̂
ûK |Hi(K̂) ≤ |ûK |Hi(K̂) + |ûK − ÎrK̂ ûK |Hi(K̂) ≤ |ûK |Hi(K̂) + C|ûK |Hr+1(K̂)

≤ C| detBK |−
1
2 ‖BK‖i(|u|Hi(K) + ‖BK‖r+1−i|u|Hr+1(K))

≤ C| detBK |−
1
2 ‖BK‖i‖u‖Hr+1(K).

Hence

a(Irhu, vh)− ah(Irhu, vh) ≤ C
∑
K∈Th

‖B−1
K ‖

2‖BK‖p−r+4‖µ‖W p−r+2,∞(K)‖u‖Hr+1(K)|vh|H1(K)

which leads to (6.17).
Let us consider now the consistency error on the right hand side.

F (vh)− Fh(vh) =
∑
K∈Th

∫
K
fvh −QK(fvh)

=
∑
K∈Th

|detBK |EK̂(f̂K v̂h,K), [setting v̄K =
1

|K̂|

∫
K̂
v̂h,K ]

=
∑
K∈Th

|detBK |

EK̂(f̂K(v̂h,K − v̄K))︸ ︷︷ ︸
(A)

+EK̂(f̂K)v̄K︸ ︷︷ ︸
(B)


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For a quadrature formula exact on Pp(K̂) one has for any 1 ≤ s ≤ p and dimension d ≤ 3,

EK̂(f̂K) = EK̂(f̂K − IsK̂ f̂K) ≤ C‖f̂K − IsK̂ f̂K‖L∞(K̂) ≤ C‖f̂K − I
s
K̂
f̂K‖H2(K̂) ≤ C|f̂K |Hs+1(K̂).

We take in particular s = p− r + 1. Moreover, v̄K ≤ ‖v̂h,K‖L2(K̂), so that

(B) ≤ C|f̂K |Hp−r+2(K̂)‖v̂h,K‖L2(K̂).

On the other hand,

(A) ≤ EK̂(f̂K(v̂h,K − v̄K)) ≤ EK̂((f̂K − Ip−rK̂
f̂K)(v̂h,K − v̄K))

≤ C‖f̂K − Ip−rK̂
f̂K‖L∞(K̂)‖v̂h,K − v̄K‖L∞(K̂)

≤ C‖f̂K − Ip−rK̂
f̂K‖H2(K̂)‖v̂h,K − v̄K‖L2(K̂), [by norm equiv. on Pr(K̂)]

≤ C|f̂K |Hp−r+1(K̂)|v̂h,K |H1(K̂)

and finally

F (vh)− Fh(vh) ≤ C
∑
K∈Th

| detBK |
[
|f̂K |Hp−r+1(K̂)|v̂h,K |H1(K̂) + |f̂K |Hp−r+2(K̂)‖v̂h,K‖L2(K̂)

]
≤ C

∑
K∈Th

‖BK‖p−r+2
[
|f |Hp−r+1(K)|vh|H1(K) + |f |Hp−r+2(K)‖vh‖L2(K)

]
hence

sup
vh∈Vh

F (vh)− Fh(vh)

‖vh‖V
≤ Chp−r+2‖f‖Hp−r+2(Ω)

and this concludes the proof.

From the previous Lemma, we see that if we wish to have a consistency error of the same
order of the finite element approximation error, we have to take p − r + 2 = r which implies
p = 2r − 2. The following result follows easily from Lemmas 6.3 and 6.2:

Lemma 6.4. Assume that the quadrature formula QK̂ is exact on P2r−2(K̂) and has positive
weights. Then problem (6.14) is well posed and

‖u− u∗h‖H1 ≤ Chr(|u|Hr+1 + ‖u‖Hr+1‖µ‖W r,∞ + ‖f‖Hr) (6.19)

Proof. We first show that if QK̂ is exact on P2r−2(K̂) and has positive weights, then the discrete
bilinear form ah(uh, vh) is uniformly coercive. Indeed

ah(vh, vh) =
∑
K∈Th

nqp∑
l=1

ωl,K µ(zl,K)|∇vh(zl,K)|2

≥min
x∈Ω

µ(x)
∑
K∈Th

nqp∑
l=1

ωl,K |∇vh(zl,K)|2︸ ︷︷ ︸
=‖∇vh‖2L2(Ω)

since QK is exact onP2r−2

.
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By Strang’s Lemma 6.2, it follows that the problem (6.14) is well posed. Still from Strang’s
Lemma and Lemma 6.3, it holds

‖u− u∗h‖V ≤ inf
wh∈Vh

{
(1 +

M

α∗
)‖u− wh‖V +

1

α∗
sup
vh∈Vh

a(wh, vh)− ah(wh, vh)

‖vh‖V

}
+

1

α∗
sup
vh∈Vh

F (vh)− Fh(vh)

‖vh‖V

≤ (1 +
M

α∗
)‖u− Irhu‖V +

1

α∗
sup
vh∈Vh

a(Irhu, vh)− ah(Irhu, vh)

‖vh‖V
+

1

α∗
sup
vh∈Vh

F (vh)− Fh(vh)

‖vh‖V
≤ Chr (|u|Hr+1 + ‖µ‖W r,∞‖u‖Hr+1 + ‖f‖Hr) .

Error estimate on functionals:

We consider now the approximation of a quantity of interest Q(u) by Q(u∗h), where Q : V →
R is a linear functional. Observe that in the generalized Galerkin framework, the Galerkin
orthogonality does not hold any more. However, we can derive the following generalization of
the Galerkin orthogonality:

a(u− u∗h, vh) = [F (vh)− Fh(vh)]− [a(u∗h, vh)− ah(u∗h, vh)] , ∀vh ∈ Vh (6.20)

We define now the (continuous) dual problem

find φ ∈ V s.t. a(v, φ) = Q(v) ∀v ∈ V (6.21)

and the finite element interpolant Irhφ ∈ Vh. We thus have the following characterization of the
error on the quantity of interest

Q(u)−Q(u∗h) = a(u− u∗h, φ)

= a(u− u∗h, φ− Irhφ) + [F (Irhφ)− Fh(Irhφ)]− [a(u∗h, I
r
hφ)− ah(u∗h, I

r
hφ)] (6.22)

For the consistency errors F (Irhφ)− Fh(Irhφ) and a(u∗h, I
r
hφ)− ah(u∗h, I

r
hφ) a similar result as

in Lemma 6.3 can be established (see [1]):

Lemma 6.5. Assume that the quadrature formula QK̂ is exact on Pp(K̂), p ≥ r, and the mesh
is regular with hK ≤ γρK , ∀K ∈ Th. Then, for u, φ ∈ Hr+1 and u∗h solution of (6.14), it holds

a(u∗h, I
r
hφh)− ah(u∗h, I

r
hφh) ≤ Cγ2‖µ‖W p+1,∞(Ω)‖φ‖Hr+1(Ω)

(
hp+1‖u‖Hr+1(Ω) + hp+1−r‖u− u∗h‖H1(K)

)
(6.23)

F (Irhφ)− Fh(Irhφ) ≤ Chp+1‖f‖Hp+1(Ω)‖φ‖Hr+1(Ω) (6.24)

Proof. We start with the consistency error on the right hand side.

F (vh)− Fh(vh) =
∑
K∈Th

∫
K
fvh −QK(fvh) =

∑
K∈Th

| detBK |EK̂(f̂K v̂h,K)
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Since EK̂ is exact on Pp(K̂), p ≥ 1, we can further write

EK̂(f̂K v̂h,K) = EK̂(f̂K v̂h,K − Iph(f̂K v̂h,K)) ≤ C|f̂K v̂h,K |Hp+1(K̂)

≤ C
p+1∑
j=0

|f̂K |Hp+1−j(K̂)|v̂h,K |W j,∞(K̂)

≤ C
r∑
j=0

|f̂K |Hp+1−j(K̂)|v̂h,K |Hj(K̂), [by norm equiv. on Pr(K̂)]

Taking now vh = Irhφ and proceeding as in the proof of Lemma 6.3 we have for any i = 0, . . . , r,

|Îr
K̂
φ̂K |Hi(K̂) ≤ C| detBK |−

1
2 ‖BK‖i‖φ‖Hr+1(K) and

F (Irhφ)− Fh(Irhφ) ≤ C
∑
K∈Th

‖BK‖p+1‖f‖Hp+1(K)‖φ‖Hr+1(K) ≤ Chp+1‖f‖Hp+1(Ω)‖φ‖Hr+1(Ω).

Concerning the consistency error for the bilinear form, we have

a(wh, vh)− ah(wh, vh) =
∑
K∈Th

∫
K
µ∇wh · ∇vh−QK(µ∇wh · ∇vh) =

∑
K∈Th

| detBK |EK̂(µ̂K p̂K q̂K)

with p̂K = B−TK ∇̂ŵh,K and q̂K = B−TK ∇̂v̂h,K . Since EK̂ is exact on Pp(K̂), p ≥ 1, we can further
write

EK̂(µ̂K p̂K q̂K) = EK̂(µ̂K p̂K q̂K − Iph(µ̂K p̂K q̂K)) ≤ C|µ̂K p̂K q̂K |Hp+1(K̂)

≤ C
r−1∑
j=0

|µ̂K p̂K |W p+1−j,∞(K̂)|q̂K |Hj(K̂)

≤ C
r−1∑
j=0

p+1−j∑
s=0

|µ̂K |W p+1−j−s,∞(K̂)|p̂K |W s,∞(K̂)|q̂K |Hj(K̂)

≤ C‖B−1
K ‖

2
r−1∑
j=0

p+1−j∑
s=0

|µ̂K |W p+1−j−s,∞(K̂)|∇̂ŵh,K |Hs(K̂)|∇̂v̂h,K |Hj(K̂)

≤ C‖B−1
K ‖

2
r−1∑
j=0

ηj∑
s=0

|µ̂K |W p+1−j−s,∞(K̂)|ŵh,K |Hs+1(K̂)|v̂h,K |Hj+1(K̂), ηj = min{p+ 1− j, r − 1}

We now take vh = Irhφ for which we have |Îr
K̂
φ̂K |Hi(K̂) ≤ C|detBK |−

1
2 ‖BK‖i‖φ‖Hr+1(K) and

wh = u∗h, for which we have

|û∗h,K |Hi(K̂) ≤ |ûK |Hi(K̂) + |ûK − ÎrK̂ ûK |Hi(K̂) + |Îr
K̂
ûK − û∗h,K |Hi(K̂)

≤ C(|ûK |Hi(K̂) + |ûK |Hr+1(K̂) + ‖Îr
K̂
ûK − û∗h,K‖H1(K̂)), [by norm equiv. in Pr(K̂)]

≤ C(|ûK |Hi(K̂) + |ûK |Hr+1(K̂) + ‖Îr
K̂
ûK − ûK‖H1(K̂) + ‖ûK − û∗h,K‖H1(K̂))

≤ C(|ûK |Hi(K̂) + |ûK |Hr+1(K̂) + ‖ûK − û∗h,K‖H1(K̂))

≤ C| detBk|−
1
2 (‖BK‖i‖u‖Hr+1(K) + ‖u− u∗h‖H1(K))



6.3. VARIATIONAL CRIMES: NUMERICAL INTEGRATION 65

Finally

a(u∗h, I
r
hφ)− ah(u∗h, I

r
hφ) ≤ C

∑
K∈Th

‖B−1
K ‖

2
(
‖BK‖p+3‖µ‖W p+1,∞(K)‖u‖Hr+1(K)‖φ‖Hr+1(K)

+
r−1∑
j=0

ηj∑
s=0

‖BK‖p+2−s‖µ‖W p+1,∞(K)‖u− u∗h‖H1(K)‖φ‖Hr+1(K)

)
≤ Cγ2‖µ‖W p+1,∞(Ω)‖φ‖Hr+1(Ω)

(
hp+1‖u‖Hr+1(Ω) + hp+1−r‖u− u∗h‖H1(K)

)

From the previous Lemma we see that for the consistency error to be of order h2r we need
p+ 1 ≥ 2r, hence p ≥ 2r − 1 a slighly stronger condition than the one of Lemma 6.4:

Lemma 6.6. Assume that the quadrature formula QK̂ is exact on P2r−1(K̂) and has positive
weights. If the solution u of (6.12) as well as the dual solution φ of (6.21) satisfy u, φ ∈ Hr+1(Ω),
then

Q(u)−Q(u∗h) ≤ C(µ, γ)h2r(‖u‖Hr+1(Ω) + ‖f‖H2r(Ω))‖φ‖Hr+1(Ω)

where the constant C depends on ‖µ‖W 2r,∞(Ω) and γ but is otherwise independent of h.

Proof. Using the characterization (6.22) of the error on the Quantity of Interest we have

Q(u)−Q(u∗h) = a(u− u∗h, φ− Irhφ) + [F (Irhφ)− Fh(Irhφ)]− [a(u∗h, I
r
hφ)− ah(u∗h, I

r
hφ)]

≤M‖u− u∗h‖H1(Ω)‖φ− Irhφ‖H1(Ω) + Ch2r‖f‖H2r(Ω)‖φ‖Hr+1(Ω)

+ Cγ2‖µ‖W 2r,∞(Ω)‖φ‖Hr+1(Ω)

(
h2r‖u‖Hr+1(Ω) + hr‖u− u∗h‖H1(K)

)
Replacing the result of Lemma 6.4 and the interpolation error estimate ‖φ − Irhφ‖H1(Ω) ≤
Chr|φ|Hr+1(Ω) leads to the desired result.
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