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Chapter 1

Weak formulation of elliptic
problems

1.1 The Poisson problem

We start by considering a simple Poisson equation. Let Q C R? be a bounded open domain with
Lipschitz boundary 9€2. In Q we set the problem

{—Au:f, in Q

1.1
u =0, on M. (L)

The numerical methods that we will study rely on the so called weak formulation of the problem.
Take a function v :  — R sufficiently smooth. We multiply equation (1.1) by v, integrate
over () and integrate by parts the second derivatives,

/—Au-v:—/div(Vu)v:/Vu-Vv—/ NVu-n)v.
Q Q Q 00

on

Therefore problem (1.1) becomes

/VU~VU—/ %U:/fv, Vv sufficiently smooth.
Q aq On Q

In mechanics, such a procedure leads to the principle of virtual works. Thus the “test
function” v should be interpreted as a virtual displacement and should preserve the constraints
on the solution. Since the value of the solution is prescribed on the boundary, it is reasonable
to take test functions that vanish on the boundary. Moreover, for the term fQ Vu - Vv to be
bounded, it is enough to require that both Vu and Vv are square integrable.

1.1.1 Brief review of Sobolev spaces
We recall now the definition of the following functional spaces:
e Space L?:
L*Q)={v: Q=R : /1)2<+oo}.
Q
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CHAPTER 1. WEAK FORMULATION OF ELLIPTIC PROBLEMS

It is a Hilbert space with inner product (f,g) = [, fg and associated norm I fllz2) =
(fQ f2)1/2-

We recall moreover the important Cauchy-Schwarz inequality

(f.9) = lIf gl
Space H':
H(Q)={v: Q=R : vecIL*Q),Vve L*2)}.
This is also a Hilbert space with inner product (f,g)m = [o fg9+ Jo V.- Vg and norm
1
Wl = 1102 + S 1912 = (17122 + Sy 1412, ).

Functions in H'(Q) are not necessary C*(£), so the derivatives have to be interpreted in
a weak (distributional) sense:

< Og0, ¢ >=— < 0,05, > Vo €D,

where D(Q2) = C§°(R2) is the space of infinitely differentiable functions with compact
support in Q. Similarly, < Vv, ¢ >= — <wv,divg > V¢ € (D(Q))%

Space H™, with m € Ni. More generally, let o = (aq,...,a4) € N? be a multi-index and

glel d
Dw=—2""_ with || = Zai
i=1

ot ... 0z8
The space H™ is then defined as
H™"Q)={v: Q=R : D¢ L*R), Ya:|a| <m}.

It is a Hilbert space with respect to the inner product (f,g)gm = Z|a|§m(D°‘f, Dg)r2

1/2
and norm || f||gm = (Z\a|§m ||-Daf”%2(9)> . We will also need the semi-norm defined

1/2
2 | f1im = (Sjaom 1D F1220))
Space H}:
HY Q) ={ve H Q) : wv|sq =0}

Here the condition v|gpg = 0 has to be understood in terms of traces. We recall that the
space C1(Q) is dense in H*(Q), therefore, Yo € H', we can build a sequence v¢ € C1()

1
such that v¢ 2 v as € — 0. We can then define the trace of v on dQ denoted by v(v) as
= lim v|5q.
7(v) = limv[ag

Here v is a linear bounded operator from H!(f2) to L%(952), i.e. there exists C7 > 0 such
that

()20 < Cllvllmey, Vv e HY(Q).
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The operator + is not surjective and one can find functions g € L%(9€2) that are not traces
of any H! function. The image space of v is called H'/ 2(092) and can be endowed with
the “induced” norm

N9l 172 (00) = ot vl 1)

Y(v)=g

With such a norm, H'/2(9Q) is a Banach space.

e Poincaré inequality: there exists Cp, > 0, depending only on the domain (2 such that
Ve HQ; (ol < CllVole. (1.2)

Such inequality implies in particular that in Hg(Q2) the full H'-norm

lellr = /ol + Vol
and the Hl-semi norm |v|z1 = ||[Vv| 2 are equivalent. Indeed

[oli = 1VollZe < lol7e +IIVolli: < (14 CIIVlg = (1+ C)lvli

—Iloll?,,
In H we can therefore define the alternative norm ol = vl = [[Vol| 2.

1.1.2 Weak formulation and well posedness of the Poisson problem

We now come back to the weak formulation of the Poisson problem. The right space for the test
functions and the solution itself is Hg (9):

Find u € H}(Q) : /Vu~Vv:/fv Vo € H}(Q). (1.3)
Q Q

Setting V = H}(Q), a(u,v) = [ Vu-Vv, F(v)= [, fv, the previous problem (1.3) can
be written in abstract form:

find veV: a(u,v)=F(v) Vvel. (1.4)

We will see that many other problems can be set in the abstract form (1.4) with V' a Hilbert
space.
Formulation (1.3) can also be obtained following another path, from a minimization principle.

We define the energy functional
1 2
J) =5 [ [Vo]" = [ fu
2 Ja Q

and we observe that the functional is well defined for functions v € H'(Q2) and forcing term
f € L*(Q). We then set the minimization problem:

find w = argmin J(w). (1.5)
weH (D)
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This problem is indeed equivalent to (1.3). The optimality conditions are given by the Euler-
Lagrange equations and correspond to

aJ(u—i—ev):O:/Vu-VU—/fv Yo e HH(Q).
86 0 QO

We see from here that the space H}(Q) of test functions appears naturally as the space of
functions with bounded energy and such that u + ev satisfies the correct boundary conditions.
We remark, however, that not all problems in weak form can be derived as a minimization
of a proper energy functional.
To establish the well posedness of problem (1.3), we recall here the important Lax-Milgram
theorem. Let

e I/ be a Hilbert space.
e F':V — R be a linear bounded form (functional), i.e.
F(avy + Bug) = aF (v1) + BF (v2)

F(v
HFHV’ = sup ‘ ( )|
vev vllv

< 400

where V' is the dual space of V.
e a:V xV — R be a bilinear, continuous, coercive form, i.e.
a(ouy + Puz,v) = aa(ur,v) + fa(us,v)
similarly a(u, avi + fv2) = aa(u,v1) + Ba(u, v2)
IM>0: a(u,v) < Mlullv|v|ly (continuity)
Ja>0: a(u,u)>alul? (coercivity).

Theorem 1.1 (Lax-Milgram theorem). Given a Hilbert space V, a linear bounded functional F
and a bilinear, continuous, coercive form a, the problem

find weV:a(u,v)=Fv) YveV (1.6)
admits a unique solution. Moreover such solution satisfies the stability property
1
Jullv < IFly (17)

For the proof see e.g. [8]. Inequality (1.7) follows immediately from the coercivity of a and
boundedness of F:
allull < a(u,u) = Fu) < [|F [y |y

We now apply Theorem 1.1 to problem (1.3). Verifying the hypotheses of the theorem is
straightforward:

continuity of a: a(u,v) = / Vu-Vu < [[Vul[2[[ Vol 2 = [[ull g l[o]l 5
Q

coercivity of a: a(u,u) = / IVul? = ||ull3:;
Q 0

continuity of F: (assuming f € L*(Q)): F(v) = / fo<|fllzllvllrz < CprHLQHUHH&.
Q
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It follows that problem (1.3) has a unique solution in H}(f2) that satisfies ||UHH5 < Cpllfllz2-

1.1.3 Mixed boundary conditions
We consider now the Poisson equation with mixed boundary conditions
—Au=f in Q

u=yg on I'p (1.8)
Opu=d on Iy

where the boundary 0 is partitioned in two non overlapping portions, i.e. 90 =I'p UT'y and
I'pNTy = 0. We call the condition u = g essential or Dirichlet and the condition d,u = d
natural or Neumann.

It is natural in this case to look for the solution u in the affine space V, = {v € H'(Q) :
vlr, = g}. On the other hand, the “virtual displacements” have to be compatible with the
boundary conditions, i.e. u +v € V; for any virtual displacement. This implies the condition
v|r, = 0. We define therefore the space

Vo =Ht,(Q) = {ve H(Q) : v, =0}.
Observe that V; is a closed subspace of H'(2). On the other hand, V; is not a subspace since
Vuj,up €V, = u1+uge€ V.

To derive the weak formulation we proceed in the usual way: multiply the equation by v € Vj,
integrate over the domain and use integration by parts for the 2" derivatives:

:>/Vu-Vv—/ 8nuv:/fv VUGVO(:H%D(Q)).
Q G19) Q

We observe now that

/8nuv=/ Onuv + 8nuv:0+/ dv
o0 I'p 'y I'n

The term on I'p vanishes since we have chosen test functions v such that v|r, = 0. On the
other hand, on I'y the normal derivative of the solution is known, so what remains is a known
term. The weak formulation reads therefore

Find uw € Vj : /Vu~Vv:/fv+/ dv Yve V. (1.9)
Q Q I'n

The same weak formulation can be derived from a minimization principle: we define the energy

functional
1
J(U):/‘VUP—/]CU—/ dwv.
2 Ja Q T'n

Observe that, this time, the functional has to include the work done by the boundary forces on
I'y. Then u satisfies

u = argmin J(w). (1.10)
weVy
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Observe also that the minimization is done on the constrained space Vj of functions that satisfy
the non homogeneous Dirichlet boundary condition w = g on I'p. Again, we can take w = u+ev
with u € Vj, the solution to (1.10) and v € Vj so that u + ev € V for all € € R and write the
variations

BJ(U—i—EU):/V’LL'VU—/fU— dv=0
Oe Q Q T'n

from which we find back formulation (1.9).

The weak form (1.9) can be put in the abstract form
find w eV, suchthat a(u,v)=F(v) Vvel

with a(u,v) = [, Vu- Vv and F(v) = [ fv + fFN dv. Here V. = H'(Q) is a Hilbert space,
Vo C V is a closed subspace of V' (and hence it is also a Hilbert space), V;, C V is an affine
subspace of V.

The Lax-Milgram theorem cannot be applied straightforwardly to show the well posedness
of (1.9) since the solution u is sought in an affine space different from that of test functions.
However, one can proceed in the following way: assuming that ¢ € HY 2(T'p), i.e. it is the
trace of some function G € H'(Q) such that |G| 1 (q) < rllgll g2y, then we can write the
problem for the unknown @ =u — G € Vj

find u € Vj : /VfLVv:/ﬁH—/ dv—/VG-Vv Yo € V.
Q Q Iy Q
—_——

-~

a(ﬂ,v) F(,U)

Hence, in abstract form:
find @€V st a(u,v)=F@) Yvel.
To apply the Lax-Milgram theorem, we observe that
e the Poincaré inequality holds also in Hy. | as long as |[T'p| > 0.
VoeHE () |[vllzq) < CollVollrz@)-

Hence, [|Vullr2q) = [lullgi(q) is equivalent to the full norm [lul|gi(o) and a(u,u) =
HuH%ﬂ(Q) is coercive. Continuity is also immediate.
0

e the functional F(v) is bounded as long as f € L?(Q) and d € L*(I'y). Indeed

/va /de /QVG-VU

< fllzz@llvllze) + Ml 2y IVl 2n) + VGl 2@ I VYl 2200
< (Collf 2@y + Cry/1+ C Nl 2y + rllglgssaqe ) ) 1900 220y

|F(v)] < + +

where we have used the trace inequality |[v||z2ry) < C7||v[| g1 ()
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We have therefore the following:

Lemma 1.2. Given f € L*(Q), d € L*(Ty), g € H'?(Tp), the problem

ﬁndueVgs.t./Vu-VU:/fv—/ dv YvelW
Q Q I'n

admits a unique solution.
The assumptions on the data can actually be weakend. We recall the definition of the dual

space. Let V be a Banach space, denote by V' the space of all linear bounded functionals on V,
ie. FF:V = Rs.t.

F(avy + fva) = aF(v1) + BF (v2), |F'(v)] < cljv]v.

V' is a Banach space with respect to the norm

[F(v)]
IF|ly = sup .
veV,w#£0 [vllv

With the above definitions, problem (1.9) is well posed for any f € Vj.

1.1.4 Pure Neumann problem

{—Au:f in Q (1.11)

Opu=d on 0N

It is easy to realize that in this case if u is a solution to (1.11) then u + ¢ with ¢ an arbitrary
constant, is also a solution. Therefore, the solution is not unique. On the other hand, if we
integrate the equation and use the Gauss theorem and the boundary conditions we get

/Qf—/Q—Au—— 696nu——/<99d, — /Qf—k/(md—o. (1.12)

We see that the data have to satisfy the compatibility condition (1.12). From a mechanical
point of view, this condition corresponds to requiring that the resultant of all forces applied to
the system is zero.

To prove well posedness one can set the problem in the quotient space H'(Q)\R = {v €
HY(Q) : fQ v = 0}. One can show that in the quotient space a Poincaré inequality

lllz2) < el Vollze) Vve H(Q\R

still holds. Hence the bilinear form is coercive and the problem is well posed under condition
(1.12).
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1.1.5 Regularity of the solution

We ask now the question whether the solution u has some extra regularity than simply u € H'.
For the pure Dirichlet and pure Neumann problems, the following result holds.

Theorem 1.3 (Shift theorem). For m > 0, assume the domain has smooth boundary 0Q €
Cmt2, f e H™(Q), g € H™3/2(0Q) (for the pure Dirichlet problem) or d € H™/2(9Q) (for
the pure Neumann problem). Then, u € H™2(Q).

Two remarks are in order:

e If the data are smooth (where smoothness is measured in a proper Sobolev norm), the solu-
tion is smooth. This result is however true only if the domain has also suitable smoothness.
Problems defined in domains with corners are problematic.

e The result holds for pure Dirichlet and pure Neumann problems. The mixed case is more
problematic and the solution might not be smooth even with smooth data and domain.

2D Domains with corners

Consider the domain in the figure, having a corner of angle w, with = ¢ N.

The solution of the Poisson equation —Au = f in Q will develop a singularity at the point A
(i.e. some derivatives will go to infinity in A). Locally, around the corner A the solution behaves
as u(r,0) = r*f(0) for some o > 0, where (r, ) are the polar coordinates centered in A.

Dirichlet problem: u = 0 on 0.

The corner singularities have the form
kr/w o k6 s . ™
Op(r,0) =7 sin(— |, keN = we H?® with s<1+ —
w w

In particular for a re-entrant corner w > 7, the solution u ¢ H?({)!

Neumann problem: d,u = 0 on 0.

The corner singularities have the form
km/w kw6 s ™
Oy (r,0) =1 cos| — ), keN = ue H® with s <1+ —.
w w

Also in this case, for a re-entrant corner w > 7, the solution u ¢ H?(Q)!
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Mixed problem: v =0 onI';, 9,u=0onI'; and 5 ¢ N.

The corner singularities have the form

D (r,0) = pktg)m/w sin((k + )77(9/11)) = we€ H° with s<1+ 2l
w

Even for a flat boundary w = m, the solution u ¢ H?!

1.2 Advection-diffusion reaction equation

We consider now the general second order linear elliptic equation Lu = f with

d

0
bu=~- Z o; (a”&x >+Zb 8:16Z

Z7]

with a;; = aj;. We can introduce the matrix field 4 : Q — R¥>? as (A(z));; = a;j(z) and the
vector field b: Q — RY; b(z); = b;(x).

The operator L can then be written in compact form as
u=—div(AVu) +b- Vu + cu. (1.13)

The operator L is said to be elliptic if the matrix A is positive definite, i.e. there exists ag > 0
such that
FA@)> ol VEER!, Vzeq.

When applying the divergence theorem to the first term

/Q —div(AVu) = /8 AV m

we see that the natural ”flux” appearing on the boundary is (AVu) - n. Therefore the natural
boundary conditions (Neumann b.cs) will be of the type (AVu)-n = d.
The advection-diffusion-reaction problem with mixed boundary conditions reads therefore

—div(AVu) +b-Vu+cu=f inQ,
(AVu) -n=d on 'y, (1.14)
uU=4g on FD.

The weak formulation can be obtained with the usual procedure. Since only second order
derivatives appear in the operator, the natural functional setting is again H'(Q2). Observe that
whenever b # 0, the weak formulation cannot be derived from a minimization principle (the
resulting bilinear form is not symmetric).

Weak formulation: find u € Vj such that

/AVu-Vv+/5-Vuv+/cuv:/fv+/ dv Yovel. (1.15)
Q Q Q Q Ty

a(u,v) F(v)
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The continuity of a(-,-) is guaranteed for any A,b,c € L*°(2). Indeed, denoting o4(x) =
|A(2)] = supgeps 2 and [b(z)| = /3 Bi(2)?,
a(u,v) </ |(AVu) - Vv +/ b Vul|v| +/ lcu vl
Q Q Q

< [ oa@Iul Vel + [ @ vul ol + | fela)]ful o

< sup oa(@)[Vull 2 [VvllLz@) + Sup ()| Vull L2 V] 220

+ sup [e(z)|[[ull L2(q) V] L2(0)

€

< <||A”L°°(Q) + 1Bl oo () + HCHLOO(Q)> 1wl zr @yl )

where ||c[| () = supess,cq|c(T)], [[b]| L (q) = supess,cq|b(z)| and [|A[| () = supess,cqoa(z).
To show coerciveness we need further assumptions on A, b, c. Observe that the form as(u,v) =
Jo AVu - Vo is coercive if [I'p| > 0

as(u,u) = /Q(AVU) -Vu = /Q(VU)TAVU > ao/Q Vu|> = a()HVuH%g(Q).

Sufficient conditions for the well posedness of the problem are the following (verify as an exercise):
o f€L?Q) (or V{),de L*(Ty), g € H'/*(Tp)
o Ac Lo, {TA)E > aglé? VEER, ze€
o be [L®(O)]?, divh € L®(R), ¢ € L=(N)

infess,eq(c(z) — & divb(z)) > 0if [Tp| > 0 (strict inequality if [T'p| = 0)

o 00 = {z €90 : b(z)-ii(x) < 0} C I'p, where fi(z) is the unit outward normal vector in
x € 0N

1.3 Linear infinitesimal elasticity

Consider a body occupying the domain Q C R that undergoes a small (infinitesimal) deforma-
tion under the action of a force field f : Q@ — R?. Denote by @ : Q@ — R? the deformation field
of each material point (see Figurel.l).

Strain measure

Given two material points close to each other X =X , Xy =X +dX , after deformation they
will occupy the positions 71 = X7 + @(X;) and &2 = Xo + @(X2), respectively. The change of
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u”

N

Figure 1.1: Deformation of a bi-dimensional material body. @ :  — R? represents the deforma-
tion field

length is given by
7o — 71 [ Xo+d(Xo) - Xy —@(Xy)]? _ [dX + Va(Xy) - dX]? (I + Va)dX |
X5 — X412 |dX |2 |dX|? |dX[?

dX

|aX|

:ﬁT(I + VU)T(I + V4)? having set o=

=i (I + Vi + (Vi) + (V)T Vi)

<L

For infinitesimal displacements we neglect the quadratic term (V@) V. The relative elongation
is thus given by

) 3 ? P
|l‘2 $1|_’ | | ~ UT(VH+ (Vﬁ)T)l_f
[dX]?

In infinitesimal elasticity it is customary to take as a measure of strain the tensor

_ Vi+ (Va)©

e() 5

Observe that if @(X) is a pure rotation or translation, #(X) = &4 & x (X — X;) then the strain
is zero.
Stress tensor

o : Q — R4 represents the internal stresses due to the deformation. In linear infinitesimal
elasticity the stress tensor is related linearly to the strain tensor,

0y = § CijkiEki-
il

This is the tensorial equivalent of the well-known Hooke’s law for the elongation AL of a spring
under a force F', F = —kAL.
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If a material is isotropic, i.e. its elastic properties are the same in each directions, many
of the coefficients Cj;p; will be equal, and it is possible to simplify the previous strain-stress
relation. It can actually be shown that the most general linear relation that can be written for
an isotropic material has the form

o =2pue + Mr(e)l,

where ;1 and A are known as the Lamé constants and I € R?*? is the identity matrix.

Balance equations

The balance of volumetric forces translates into the equation

—

—dive = f.

Indeed, on any volume w C €2, fw —dive = |, 5., —0 - 7 represents the resultant of the internal
forces acting on the volume w, which has to balance the volume forces fw f acting on it.

Infinitesimal linear elasticity equations with mixed boundary conditions

—dive(d) = f, inQ
o(@) -7 =d, on 'y (1.16)
=g, onI'p

Vi + (V)T

with o (@) = 2ue(d) + Atre(d)I, and e(@) = 5

(1.17)

Here f represents the volumetric forces (e.g. the weight), d represents the boundary traction and
g represents the imposed deformation on the boundary (typically § = 0 for a clamped structure).

Weak formulation

To write the weak formulation, we need some additional notation. Given two equal sized matrices
A and B, we define A: B =}, A;;B;; = tr(AT B) = tr(BT A).
We can now take a smooth test function @ : Q — R¢ with #|r, = 0 and proceed as usual

/Q_diw@).g:/ga(ﬁ):w—/m(a(ﬁ)-ﬁ).a
:/Q(zus(ﬁ)—l—)\tre(ﬁ)l) : W—/FN

-

:/2u€(ﬁ):VU+/)\divﬁdiV6’—/ -

Q Q I'n

:/2u5(ﬁ):5(17)+/)\divﬁdiv17/ d-v
Q Q N

where we have used the following observations:

d-v
d

o £(u) : VU = e() : e(?¥). In fact, since £(u) is a symmetric tensor we can take only the

= (onT
symmetric part of V7, i.e. m = ¢(?v)
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o tre(w) =diva
o [:VU=divd.
Again, after integration by parts only first derivatives appear, so that a natural functional
space is [H'(Q)]%, i.e.
[H Q) ={7: Q=R :v; € H(Q) for i=1,...,d}.

Each component of the vector is an H' function, so we can define traces and in particular the
space V, = {7 € [HY(Q)]?: 4|r,, = §}. We are thus lead to the following weak form of (1.16):

Find @ € V, such that a(u,v) = F(V) Ve Vy (1.18)

where
alit, §) = / (2ue(@) : (F) + A div 7 div )
Q

F(ﬁ):/gf-m/md“-ﬁ

The continuity of a(-,-) is quite straightforward and left as an exercise. The coerciveness of
a(-,-) is not obvious a priori. Observe in particular that (@) (and div(#) as well) vanishes on
the space of roto-translatory motions

Var ={7:Q = RY: #(ZF) =+ @ x &, with &@ € R}

therefore a(u,u) =0 V u € Vgr. We should therefore not expect coerciveness o @||%, @ <
a(i, @) unless @ is orthogonal to V. The following result asserts that it is actually enough to
remove all possible functions in Vgr from the space where we look for the solution to ensure
coerciveness. In particular, rototranslations are excluded if we enforce no deformation on a
portion of 012, i.e. if we work in [H%D(Q)]d:

Theorem 1.4 (Korn inequality). There exists k > 0 such that
IVl gy < 5 [ @) 520, Vi€ [, (@) (1.19)

Thanks to the Korn and Poincaré inequalities, one can show that all assumptions of the
Lax-Milgram theorem are satisfied and therefore problem (1.18) is well posed.
Finally, since the bilinear form a(-,-) is symmetric, the weak formulation can be derived from
a minimization principle
@ = argmin J ()
WEV,

with energy functional

J(w’):/Q,ue(w) :5(w)+/ﬂg(divzﬂ)2/§2f-w/m d-. (1.20)
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Chapter 2

Approximation of variational
problems — (zalerkin method

All the problems that we have introduced so far can be recast (after eventually a suitable lifting
of the Dirichlet boundary datum) in the following abstract form

find weV suchthat a(u,v)=F(v) VveV (2.1)

with V' a Hilbert space. We assume here that the assumptions of the Lax-Milgram theorem
are satisfied so that problem (2.1) admits a unique solution. To approximate problem (2.1) we
proceed as follows:

1. We introduce a sequence of finite dimensional spaces V}, with N, = dim V}, such that

Vi, CV YV h (conformity) (2.2)
VweV lim ( inf |lw— whHV) =0 (approximability). (2.3)
h—0 \wpEV),

The second assumption is essential and says that in the limit A — 0 the space V}; be-
comes dense in V, i.e. any element in V can be approximated arbitrary well by a sequence
wyp, € Vy, for h — 0.

2. We set the problem (Galerkin approzimation):

find up, € Vi, s.t. alup,vp) = F(vy) Yo, € V. (2.4)

More generally, we could think of a discrete problem where also the bilinear form a(-,-) is
approximated by ay,(-, ), the right hand side F(-) by F}p(-). This will typically be the case when
using quadrature formulas to approximate the integrals appearing in the bilinear form af(-,-) and
right hand side F'(-).

Even further, we could also remove the conformity assumption V, C V and introduce a
Generalized Galerkin approximation

find up, € Vi, s.t. ap(up,vp) = Fp(vp) Y op €V (2.5)

19
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Some nomenclature
A (generalized) Galerkin approximation is said to be
e Conforming if V}, C V and non-conforming if v}, V.

e Strongly consistent if the exact solution satisfies the discrete problem, i.e.

ah(u,vh) = Fh(vh) Yo, €V,

e Asymptotically consistent if the exact solution satisfies the discrete problem only in
the limit h — 0, i.e.

=0.

lim sup Fin(vn) — an(u, vn)
h=04, €V}, v llv

This definition and the previous one are valid if one can extend the bilinear form ay(-,-)
as a continuous form on the whole space V.

2.1 Properties of the conforming Galerkin problem
We consider here the standard (conforming) Galerkin approximation (2.4)
find up € Vi, C Vst alup,vp) = F(op) Yo, €V, CV.

Since V}, C V is finite dimensional, it is a closed subspace of V' and therefore it is a Hilbert space
with respect to the same norm defined in V.

By assumption, a(-,-) is continuous and coercive in V. A fortiori, it will be continuous and
coercive in V4, and the same argument holds for the continuity of F. We conclude that problem
(2.4) satisfies all the hypotheses of the Lax-Milgram theorem and therefore admits a unique
solution. Moreover, the solution uy satisfies the stability inequality

1
lunllv < ~lE -

2.1.1 Reduction to an algebraic system

We now introduce a basis {goj}é\ill of V3, so that every element v € V} can be expanded as

v = Eﬁhl vi;. If we define the vector 7 = (v1,...,un;) € RN we can establish a bijection
between V), and RN as

Ni
veV, +— ﬁ:(vl,...,th)eRNh with U:ZUW@'-

i=1

We now expand the solution up, of (2.4) on the basis u = >, ujp; and test the equation (2.4)
for all basis functions p;,i = 1,..., N}, i.e. we take v, = ;. It is actually enough to test (2.4)
only on the basis functions as all other functions v € V}, can be obtained by linear combination
of the {y;}:

Ny,
j=1
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By the linearity of a(-,-) this is equivalent to
Nn
ZUJ'CL(QO]‘,QDZ') :F((pi) 1= 1,...,Nh. (2.6)
j=1

Defining now the matrix A € RV»*Nn_ Aij = a(pj, i) and the vector fe RN, f; = F(vi),
then (2.6) is equivalent to

—

Ail = f. (2.7)

For the Poisson/linear elasticity problem, the matrix A is typically called the stiffness matrix.

2.1.2 Positivity of the stiffness matrix
The matrix A is positive definite. This follows immediately from the coerciveness of af(-, -)
aT AT =) ujAgu; =) ujales,ei)ui
ij ij
:CZ(ZUjSOja Z%%) = a(up, up) > allup|y >0
j i

~—

Up

Moreover, if the bilinear form a is symmetric, i.e. a(u,v) = a(v,u) for all u,v € V, it follows
immediately that the stiffness matrix A is symmetric.

2.2 Convergence analysis of the conforming Galerkin method

We now aim at comparing the exact solution u of (2.1) with the approximate solution u; of
(2.4). We first observe that
a(u,v) =F(v) YveV

a(up,vn) = Fvp) YV op € Vi,

If we take only test functions in V}, in the exact problem and subtract the two, we have
a(u —up,vp) =0 Yop €V (2.8)

This relation is called Galerkin orthogonality. If a(-,-) is symmetric (and continuous and coer-
cive), it actually defines an inner product equivalent to the standard one defined on V' (the proof
of this statement is left as an exercise), and the corresponding norm ||u — upl|, is often called
“a-norm” or “energy norm”. Then equation (2.8) is actually an orthogonality relation, i.e. the
function v — wy, is orthogonal to the subspace V},, with respect to the energy inner product.
Consequently, the approximate solution uy, € V}, is the one for which the distance ||u — up||4 is
minimal. Concerning the approximation error, the following result holds:

Lemma 2.1 (Cea’s Lemma).

M
lu —up|lv < ;Ui%fvllu—vhllv (2.9)
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Proof.
, 1 1
lu — uplly Saa(u — Up, U — up) = aa(u —Up,u — v +vp —up)  (vp € Vi)
1 1
=—a(u—up,u—op)+ —alu—up,vy —up)
o «
=0 (by Galerkin orthogonality)
M
<—|lu —upllv|lu = vnlv
Q
from which the thesis follows given the arbitrariness of vy, € V},. O

The Cea’s lemma relates the actual approximation error ||u — up||y with the

best approximation error  inf |u —va|ly (BAE)
vp€Vh
i.e. the best approximation of u that can be achieved in the subspace V. This quantity
is not related to the differential problem that we are solving but only to the properties of
the solution w. Proving approximation rates for the (BAE) for a given class of functions and
approximating subspaces V}, is a classical topic of approximation theory. Results for finite
element approximation spaces will be given in Chapter 5.



Chapter 3

Finite element spaces

A finite element space is a space of functions that are piecewise polynomials over a partition of
the domain €2 into non-overlapping polyhedra, called a mesh. Finite element spaces may differ
for the polynomial degree used, the type of polyhedra in the mesh and the overall continuity
properties between the elements of the partition. In this chapter we assume that the domain
Q c R? is a polygon in 2D or a polyhedron in 3D.

3.1 The mesh

Definition 3.1. A polyhedral mesh Ty, is the union of a finite number of polyhedra K; such
that

[ ] Q: U Kj
KjE'Th

o KiNK; =0 ifi+#j.
The polyhedra K; are called the elements of the mesh.

The most used polyhedra are triangles or quadrilaterals in 2D and tetrahedra, hexahedra

and sometimes prisms in 3D.

Figure 3.1: Examples of polyhedra typically used in 2D and 3D problems

Definition 3.2. A geometrical conformal mesh is a mesh for which if E = K; N K; # 0
then E is a common vertex or a common edge (or a common face in 3D).

23
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Figure 3.2: Example of a conformal mesh (left) and a non-conformal mesh (right)

Figure 3.2 shows an example of a conformal mesh (left) and a non-conformal mesh (right).
We introduce now three important parameters that characterize the elements of a mesh:

e Element (outer) diameter:

hK:diam(K):xH;zg{\m—y\, KeT,

¢ Element inner diameter (also called chunkiness or sphericity):
px = diameter of the largest ball contained in K, KeTy,

The aspect ratio vx = hx /px is a measure of how much the element K is stretched.

e Mesh size:

h = max hg.
KeTy

The parameter h controls the overall size of the elements.

We consider now a family of meshes {75}, 0 with smaller and smaller mesh size. The
following definitions characterize different types of sequences of meshes.

Definition 3.3. Family of regular meshes {T,}i~0: is a family of meshes for which 3 v > 1
such that
hx <vypx VK €Ty

with v independent of h.

In other words, for a sequence of regular meshes, the aspect ratio of each element is bounded
by ~ uniformly in the family with respect to h.

Definition 3.4. Family of quasi-uniform meshes {T,}i0: is a family of regular meshes
for which 30 < § <1 such that
hg > dh VK €Ty,

with § independent of h.

For quasi-uniform meshes, the diameter of the smallest element compares with the diameter
of the largest one, i.e. all elements have more or less the same diameter. This is not necessary a
nice feature as it prevents from having local mesh refinements. On the contrary, regular meshes
do not have this restriction and allow for local mesh refinement, however with a control on the
aspect ratio of the elements.
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As we will see, approximation properties of a finite element space hold, in general, for regular
meshes, i.e. they apply also to the case of highly refined meshes, provided the elements are not
too stretched.

Anisotropic meshes, for which the aspect ratio h /px can be large and might go to infinity
as h — 0, are also sometimes used, typically to describe boundary layers or sharp gradients of
the solution only in certain directions. The theory, however, is more difficult and will not be
addressed in these notes. Figure 3.3 shows an example of a quasi-uniform mesh, a regular mesh
and an anisotropic mesh.
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Figure 3.3: Example of a quasi-uniform mesh (left), regular mesh (center) and anisotropic mesh
(right).

It is useful to introduce the concept of reference element K. This will be
e for triangular elements: K is the triangle of vertices (0,0), (1,0) and (0,1).

e for quadrilateral elements: K is the unit square [0, 1]2.

e for tetrahedral elements: K is the tetrahedron of vertices (0,0,0), (1,0,0), (0,1,0) and
(0,0,1).

e for hexahedral elements: K is the unit cube [0, 1]°.

Definition 3.5. An affine mesh is a mesh for which each element K can be mapped onto the
reference element K by an affine transformation,

for some matriz Bx € R¥™% and vector b € R* such that K = FK(K)
Some remarks are in order:

e A triangle (tetrahedron in 3D) with straight edges can always be mapped by an affine
transformation onto the reference triangle K.

e A quadrilateral can not be mapped, in general, onto the square K = [0,1]% by an affine
transformation, unless it is a parallelogram.

For a general quadrilateral (with straight edges), the transformation K = Fx (K) will be
linear in each variable but could have quadratic terms xy in 2D or cubic terms zyz in 3D.
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/K\A i %\@
/\ﬁ IZ k

Figure 3.4: Examples of affine transformations (top row) and non-affine transformations (bottom
row).

e In some cases also for triangular meshes one is interested in using non affine transforma-
tions. This is the case, for instance, to generate “triangles with curved boundaries” to
better fit the boundary of the domain. In such a case the map is typically polynomial of
degree greater than one.

The figure 3.4 shows examples of affine and non affine transformations from the reference to
the current element.
3.1.1 Map to the reference element

We detail here the construction and main properties of the transformation from the reference
to the current element in the case of an affine triangular mesh. Let K be the reference triangle

|
\

€1

Figure 3.5: Map from reference to current element

of vertices {(0,0),(1,0),(0,1)} and K € T, a triangle of the mesh of vertices {@ = (a1, a2),b =
(b1,b2),& = (c1,¢2)}. If we denote @ = b— @ and @ = &— @ we can construct the map
Fi(2) = Bk (Z) + bk in such a way that the canonical vector e; = (1,0) is mapped into @ + ¥
and e = (0, 1) is mapped into @ + W (see Figure 3.5). Such a map is given by

bK:a’z[C”], Bk = [v w]:[bl_‘“ Cl_al}
a by —az c2 — a2

The Jacobian matrix satisfies the following properties
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Lemma 3.6 (Propertie§ of Bi). Let hi and pi be the outer and inner diameter of K and h
and p the diameters of K. Then

hK —1 il ‘K
|Bx|| < —, |Bg'l<—,  detBg = (3.1)
p K P K|

where || Bk || = supger2 ¢4 % is the spectral norm of By .

Proof. 1t is easy to verify that
[y

det B = [0 x | = 3|K| = z

Moreover, for any ¢ € R2, |¢| = p, we can find two points 2,9 € K such that £ = & — . Letting
now = = Fg(Z) and y = Fk(7), we have

Bk (& = 9)| = & — y[ < hi

and B B h
1Bl = sup PR g  [Oxdl e
cerzezo 16l cerzjg=p  [€] p
The bound on ||B;!|| can be obtained in a similar way. O

3.2 Continuous Finite Elements on triangular affine meshes

A finite element space is a space of piecewise polynomial functions over the elements of a mesh
T Let us denote by P,.(K) the space of polynomial functions in K C RY, of degree less or equal
to r:

d
P, (K) =span{a}'ah? .. akt, > ki<r, k>0, (21,...,74) € K} (3.2)
j=1

For example:
in 2D Pi(R?) = span{l,z,y}, P2(R?) = span{l,z,y,2°, zy, %},
in 3D P, (R3) = span{1, z,v, z}, Py (R3) = span{1, z,y, z, 22, y%, 2%, zy, 2, yz}.

One can show by combinatorial arguments that the dimension of P,.(R9) is
d
dim (P, (R)) = <T; ) (3.3)

Definition 3.7. The space of continuous Finite Elements of degree r over a triangular
affine mesh Ty, hereafter called X} or, sometimes, for brevity simply P, is defined for r > 1

X ={vel%): v|g eP(K) VK €T} (3.4)

We remark that the finite element space defined above satisfies the property
X; c HY(Q).

Indeed, a function v, € Xj is continuous by definition and have bounded (distributional) deriva-
tives since vy, is a polynomial in each element of the mesh. It follows that vy, Vv, € L?(Q).
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3.2.1 Degrees of freedom, basis functions and interpolation operator

Let us start our study of continuous finite elements by the simplest case of piecewise linear finite
elements (often called P;) in 2D.

P; finite elements in 2D

The dimension of P;(R?) is dim(PP;(R?)) = 3, see (3.3). Therefore, to uniquely identify a linear
polynomial in each triangle K € 7Ty, we have to provide three values; these could be the three
coefficients of the polynomial or its value on three non aligned points. The second option is
more common and leads to the so called Lagrangian finite elements. The corresponding values
of the polynomial in these points are called nodal degrees of freedom (dofs).

Let us follow the second approach: as we have just discussed, by prescribing arbitrary values
on 3 non-aligned points per triangle, we can uniquely identify a linear function on each triangle.
However, by doing so, we have no guarantee that the overall function thus defined is globally
continuous over the whole mesh .

There is, however, a particularly clever choice of points that automatically enforces the
continuity of the function. This choice corresponds to taking the values of the function on the
vertices of each triangle as degrees of freedom (see Figure 3.6). Indeed, on each edge the function
is linear and to identify uniquely a linear function on an edge (1D domain) one only needs two
point values, e.g. the vertices. Hence, the set of nodal values on the vertices of the mesh uniquely
identifies a globally continuous piecewise linear function. Let N, denote the number of vertices

Figure 3.6: Set of nodal degrees of freedom for P; finite elements in 2D. The choice of vertices
as dofs guarantees automatically the inter-element continuity.

of the mesh 7j, and {a; };V:”l the set of vertices. By prescribing arbitrary values (vi,...,vy,) on
those vertices, we can construct a unique function v, € X }ll that matches those nodal values, i.e.
such that v (a;) = v;. On the other hand, given any function v, € X ,}L, we can always evaluate
it on the vertices and associate to it a unique set of degrees of freedom v; = vp,(a;). This shows
that there is a one-to-one correspondence between X ,% and R™v and, in particular,

dim(X}) = N,.

We now aim at constructing a basis for X,ll. Exploiting the one-to-one correspondence
X ,% — RN we could take as basis of X ,% the image of the canonical basis of RM. We can
therefore introduce the following basis of X }L, that is usually called Lagrangian basis

1 ifj=k

0 otherwise

basis of X} : {o;e X} i=1,...,N,}: @;(ap) = { (3.5)



3.2. CONTINUOUS FINITE ELEMENTS ON TRIANGULAR AFFINE MESHES 29

Figure 3.7: A basis function for the space X ,%

i.e. the basis function ¢; takes the value 1 on the vertex a; and 0 on all other vertices (and, of
course, it is a globally continuous piecewise linear function on the mesh). Figure 3.7 shows one
such basis function.

Any function v, can be expanded on the basis as

Ny

vp(x) = Zvjwj(x), with v; = vp(a;).
i=1

Finally, once we have a set of degrees of freedom and a basis for the space X ,}L, it is easy to
introduce an interpolation operator, denoted I }1” that, given a function u € CY(£2), associates a
function up € X ,% It is indeed enough to evaluate u on the vertices and reconstruct a continuous
piecewise linear interpolation.

Ny
interpolant operator : Il %) — X}, up = I} (u) = Zu(aj)goj. (3.6)
j=1

P, finite elements

We now generalize the above construction to finite elements of arbitrary degree r. Let us consider
the case r = 2 in 2D. In this case we have

dim(Py(R?)) =6,  dim(Py(R')) = 3.

Therefore, we need 6 nodal values per triangle to identify uniquely a quadratic function in 2D
and 3 nodal values per edge to identify uniquely a quadratic function on a line. Hence, the set of
vertices and mid points is unisolvent for Py(K) (i.e. identifies uniquely a polynomial of degree
2 on K) and guarantees the global continuity of the function. Denoting by {aj}jy:”fl the set of

vertices and {ck}g:el the set of midpoints of each edge, we have
dim(X?) = N, + N..
Proceeding as for P; finite elements, we can introduce a basis

Nv Ne —_ Nv NE
{pj € X,%}j:f = {805‘1)) € Xi%}jzl U {90§-6) € Xi}j:l
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with
SD‘SU) CLJ) =1, (’0‘56) (C]) = ].,
vertex basis function @EU) () = [ # 7, edge basis function gog-e)(ck) = L # 7,
o\ (cr) =0V, P\ Na)=0 I

In the case r = 3 in 2D we have dim(P3(R?)) = 10 and dim(P3(R!)) = 4. Therefore we need
10 nodes per triangle and 4 per edge to identify a globally continuous piecewise cubic function.
Figure 3.8-(top-right) shows a possible choice of dofs.

P, P,
Figure 3.8: Choice of nodal dofs for finite elements of degree r = 1,2,3 in 2D on triangles (top
row) and 3D on tetrahedra (bottom row).

The construction that we have presented in 2D can be extended without difficulty also in 3D
on tetrahedra. The second row of Figure 3.8 shows a proper choice of dofs for Finite Elements
of degree r =1,2,3 in 3D.

3.3 Discontinuous finite elements on triangular affine meshes

In some cases one might want to remove the continuity requirement in the definition of the finite
element space.

Definition 3.8. The space of discontinuous Finite Elements of degree r over a trian-
gular affine mesh Ty, hereafter called Xr rde or, sometimes, for brevity simply P4, is defined
as

X% ={ve LX0): v|x e P(K) VK €Th} (3.7)

The construction of a set of dofs and a basis for this space is easier than in the continuous
case. Indeed, we do not need to care about inter-element continuity and it is enough to choose
(”d) points inside each element K to uniquely identify a polynomial of degree 7.
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In particular, one may choose the same points as in the continuous case (see Figure 3.8).
Observe, however, that since the function is globally discontinuous, we will have to prescribe
multiple values on each point, one for each element sharing that point. The dimension of the
space ngdc is

. - r—+d
dlm(thc) = ( d >Nel

where NN, is the number of elements in the mesh.

3.4 Non affine meshes and isoparametric finite elements

In the case of a non affine mesh, if x = Fi (%) denotes the mapping from the reference element
(triangle in 2D, tetrahedron in 3D) to the current curved element (see Figure 3.4), the definition
of continuous finite elements (3.4) changes as

X ={velC’Q):v|goFx eP.(K) VK €T} (3.8)

i.e. the mapped basis functions are polynomial on the reference element.

In practice, one has to build an invertible mapping for each curved element K of the mesh.
A common way to describe such a mapping is to use again a polynomial space: Fi € ]P’S(ff ), If
s is taken equal to r (i.e. the degree of the mapping is equal to the degree of the finite elements),
the resulting finite element space is called isoparametric.

Definition 3.9. A isoparametric finite element space over a triangulation Ty is the space
X7 ={ve Q) : vlg o Fx € P.(K), Fx €P.(K), VK €T}

The advantage of using isoparametric finite elements is that the mapping can be expanded
on the same basis functions used for the finite element functions. Let ¢;, j =1...,dim(P,) be
the set of Lagrangian basis functions constructed on the reference element K. Then

dim(P,)

Fr(d)= Y x;¢(2),

Jj=1

where x; € R? are the coordinates of the points (geometric degrees of freedom) defining the
curved element K as the figure below shows

P, P, P;

Clearly, the isoparametric PPy finite element space coincides with the standard IP; space. This is
not the case anymore for a degree r > 1.
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3.5 Continuous finite elements on quadrilateral meshes

We now turn to quadrilateral meshes in 2D, hexahedral in 3D. The definition we gave in (3.4)
can not be extended directly to this case. Let us consider for instance linear finite elements in
2D. In this case we should define 3 degrees of freedom per element. However, being the function
linear on each edge, we should provide 2 values per edge to guarantee overall continuity. Even if
we chose the vertices of the quadrilateral, we will have a mismatch as we would have to prescribe
4 nodal values, which are too many to define a linear function in 2D.

For this type of finite elements, one has to work with richer polynomial spaces than the usual
P, ones. Let K = [0,1]? be the unit cube in R? and let us denote by Q, the tensor product
polynomial space of degree less than or equal to r:

Q-(K) = spaun{aclflav';€2 .. .m’;d, ki<r, Vi=1,...,d, (x1,...,2q) € K} (3.9)
It is easy to see that
dim(Q,) = (r + 1)

The set of nodal degrees of freedom, on the reference element, which allows us to enforce
automatically the overall continuity of the function is depicted in Figure 3.9 for the spaces Qq,
Q2 and Q3 in 2 and 3 dimensions. Notice that, in general, a quadrilateral (in 2D) can not be

W

-
.
> & - --@- - -
.
°

*******

(O
W

Figure 3.9: Choice of nodal dofs for finite elements of degree » = 1,2,3 in 2D on quadrilateral
(top row) and 3D on hexahedra (bottom row).

mapped into a cube by an affine transformation unless it is a parallelogram. We have therefore
to use the more general definition of finite element spaces for non affine meshes.

Definition 3.10. The space of continuous Finite Elements of degree r over a quadri-
lateral mesh Ty, hereafter called Y, or, for brevity simply Q,, is defined for r > 1 as

Y, ={veC®Q): v|lgoFx Q. (K) VK €T} (3.10)

The Lagrangian basis and interpolant operator are defined as for triangular meshes.



Chapter 4

Finite element approximation of
elliptic problems — implementation
aspects

In this chapter we consider again the simple Poisson equation with mixed boundary conditions

—Au=f in QcCR?
Opu=d on I'y (4.1)
u=g on I'p

and will detail its finite element approximation, the practical construction of the algebraic system
and the main properties of the system matrix (stiffness matrix). We recall the weak formulation
of (4.1):

find u € Vj s.t. a(u,v) = F(v) Yvel (4.2)

with
Vo = H%D(Q> = {1} € HI(Q)v U‘FD - 0}
Vg = {U € Hl(Q)> U|FD = g}

a(u,v):/QVu-Vv, F(v):/ﬂfv—i-/dev.

Let Th be a conforming regular triangulation of 2. We assume hereafter that the domain 2
is polygonal and that both I'p and I'y are reproduced exactly as the union of straight edges of
triangles in 7, (resp. faces of tetrahedra in 3D).

4.1 The full Neumann problem

We start by considering the full Neumann problem I'p = (). The solution is defined only up to a
constant and one should set the problem in the space V = H'(Q)\R = {v € H'(Q), [ov = 0}.
However, we forget this issue for the moment and we set the problem in V = H(€Q):

find u € HY(Q) s.t. /Vu~VU:/fv+/ dv Y veHY(Q). (4.3)
Q Q I'n

33
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We consider the finite element space of continuous piecewise polynomials of degree r:
X' ={ve Q) :v|g =P (K), VK € T,}.

We have seen that X; C H 1(Q), so we can use it to construct a conforming Galerkin approxi-
mation to (4.3):

find uy, € X}, s.t. / Vuy, - Vo, = / fop +/ dvp, Yo € Xj. (4.4)
Q Q I'n

Let {¢;, i=1,...,N,} be the Lagrangian basis of X], with NV}, = dim(X} ). Then the solution
up, can be expanded on the basis as

Ni
up(x) = Z uipi(x)
i=1

with u; = up(x;) the nodal values (degrees of freedom) and z; the corresponding nodes in the
mesh (set of vertices for P finite elements; vertices + mid points of edges for [P, finite elements,
etc.). Having introduced such a basis, (4.4) is equivalent to the

Algebraic system : A = f
with
i € RNk, @ = (u1,...,upn,)’  (nodal values)
A € RNVwN, Ajj = /Qchj - Vi (stiffness matrix)
fe RNh, fi= / foi + / dyp; (load vector).
Q I'y

4.1.1 Construction of the stiffness matrix

Each element of the stiffness matrix is given by

Az‘jZ/QVst'VsOiZ > /KV%"V%.

KeTy

The computation of A;; reduces to the computation of [, Vg, - Vi; on each triangle K € Tp,.
The actual way this is done in many finite element codes is the following. (For simplicity we
limit to P finite elements on triangles, but the argument generalizes to many more finite element
spaces). Consider an element K € 7p,. The triangle K has 3 vertices, which we denote by a; g,
az ik and a3 k. Let N1, Na, N3 be the global numbering of those vertices in 7j, (see Figure 4.1).
One can thus establish a local to global map for each K between the local numbering of the
vertices and the corresponding global numbering (see Table 4.1).
On the triangle K, we can compute the local stiffness matriz A € R3*3,

(AK)ij = /KVSOGJ',K 'vwai,K'
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W/
Figure 4.1: Local to global map
triangle K local numbering global numbering
1 (vertex a1 x) — M
2 (vertex ag ) —> N
3 (vertex azg) —> N3

Table 4.1: Illustration of the local to global map for an element K € 7Ty,

Then, the term (A );; will contribute to the global entry An;n; of the stiffness matrix A
Ay < Ann; + (AK)i

Similar considerations hold also for the right hand side.
A general implementation of a finite element solver consists of:

loop over the elements K € Ty,

— compute the local stiffness matrix Ax and right hand side fg

— Assemble the local matrix into the global matrix and the local r.h.s. into the global

one:
fori=1,...,3
forj=1,...,3
Ann; = Anw; + (Ak)ij
end
end

end

4.1.2 Computation of the local matrix

In the example we have considered, each entry of the local stiffness matrix is (A );; = | xk Vi
V;. For P finite elements on an affine mesh, Vi, is constant over K and the computation of
(Ak)ij can be done directly starting from the coordinates of the vertices of K.
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In more general cases of higher order finite elements and/or non affine meshes, the construc-
tion and evaluation of V; on K might not be straightforward. In this case, one can first recast
the integral onto the reference element K, by introducing the map © = Fk (&) = BgZ + bx,

K = Fg(K). Then
(Ar)ij = / Ve, -V = / BV - BR' Vi | det B di. (4.5)
K K

Note that on the reference element K the expression of the basis functions ; is known an-
alytically and all derivatives can be calculated easily. For instance, for P; finite elements we
have:

y

K 3(2,9) = 9, Vs =[0,1]"

1 2

o~

X

Moreover, for triangles with straight edges, the map = = Fk (&) can also be easily constructed

starting from the coordinates of the vertices a1 i, a2 k and a3 i as we have seen in Section 3.1.1.
Then, a quadrature formula can be used to compute the integral on the right hand side of

(4.5). A quadrature formula on the reference element K will have the form:

ngp

Qi (f) = f(@1)w

=1

where Q- (f) & [; f(#)d& and ngp is the number of quadrature points used by the quadrature
formula. One typically chooses a quadrature formula that is exact in computing the stiffness
matrix [ V@i - Vidi or the mass matrix | % ©j¢idz. Then, the approximation of the local
stiffness matrix will be

ngp
(Ax)ij = Y BE V(i) - B Vi) | det Brclwr.
=1
One has therefore to compute on K , once and for all, the matrix
D& = V(i)

which will then be used in the computation of the local stiffness matrix on each element K € Tp,.
In the case of the mass matrix, one will have to compute and store also the matrix

Dy = P (@)

An example of a quadrature formula on the reference triangle K is the following

Q) = KT (5 0) + 5(F0m) + Flma) + Floma)) + 5 (Fan) + ) + flas)) ) (40
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where b is the barycenter, m;, ¢ = 1,2,3, the mid-points of the edges and a;, ¢ = 1,2,3, the
vertices of the triangle. This formula has degree of exactness 3 hence it will integrate exactly
the local stiffness matrix (in the case of constant coefficients and affine meshes) when using P
finite elements.

If the map * = Fg(Z) is non-affine, then the Jacobian matrix Jx = VFg will not be a
constant matrix. Therefore the contribution

(Ag)ij = / J IV G; - TV | det Ji| die (4.7)
K

will have to be computed a fortiori with a quadrature formula, as for instance the formula (4.6).
Remember that in the non-affine case, the space X is defined as

X ={veC’):v|goFxeP(K) VK €T}

and the mapped basis functions ¢; = y;|x o Fx are the usual Lagrangian basis functions on the
reference element K and can be easily evaluated at any point.

4.2 Treatment of non-homogeneous Dirichlet boundary condi-
tions

We consider again problem (4.1) and its weak formulation (4.2). Referring to the figure below,

let us denote by x s i=1,..., N ,? the nodes of the mesh that fall on the Dirichlet boundary
and by x ,7=1,...,N; ! the nodes that fall inside the domain or on the Neumann boundary.

On the Dlrlchlet nodes z8, we would like to impose the condition up(z?) = g(zP). We can
therefore define the two spaces

Xho=1{vn € X}, : vh(mB) =0}

Xhg={vn € Xj,: () = g(af)}
Observe that, if the domain is polygonal and the Dirichlet boundary is exactly represented by
edges of the mesh, then the functions in X} 0 will vanish on I'p and X 0C Vo. On the other
hand, in general, X; Q Vy since v, € X} " on the Dirichlet boundary will be equal to the

interpolation of the Dlrlchlet datum g in the ﬁnite element space X} (I'p) and not to g itself.
The finite element formulation of problem (4.2) is

find uy, € Xj, 4 s.t. a(up,vp) = F(vp)  Vop € Xj g (4.8)
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Strictly speaking, this is a non conforming approximation since wuj € X, g ¢ Vg. In practice, to
impose the Dirichlet boundary conditions and derive the algebraic system, we can follow three
alternative approaches.

1. Eliminate the boundary Dirichlet nodes and reduce the system

I
Let {(,ojl }2\@1 be the set of basis functions corresponding to the interior and Neumann nodes

B
:1:][ , which is clearly a basis of Xj ;. Let moreover {90;-3 };\[hl be the set of basis functions

corresponding to Dirichlet nodes a:}B. We have
N, Ni Ny
un(@) =Y ujei(@) =Y uip(x) + ) el (x)
j=1 j=1 I=1

Ni Ny
= D upi(@) +) glm)el (x)
j=1 =1

-~

iy, € Xj 4, unknown Gh € X}, o, known

With this splitting, we can rewrite the problem (4.8) as
find uy, € X;;,O s.t. a(&h,vh) = F(’Uh) — a(Gh,vh) Yo € Xf:,()' (4.9)

Notice that the function G}, plays the same role as the lifting of the Dirichlet datum that
we have already used in Chapter 1 to analyze the well posedness of the Poisson equation
with non-homogeneous Dirichlet boundary conditions. However, in this case, the lifting
G}, is confined only in the layer of elements with an edge on I'p (so it will not be bounded
in H! as h — 0).

At the algebraic level, problem (4.9) leads to the linear system
AII{:: f_Y . AIBg»

where

Al e RNONG - All = a(pl o)

B 1

AP RPN AP = ol o)

fTe®rM, f=F(e))

i€ R, Uj = &h(le ) (vector of dofs on interior and Neumann nodes)

ge RNE, g = g(zP), (boundary Dirichlet values).

This strategy has the disadvantage that one has to introduce two numbering of nodes. The
global numbering (of all nodes) and the reduced numbering of only the interior+Neumann
nodes.

Also, in the assembling of the local matrices into the global one, one has to check on each
triangle K if it has Dirichlet nodes and assemble this contribution in the right hand side
instead of the matrix. This implies adding conditional statements in the loop of elements
with corresponding slow down of performances.
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2. Ignore the Dirichlet conditions when assembling the matriz and enforce them afterward.

We assemble the matrix A € RV»*Nu without Dirichlet boundary conditions, so no con-
ditional statements are inserted in the loop over the elements.

Afterward, say that x; is a Dirichlet node. Then, we want to replace row ¢ in the matrix
with the simple equation u; = g(z;).

We can therefore modify the system matrix and the right hand side in the following way.
Letfl:Aandf:f:

for all Dirichlet nodes x; set
— Ay =1, 4;;=0,Vj#14,and fi = g(2;)

end

This corresponds to “zeroing” the ¢—th row, putting 1 on the diagonal and changing the
corresponding term on the right hand side to the Dirichlet value g(x;). Hence the i—th
equation becomes u; = g(x;).
Once all the rows corresponding to Dirichlet nodes have been modified, one solves the
linear system

Ai=f
where 4 is the unknown vector containing all degrees of freedom, including those on the

Dirichlet boundary.

In case the original matrix A is symmetric, the disadvantage of this technique is that the
symmetry is lost in the matrix A since few rows have been zeroed but not the correspond-
ing columns. Hence, we can not use a symmetric factorization method as a Cholesky
factorization. On the other hand, the loss of symmetry might not be a problem if we use
an iterative solver (even Conjugate Gradient) provided that the initial solution satisfies
exactly the boundary values.

3. Zero also the columns to recover symmetry of the matriz.

Let z; be a Dirichlet node. In the modified system A7 = f constructed before, the i-th
equation is trivial and u; is not really an unknown.

Consider now the row j of the system, not corresponding to a Dirichlet node: Zj\iﬁ fljkuk =

fj (notice that in this row, the entries of the matrix and right hand side have not been
changed so Aj, = Ajj, for all k and f; = f; ).

If we isolate the element flji, we have

Ny, ~ 3 3
> Ajpug + Aju =
=L

Since wu; is known, this can be written as

N, ~ R .
> Aju = fi — Ajig(x)
=L
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which can be further rewritten as

N
> Ajpug = f

Jj=1

having set fljk = fljk for all k # i, Aﬂ =0 and fj = f] — Ajig(xs).

This step corresponds actually to zeroing the i-th column of the matrix (except for the
diagonal term) and correcting accordingly the right hand side. Observe that, in general,
many entries of the i-th column are already zero (the stiffness matrix is sparse, see next
section), so only the rows corresponding to nodes in the neighborhood of z; have to be
modified.

After doing this procedure for all Dirichlet nodes z; we obtain a modified matrix A where
both rows and columns corresponding to Dirichlet nodes have been zeroed and a modified

right hand side f to account for the non homogeneous Dirichlet data. Finally, the system
to solve is

—
~

A= f.
Observe that, if A is symmetric, so will be the matrix A.

This procedure together with the previous one can be written in algorithmic form as

follows. Set A = A and f = f

for all Dirichlet nodes z;

~

— zero the i — th row: Ay = 1, Ajj =0, Vj #1, fi = g(x;)

— for all interior or Neumann nodes x; neighboring x;, set

« fj =i — Ajig(i)

4.3 Some properties of the stiffness matrix

We discuss now some properties of the stiffness matrix A;; = a(p;, ;) corresponding to the
bilinear form a(u,v) = fﬂ Vu - Vu. We focus, in particular, on the submatrix A/ related to
interior or Neumann nodes, since the extra rows corresponding to Dirichlet nodes, that are added
to the matrix in the approaches 2) and 3) above are trivial ones.

For convenience, we rename the submatrix A/ simply as A4, i.e.

Ay = alpl@l), Vij=1,... N (4.10)

e (symmetry) The matrix A is symmetric. This follows immediately from the symmetry
of the bilinear form.
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e (positivity) The matrix A is positive definite. This is a consequence of the coercivity
of the bilinear form. Indeed given ¥ = (vy,... ,’UN}{) € ]Rle, form the function v, =

T
Z?ﬁﬁ vip; € H%D (©). Then,
T AT = a(vp, vn) :/ Vo2 >0,
Q

and ¢T A¥ = 0 iff 7 = 0 thanks to the Dirichlet boundary conditions imposed.

e (Sparsity) The matrix A is sparse, i.e. the number of non-zero entries in each row is
O(1). Indeed A;; = fQ Vgojl. . Vgpl-l = 0 whenever the supports of <pj[ and goil have empty
intersection.

If we consider, to fix ideas, P; continuous finite elements and a Lagrangian basis, an entry
A;; can be non zero only if the vertices ¢ and j are connected by an edge. Therefore,
the number of non-zero entries in row ¢ is smaller or equal to the number of vertices j
connected to ¢ by an edge. For a sequence of regular meshes this number is bounded
uniformly with respect to the mesh size h, and is usually small. Referring to the meshes
in Figure 3.3 in Chapter 3, the number of non-zero entries per row is about 6.

Since the matrix is sparse, one will typically use a sparse representation of the matrix, i.e.
only the non-zero entries are stored and the memory occupation is only O(N},) instead of
O(N}?) for a full representation.

Moreover, since every row contains only O(1) non-zero entries, a matrix-vector multiplica-
tion will entail O(N},) floating point operations (instead of O(N}?) for a full representation).

This makes iterative methods particularly attractive to solve finite element problems,
especially for low order approximations.

Notice that the first two properties (symmetry and positivity) are only related to the prop-
erties of the bilinear form and not to the choice of the discretization space. On the other hand,
the sparsity property is a consequence of the particular choice of the discretization space (finite
elements) and the use of a Lagrangian basis. Other discretizations (as for instance spectral
methods) might not have this property.

4.4 Condition number of the stiffness matrix

We consider again the stiffness matrix (4.10) corresponding to interior and Neumann nodes only.
Let {7n}n 0 be a family of reqular and quasi-uniform affine meshes such that hx < ypgx and
hx > 6h for all K € T, and all h > 0, where pg is the diameter of the largest ball contained
in K, hg the diameter of K and h = maxge7, hi (see Chapter 3 for the exact definitions).
We set moreover pn;;, = minger;, px. Finally, for a basis function 4,0{ of X} o, let ¢ be the
number of elements in the mesh with non zero intersection with the support of <p;»’ , namely
G =#{K € Th: Knsupp(p!) # 0}, and set ¢ = max;_; NI (i- We prove the following
result:

Theorem 4.1. The condition number of the stiffness matriz A in (4.10) can be bounded by

) < ¢ ( )dpgﬁm (4.11)

Pmin
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where C' > 0 does not depend on the mesh Ty,. Moreover, for a quasi uniform family of meshes
it holds .
k(A) < Ch™2, (4.12)
with C = C¢ (7/5)d+2 and C,7y,6 independent of h.
Before proving this theorem, we need some preliminary observations and lemmas. Consider
the reference element K and the space Py (K) of polynomials of degree at most r. Let {¢;, i =
.,N;} be a Lagrangian basis of P,.(K). Here N, is the local number of degrees of freedom.

Then, any polynomial © € P,.(K) can be expanded on the basis ©(#) = Zi\[l v;$i(2) and P,(K)
is in 1-to-1 correspondence with RNr

beP.(K) & T=(vi,...,vn,) € RN

Being P,(K) (and RV") finite dimensional, all norms are equivalent. Therefore, there exist
C1, Cp, Cpr > 0 such that

19l 20y < 190l i) < Culldll oy and  Cald] < (18]l o) < Culdl, Vo € Bo(K), (4.13)

the last being the euclidean norm of the vector .
Consider now an element K € 7;, and the mapping ¢ = Bg + bx from K to K. We recall
the following properties of the matrix Bg (see Lemma 3.6):

K| hk _ h
|det B | = — IBkll < —, [IBg'I <%
K| Pk PK
which imply
h Pr _ hz
PR < Bkl < 2K, P& < B < 2K, (4.14)
hi I%4 hi )

and, for any v € P.(K)
LS
&

The following lemma is necessary to analyze the condition number of the stiffness matrix.

(4.15)

ollZa e = / 9% | det Bx| =
K

Lemma 4.2 (Local inverse inequality). For all K € T, and v € P.(K)

IVoll L2y < Cpt ol 2 (4.16)
where C = C1hy and Cy is defined in (4.13).
Proof. 1t holds

2
Vollta = [ 1BTVol2 | det B < KK o2
IVl = [ 1B Vol det Biel < e 2 1VOla i
2 [K| P K
< 1911724y = Cox 10720
IR Pk Y
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As an immediate consequence we have

Lemma 4.3 (Global inverse inequality). For any v, € X} it holds

IVonllz2) < Cominllonll 2 () (4.17)
Moreover, if the family of meshes {Tp}1, is quasi-uniform (hence regular), i.e. pg > %hK > %h
for all K € Tp, and all h > 0, then

IVonllzz@) < € (§) b lonllezieys Vo € X5, (4.18)

Observe that the inequality will not be true if we replace the (finite dimensional) space
X} with the (infinite dimensional) space H%D (©). This type of inequalities are called inverse
inequalities and it has to be expected that the bound in (4.18) degenerates as h — 0.

We are now ready to prove Theorem 4.1.

Proof. (of Theorem 4.1)
Being A symmetric and positive definite, its eigenvalues are all real and positive and can be

estimated via the Rayleigh quotient
T Av
|92

We split the Rayleigh quotient in two factors
A oTAv o' M©
72 TMG |02

Ra(®) Ry (%)

where M is the mass matrix M;; = fQ pipj. Observe that M is also symmetric, positive definite
and

N
Vup € Xp, (@) =) uigi(e), @ Mii = / i, = llunllzz(o)
=1 @

Estimate for R (7).
I
For any ¥ = (vy,... ,’UN}{) and associated finite element function vy, (z) = Zi\ihl vipi(x), we

easily see that R4(7) has the following characterization:
||vvh||%2(g)

A7) = .
||Uh||%2(g)

A lower bound for R4 (%) is therefore given by the Poincaré inequality||vp|| z2(q) < Cpl|Vunllr2(q)-
Therefore

Ra(V) > C 2,
On the other hand, an upper bound follows from the global inverse inequality (4.17):

RA(D) < C?p 2

Pmin
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Therefore

C,? < Ra(¥) < C? (4.19)

pmln

Estimate for Ry (7).
Recall that

o K]
MG = ”vh||%2(9) = Z th||%2(K) Z T4 [0 H
K

Let now O = {i € {1,...,N/}: K nsupp(¢!) # 0}. From the norm equivalence (4.13) we

have
C’I%l § U < ||/UhHL2 K) < C(M E /Ui27
1€EOQ K €O K

and
<> > v <ng < ClFP.
KeT, i€k

Therefore, recalling that Cp < |K| < h%, we have

Cpl H”h”2L2(Q) hd
C2 ZImin < Ry (7) = ——=" < C3¢—. 4.20
Finally
2 A 2,02
i < R@) < U o g
|K|C3 K]
and
K(A) < Cp, (2 pd, (4.21)
with C' = i CQC %5 . Finally, for a family of quasi uniform meshes with py > * h K> 5h VK €T
and h > 0, the bound (4.12) follows. O

Remark 4.4. The result (4.19) provides a bound on k(M ~'A), useful when the mass matriz is
used as a preconditioner for the stiffness matriz.



Chapter 5

Approximation results for Finite
Elements spaces

We look at the case of continuous triangular finite elements on affine meshes
X ={vel®0),vlg eP(K) VKEcT,}

although many of the arguments generalize to other finite elements as well. We are interested
in studying the approximability properties of this space for smooth functions v € H*(Q2) with
s > 1, namely we would like to quantify the best approzimation error

H'-BAE = inf -
w,?elxg”v wh”Hl(Q)7

L?-BEA = w;g(g v —whlr2(0)
for v in H*(Q2), with s > 1. Observe that since X; C H' but X, ¢ H",r > 2, it does not make
sense to measure the best approximation error in a norm higher than H'. However, on each
element K € Ty, a function vy € X is polynomial and hence infinitely differentiable. We could,
therefore, measure the BEA in higher norms element-wise. Let us introduce the so called broken
H™ space:
Hypo(Q) = {v € LX)+ |lojkllamx) < +o0, VK € T}

endowed with the norm HUH%IZ?O =) KeT, H’U|KH§{m(K)-

For m > 0, H™ is strictly contained in H"  whereas for m = 0 (L? space) the two spaces
coincide. Moreover, it holds

[ollm@) = vllay, @), Vo H™(Q).

With this definition, we could also try to estimate the best approximation error in H™-broken
norms
m I _ _
HbTO_BAE_w;Ielg(Z HU whHHgﬁo(ﬂ% m=0,...,r7
Observe that it is not worth going beyond m = r. Indeed, for any w;, € X}, we have D%wp i = 0
for all |a| > 7 since wy, is a polynomial of degree r in K and the function wy, is not capable of
providing any approximation of derivatives of v higher than r.

45
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The typical procedure to obtain estimates on the best approximation error for a given func-
tion v € H*® consists in building a particular function v, € X} starting from v, that is a good
approximation of it. Then, the best approximation error in, say, the H;" -norm will be bounded
by [lv = vallmp, (@)-

A natural candidate for the approximating function vy, is to use the finite element interpolant:
vp, = Ijv that we have introduced in Chapter 3. This is however not the only choice (although
it is the only one we will discuss). Notice that since the interpolant operator involves point
evaluations of the function v, this procedure is well suited only if the function v is at least
continuous. This is guaranteed if v € H*(Q2) for s > d/2, d being the physical dimension. For
2D and 3D applications, we can take s > 2. To obtain best approximation error estimates for
functions v € H*() with s < 2, other reconstructions v, than the interpolant will have to be
used, as e.g. the Clément or the Scott and Zhang interpolants (see e.g. [5, 2]).

We anticipate here the main result concerning the interpolation error, whose proof will be
the subject of the next sections.

Theorem 5.1 (Intepolation error for smooth functions). Given a family of reqular triangulations
{Tw}ns0 of a polygonal domain Q C RY, d < 3, and the space X} of continuous finite elements
of degree v > 1, there exist Cp, > 0, m =0,...,r, such that for any functionv € H*, s >r+1

v — il r2@) < Coh” o e (5.1)
v — Ihvll i) < Crh" o] gri1 )
lv = Lyollgm @) < Coh™ " ol grer), 2<m <, (5.3)

with Cy, that depend on v = maxgeT;, z—g, r and m, but are otherwise independent of h.

Observe that we could have just written (5.3) for m = 0,...,r, thanks to the fact that under
the hypotheses of the theorem, [[v — Ijv|[gm = [Jv — Ijv|[ gy for m = 0,1.

In the case where the function v does not have the required regularity to achieve the maximum
convergence rate, the previous result generalizes as

Theorem 5.2 (Interpolation error for possibly non-smooth functions). Given a family of reqular
triangulations {Tp >0 of a polygonal domain Q C R?, d < 3, and the space X} of continuous
finite elements of degree r > 1, for s > 2, and setting n = min{s,r + 1}, there exist Cy, > 0,
m=20,...,n, such that for any function v € H®

[v—Tpvllap @) < Cnh" ™ |vlgn), 0<m<mn,

with Cy, that depend on v = maxgeT;, %’ r, s and m, but are otherwise independent of h.

5.1 Local approximation estimates

The first step to prove Theorems 5.1 and 5.2 is to understand what are the local approximation
properties of the space X} on a single element K € 7. Remember that on each element the
space X is made of polynomials of degree r. Therefore, the question we ask is how well we can
approximate a given function v € H*(K) by a polynomial in P, in a domain K.

The following result is valid on any bounded convex Lipschitz domain K € R% with outer
diameter hx and inner diameter pg.



5.1. LOCAL APPROXIMATION ESTIMATES 47

Lemma 5.3 (Deny-Lions). Given any bounded convex Lipschitz domain K C R? and s > 0,
setting n = min{s, r + 1}, there exists Cpr, > 0 such that

Yo € H5(K),  inf —pllgmigey < C , =0,1,...,m, 5.4
v (K) pe%p?(m”” plamx) < Cprlvlgn, m 7 (5.4)

with constant Cpr, = Cpr(hk, px,m,s,d). Moreover, asymptotically as hx — 0, the constant
m
Cpy, scales as Cpy, ~ h?{m (h—K) .

PK
Constructive proof in 1D. The proof can be done by contradiction (see e.g. [8, Proposition
3.4.4]). We propose here a constructive proof in the 1D case, i.e. K is an interval in R.
The statement is obviously true for m = s = 0 as we can just take p = 0. We focus then
on the case s > 1. Let xp € K and notice that in 1D a function v € H*(K) has at least n — 1
continuous derivatives. We consider the Taylor expansion of v in g, of degree n — 1:

L o®) Tt _
o) = T} ), Tl = 3 s, B = [y

If we differentiate the previous formula m < 7 times we have

dm dm . dm r v (t) i
(m) _ Y 2 pn () — _\n—1-m
v\ (x) dme:voU(x) + dme (z), with dme () /xo —1—m) (x—1t) dt.

Notice that

dm x T (x —t)2=1=m) | K |2(—m)—1
R”a:Zg/ v"t2dt/ dt < ||v"| 72
g B @S [ @Y | T e S e G — w1
so that
T — fotm — L qm TR <C
lv— xOU|Hm(K) = [[o"" — dzm xOUHLQ(K) = ”dmim (x)HLQ(K) > m’U|H"(K)
with C, = K" . Finally

V2(n—m)—1(n—1-m)

pG]iI”I:fK) v = pllam )y < v =T vllam@y < (m+1)Cnlv| gy

O]

The key point of the Lemma is that the best approzimation error infyep, ||v — pllgm (k) is
related to the derivatives of v of order r + 1 (seminorm ]vﬁpﬂ(m =Y jal=ri1 HDOLUH%Q(K)) if v
is smooth enough. On the other hand, if v is not smooth enough, that is v € H® with s < r+1,
the best approximation error is related to the highest derivatives of v.

The constructive proof of Lemma 5.3 that we have given in 1D, can be generalized with some
care to the multidimensional case. Let K C R? and consider a Taylor expansion up to degree
n — 1, with » = min{s,r + 1} in a point xy € K

To@ = Y éDav(fo)(f—fo)"‘ (5.5)
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where we have used the multi-index notation: a = (aq,...,qq), a! = Hle a;l, (& — Zp)* =
— — B aj+...fo
[1{1 (& — @04)%, and DY = L4

9T pg0d - Using the integral formula for the residual of the
1 - d
Taylor expansion, we have

1] _ g1
R™(&) =v(F) — T v(F) = /0 Hﬁv(fo + 8(Z — To))ds

11— g1
- (f—fo)a/ Q=" poay (@ + 5(7 — To))ds

al
la|=n 0

provided v € C"(K). From this we can easily prove a version of Lemma 5.3 in the spaces
C"™(K), m=0,...,n, defined as

C™(K)={v: K - R% max [DYv(Z) | co(ky < +o0}

la|<m
endowed with the norm [[v||om (k) = max|q|<m [[Dv||co(x) and semi-norm |v|cm () = MaxX|q|=m [[Dv[|co(x)-

Lemma 5.4 (Deny-Lions — version in C™-spaces). Given any bounded convex Lipschitz domain
K C R%, and s > 0, setting n = min{s,r + 1}, there exists Cpr, > 0 such that

v GCSK, inf — m <C m; =0,1,..., 5.6
’ (&) pellPI,l.(K)”v pllomxy < Corlvlen;  m n (5.6)

with CDL ~ h?(_m as hK — 0.

Proof. Take p = T,,v and estimate

v = Tg vllcoxy =R cok)

e [f=st L
=max |7 E (Z — ) TD v(Zo + s(& — Zp))ds
O .

1 1— n—1
o [0
0

ol

< (87

< Z D%Vl ok max
lee|=n

<C(n) hi|v|en

Since DAT v = TP DBy, for any |B| < n
1D (v = T )| coxe) = IIDPv — TP DB coiey < Cln — 18RS o] cniieys
hence, for m =0,...,n,

[v — T3 vlemky = max [ DY (v — T31v) [l cok)

< max C(n — ) B folon(rey < R ™ olon
and therefore

it o = pllom e < llo = Thvlon o < CHE ™ vlor.
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Estimates in H™(K): The argument based on Taylor expansion can be extended with some
care also to prove Lemma 5.3 in the Sobolev spaces H™(K). Indeed, since the pointwise (n—1)-
th derivative is not well defined for functions in H", the idea is to build an averaged Taylor
expansion. Let Bg be the largest ball contained in K, with radius pg, and V§ € Bk consider
the Taylor expansion of degree n — 1 centered in :

Tho(@) = Y — D) & —§)™
lo|<n—1
Then, we can define an averaged Taylor expansion over B as

1 1
T0(7)df = —— ~ [ D) (& - §)*d7.
7o @i = 5 la%;la! |, Do) — )%y

Tho(%) = @ 5
K

which is well defined now for functions v € H". Observe that it still holds
DPTN v =T8I DBy

Moreover, the reminder is given by

S L S 1 » 2\ -
Rbo(@) =o(@) = Tho(@) = o | (o) = Tjo(@) d
K
1 -1
_ n / = —»a/ (1_8)77 o (= = — -
=— T ——— D% (y+ s(Z — ¥))ds dy
B X, F0 [ S s )

lee|=n

which is also well defined Yv € H"(K). Proceeding in a similar way as for the C™ case (but
with integral norms), one can prove the result

v — T vlgmxy < Clvlam, form=0,...,n

m
with constant C' ~ R (Z—Ifj) . For details, see [2, Chapter 4].

5.2 Local interpolation estimates

Let us consider now a function v € H®, s > 2 and its interpolant I;v € X;. In this section we
focus on quantifying the error v — Iyv on a single element K € 7j,. Let us denote by vk and
I}, kv the restrictions of v and Iyv on K, respectively. We aim at estimating lvg — I};,KU|H7”(K)
with m <1 :=min{s,r + 1}.

The path that we follow is to map the quantity |[vg — Iy V|em onto the reference element
K using the affine map = = Fg(2) = Bk + bk introduced in Section 3.1.1. We denote
O = v o Fyc and T} v = If, v o Fi. Notice that

N, Ny
I;;K’U = IZ,KU o} FK = Zv(ai,K)QPi’K ©) FK = Z’[)K(Ciz)gﬁl = [;{@K
i=1 i=1
where {a; x,i = 1,...,N,} is the set of nodes defining the degrees of freedom on K (vertices

for P; elements, vertices and midpoints for Py elements, etc.) and ¢;|x the corresponding
Lagrangian basis functions restricted to K. Similarly, {a;} and ¢; denote the nodes and basis
functions on the reference element K.

The first result we need is how the H™-seminorm transforms through the mapping Fx.
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Lemma 5.5 (Seminorm transformation). For any v € H™(K), m > 0, let 0 = vo Fg. Then
v € H™(K) and there exists Csp, = Cspn(m) > 0 such that

“1ym 1.
[0l m (i) < Conl| B ™| det Bre|2 0] ym ) (5.7)
N N m 1
0] g (i) < Csnll B || det Br|” 20| g 1) (5.8)

where ||Bg|| is the spectral norm of the matriz Bi. Moreover, Cs, = Cyp =1 form =0,1.

Proof for m = 0,1 only. we give here the proof only for the cases m = 0,1. For m = 0 we have

\U||2L2(K):/KU2(x)d9::/KA (&) det Bic|di = | det Bic| |62z,

which proves (5.7) for m = 0 with constant Cs, = 1. Inequality (5.8) can be proved analogously.
For m = 1 observe first that

d
Ox;j -
v = Z@xjv%, — Vu=BEkVu
:1 1

where V denotes the gradient with respect to the variables Z. Hence, we have
|v|%p / \Vo(x)|2de = / |B'Vi(2)|?| det Bre|di

< [ UBRNIG0(@)) det Bicld < B! | det Biclof,

which proves (5.7) for m = 1, again with constant Cy, = 1. Inequality (5.8) can be proved
analogously. O

Bounds on the spectral norms of Bg and B[_(1 have been given in Lemma 3.6. The second
result we need concerns the continuity of the interpolant operator I}i( on the reference element.

Lemma 5.6 (Continuity of interpolant operator). Let I’ : CYK) — P.(K) be the finite element
interpolant operator on the reference element K c R4, Then, for d < 3, I;A{ 1 a linear bounded
operator from H*(K) to any H™(K) with 0 <m <7+ 1, i.e. there exists Cr,, > 0 such that

||I;?ﬁ||H”L(K) < CI,mHUH}p([()a Vo € HQ(k)
Proof. We have
N, N
500 iy = 12 2@l ity < Z [0C@a)lllill o iy < M0l cogiy (Z |¢i||Hm(f<)>
i=1 —

Since the embedding H2(K) < C°(K) is continuous for d < 3, there exists C; > 0 such that
0] coiy < C1l[0]l r2(g)- Moreover the functions @; are polynomials, hence infinitely differen-

tiable, and the quantity Cy,, = Soor ||l gm(iy 15 bounded. The thesis then follows with
Crm = C1Cypm. O
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We finally need the important observation that

Lemma 5.7 (Exactness of I, on P,(K)). The interpolant operator I COUK) — P.(K) is

exact on P,.(K), i.e.

A~

Ip=p, Vp € P.(K).
Proof. This comes directly from the unisolvency of the set of degrees of freedom on K , le if a
polynomial p is such that p(a;) =0 for all i = 1,..., N,, then p = 0. O
We have now all the ingredients to prove the following local error estimate

Lemma 5.8 (Local error estimate). Let K € Ty, be an element of the mesh with outer diameter
hx and inner diameter pr. Then for s > 2 and any 0 < m < n:= min{s,r + 1} there exists
Cy = Cy(s,r,m,K) > 0 such that

he\™ .
lv — I}TZ”K'U‘Hm(K) < (,OI;) Iy |U\Hn(K), v € H*(K).

Proof. We use in sequence: the seminorm transformation (A5.7 ) in Lemma 5.5, the exactness of
I%, on Pr(K) and the boundedness of I7 H?(K) — H™(K). In what follows  is an arbitrary

~

polynomial in P, (K). We have

[0 — If, vl gy < Conl B ™| det Bie| [0 — 5]y
< Conl| B ™) det B2 (18 = Bl ym i) + 1B = Ty i)
< Conl B ™ det Bic|2 (16 = pl g ey + 15 (0 = 9) gy )
< Conl| B ™ et Bie|2 (|6 = plygon ) + Cranll = ll o )

_ RN ~
< Con(L+ Cr) IBR ™ det Bic 3116 = Bl e

Since p is arbitrary, we deduce

_ 1 . N ~
o= Bl < Con(1-+ o IBRI| et Bl int 1= o
pelr

Using now the local approximation estimate in Lemma 5.3 (Deny-Lions) and the seminorm
transformation (5.8) in Lemma 5.5 we obtain

_ 1
o~ I, gl sm(ae) < Con(1+ Crm)Cor | Big || det B 3] g

< Csnésn(l + CI,m)CDLHBj_(l||m||BKHn’U|H"(K)

. " ()"
SCansn(1+CI,m)CDL <pK> < f<> ’U|H"(K)

p

he\™
<G <p§> Wi ™ vl )

with C) = CCon(1 4 Cm)Cprh™p. O
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5.3 Global interpolation estimates

We finally derive estimates for the global error (v — I;v). The following result holds, that
generalizes Theorem 5.2.

Theorem 5.9. Given a family of reqular triangulations {Ty Yno of a polygonal domain Q C R?,
d < 3 and the space X} of continuous finite elements of degree r, for s > 2 and 0 < m < n :=
min{s,r + 1} it holds

r m 2(n—m s
lo = Lol ) < O™ [ S0 B3 ™oy | . Yo € HY(Q), (5.9)
KeT,

where Cy is the constant appearing in Lemma 5.8 and v = maxge7, hi/pK .

Proof. Exploiting the fact that the triangulation is regular, hence hx /px < v for all K € T,
and h > 0, we have

O [ >l = Tl

KeT,
hK 2m 5 )
<> () hie" " 1ol )
KeTy PK
m 2(n—m
<Y h" )|U‘%{"(K)'

KeTh

O]

By introducing the global mesh size parameter h = maxy hg in (5.9) one easily proves
Theorems 5.1 and 5.2, stated at the beginning of the Chapter.

We remark that the result of Theorem 5.9 is stronger than that of Theorem 5.2. The
advantage of Theorem 5.9 is that it provides a representation of the interpolation error as the
sum of local contributions from each element of the mesh. This is a starting point for mesh
adaptivity. One could indeed try to drive an adaptive algorithm based on local estimates of the
H™in{sm+1}_geminorm of the solution on each element K and refine the mesh in those elements
for which the estimated seminorm, weighted by the corresponding factor h(Kn_m), is large.



Chapter 6

Finite element approximation of
elliptic problems — Convergence
analysis

We consider again the model problem

—Au=f in Q
u=g on Ip (6.1)
Opou=d on Iy

and its weak formulation:
find uw € Vy s.t. a(u,v) = F(v) Yvel)

with Vg = {v e H'(Q) : v|r, = g}, a(u,v) = [, Vu- Vv, and F(v) = [, fo+ fFN dv. We recall

moreover the coercivity and continuity estimates
a(u,u) > allull3., Yu € Vp, a(u,v) < M|lul|g||v|l g1, Yu,v € V.

Witha:ﬁ and M = 1.

Assume €) polygonal and 7; a suitable triangulation of  which reproduces exactly the
boundary 02 as well as I'p and I'y. Let X} = {v, € C%Q),vp|x =P,(K) V K € T} be the
space of continuous piecewise polynomials of degree . Let Vj, o = X} NVp and V4 = {vy, €
X}y, vplrp, = Ipg} where I7 g is a suitable interpolation of the Dirichlet boundary datum. We
recall the finite element formulation

Find uy, € Vj 4 s.t. a(up,vp) = F(vy) Yo, € Vh.0- (6.2)

6.1 Case of homogeneous Dirichlet boundary conditions
We start by considering the case of homogeneous Dirichlet boundary conditions
Find up, € Vi s.t.  a(un,vn) = F(vy) Vop € V.

93
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6.1.1 Error estimate in H'

In this case, since V}, o C Vp, we can apply Ced’s Lemma 2.1

M
lu—up|lgr < — inf ||u—op|g.
a Uhth,O

The best approximation error can further be bounded by the interpolation error for which
estimates have been derived in Chapter 5:

inf |lu—wvpllgr < |lu— Tl < CR7u| g, n =min{r + 1, s}
v, €Vh,0

Putting everything together we have the estimate for the error in the H'-norm

lw — up || 2 < CATHu|gm, n = min{r + 1, s}.

6.1.2 Error estimate in L? (Aubin-Nitsche trick)

Let e = u — up. We aim at estimating ||e|| ;2. Define the dual problem:
find ¢ € Vp s.t. a(v,¢) = / ev Yovel. (6.3)
Q

Since e € L%(Q2) and problem (6.2) has smoothing properties (at least in the case of £ convex
and either a full Dirichlet or a full Neumann problem), one has ¢ € H?(Q) and ||¢|| 2 < Clle]| 2.
Then

lellZ> =a(e, @) = alu — un, ¢)
=a(u — up, ¢ —wyp) by Galerkin orthogonality
<M|lu— upl|g[|¢ — wn | m

Hence

lellF2 < Mllu—up|[n inf [|¢ — wpm
whEVh,o

Since ¢ € H?, we have infy, cv; , [|¢ — wallg1 < Chlg|y2 and
lell72 < Mlu = unl| g1 Chll g < Chllu = up| g lle]l g2
We have proven the following result:
lu—upl|r2 < Chllu —up|| g1 < Ch"u|gn, 7 = min{r + 1, s}. (6.4)

Observe that this improved convergence for the L? error has been obtained thanks to the smooth-
ing properties of the operator —A~! for which

feL?Q) — u=(-A"Yfe H*Q)

which holds if €2 is either a convex polygonal domain or a domain with C? boundary and for the
full Dirichlet or full Neumann problem. One should be careful when mixed boundary conditions
are employed or when the domain is a non convex polygon (reentry corners) as the H? regularity
might not hold.
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6.1.3 Error estimate on functionals of the solution

Many times one is interested in computing some specific quantities of interest associated to the
solution. Examples are:

Q= [u  Qw=[T% Q- [ w

o 0x;’

Let @ : Vo — R be a linear functional on Vj. We aim at estimating |Q(u) — Q(up)|. As for
the estimate in the L? norm, we introduce the dual (or adjoint) problem

find ¢ € Vp s.t. a(v,¢) =Qv) Ywvel
Then

Q(u) — Qup) = Q(u —up) = alu — up, ¢) = alu — up, d — wy), Ywy, € Vi p.

The last step follows from the Galerkin orthogonality. Therefore

Q) ~ Qun)| < Mllu— ]| inf 6wl (6.5)

h,0

Assume now that both the primal solution u and the dual solution ¢ are smooth and in particular
u,¢ € H™1(2). Then,

|Q(u) — Q(un)| < Ch [l gr+1|@] i (6.6)

i.e. the quantity of interest converges twice as fast as the H' norm of the error.
In the case of possibly non smooth solutions, if v € H® and ¢ € H® the previous result
generalizes as

Q(w) = Q(un)| < CH™ 2 [ul 2| gy
with n = min{r + 1, s} and ' = min{r + 1, '}.

6.1.4 Error estimate in negative norms
Another way to read the previous result is the following. Assume Q(u) = [, Yu with ¢ € H™ (),

then the solution to the adjoint problem is

~Ap =1
gf):O on FD
871(]5:0 on FN-

Assume a shift theorem holds, i.e. 9€ is sufficiently smooth and the boundary conditions are
such that
e H™(Q) — ¢=(—A"Hy e H™2,

Then,

Q) ~ Qun) = [ wlu—w) < Clu=wnlm  inf o= wnlm

ORI |l — | g1 @] s < CR™MO™ Dl — | g [
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It follows that

u—u
= g = sup 220 )

T e N (S (6.7)

The convergence in negative norms is faster than the convergence in H' and the more negative
the norm is, the faster the convergence provided a shift theorem holds. However, there is a limit
in the gain, as we can not gain more than a factor h". If we detail the result in (6.7) we have

lu = unllgr—m < CH™FHlu = up| 1, 0<m<r—1
lu = unllg-m < Ch"[lu—un g, m=r.
6.2 Case of non-homogeneous Dirichlet boundary conditions
In this case, the finite element approximation (6.2) is non conforming since Vj, , ¢ V, and
unlrp = Ihg # ulrp.
However, a Galerkin orthogonality still holds
a(u —up,vp) =0 Yo, € Vo CVo.

6.2.1 Error estimates in H'

We can not apply Ced’s Lemma straightforwardly but we have to proceed in a slightly different
way. Denote by I;u the finite element interpolant of the exact solution u. Then

lu — upl3pn < alu —up,u—up) = alu —up,u — Thu) + alu —up, Tu — up)

Observe now that both uj, and I;u are in the space V}, 4 so that Iju—wuy, € Vj ¢ and by Galerkin
orthogonality a(u — up, Iju — up) = 0. Therefore

lu — uhﬁ{l <a(u—up,u—Iju) <|u—up|gilu— Ipulm

and finally
lu —up| g < Ju— Tulgs < Ch" Yulgn, 1 =min{r,s— 1},

which is the same result as in the case of homogeneous Dirichlet boundary conditions. A result
in the full H! norm can be recovered using the following Poincaré type inequality (see e.g. [5])

ull ) < Cp(lulmi) + lullrzrp)),  Vue HY(Q), if |Tp|>0.
We have then

Ju = unll @) < Cp(lu — unlgro) + llu — unll 20 p))
< Cp(lu— Tyul gy + lg — Ihgll 20 p))
< C(hmin{r,s—1}|u‘Hs + hmin{r—i—l,s/}’g‘HS/)'
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6.2.2 Error estimate in L?

For a general problem it is not obvious that one can obtain an improved convergence rate when
looking at the L? norm. However, this is true for the specific problem (6.1) as the following
Lemma shows.

Lemma 6.1. Assuming that the exact solution of problem (6.1) satisfies u € H*(Q) and g €
H¥(T'p), s > s—1/2, the finite element solution uy, satisfies the estimate

o= 2y < CR™™ 2 (Jul o) + gl ) )
provided that problem (6.1) has smoothing properties, i.e. u € H*(Q) whenever f € L*(Q) and
d,g=0.
Proof. Let ey, = I} u—up € Vj 9. We first estimate ||ep|| 2 and conclude by triangular inequality
lu —un|lp2 < ||u— Ijul|L2 + ||en]| 2. Define the dual problem:

find ¢ € Vj s.t. a(v,¢) = / e,v Yv eV (6.8)
Q

Since e, € L%(Q), if problem (6.8) has smoothing properties, then ¢ € H?(Q) and ||¢| g2 <
Cllen||r2. Observe that the following inequalities hold:

1AG]2(0) < Cll@l 2

1009l L2(00) < CW(bHHl < Cléluz)

Then
lenl72(q) = alen, ¢) = a(lju — u, ¢) + a(u — up, ¢)
< CL(I}:U —u, d)) + a’(u — Uh, ¢ - U]h)

by Galerkin orth.
a(Ifu —u, @) + M|ju—up|| g inf  ||¢ — wp| g
'LU}LGVh’()

< a(lpu —u, ¢) + Chlju — up| 16| 2

We focus now on the term a(f;u —u, ¢):

(Itu — u)Ap + / (Ipu — u)Ono

00

On®=0 on 'y
<|Hpu — ull 2o [|AB| 2y + 1Hpw — ull 20 ) 1009l L2(r )
<C(llu = Iyullp2) + 19 — Ihgll 20 p) 1Dl 2 (0)

a(f,gu—u,¢):/Qvu;;u—u).w:—/

Q

Putting this estimate in the previous one and recalling that ||@| gz < C|len||z2 we have
lenllF2(q) < Clhllu —unllmi(e) + llu = Thullz2) + g = Thgll o) lenll 2o
and by triangular inequality

lu = unllp2(0) < C(hllu = unllgr o) + llu = Lull2@) + g = Thgll2rp))- (6.9)
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Assuming now u € H™ () and g € H"(I'p), we have
lu = unll2) < O™ (|ulgriv@) + l9lar+1(0p)) (6.10)
and for possibly non smooth functions u € H*(2), g € H¥ (I'p)
Ju —up||L2(q) < Cpmin{rtls,sy (‘U‘HS(Q) + ’g‘HS'(FD)) (6.11)

which again is a similar estimate as in the case of homogeneous data. O

6.3 Variational crimes: numerical integration

As we have already discussed, in many cases the integrals appearing in the weak / finite element
formulation can not be computed exactly and one often uses quadrature formulas to approximate
them. A typical situation is the case of a Poisson problem with non constant coefficients

(s e =
The weak formulation of this problem in the functional space V = H}(2) reads
find u e Vs.t. a(u, v) = F(v), YVoeV
with a(u,v) = [, p(z )- Vo(z)dz and F(v) = [, f(x)v(z)dz, and its finite element formu-

lation in the space Vh = X’” NV ={v, € X} : Uh|d§2 = 0} reads
find up, € Vi, s.t. alup,vp) = F(vy) Yop € V.

Here we assume again that no approximation of the domain 2 is induced by the triangulation 7.

The practical computation of the stiffness matrlx Aij = alpj, i) = Jo m(x)Vei(z)Vei(x)de
and the right hand side F; = F(p;) = [q f( x)dz, often require the use of quadrature
formulas. Let us consider a quadrature formula on an element K € T,

ngp

= wriflarx) = | flz)dr (6.13)
> s fla /.

where z; g are the quadrature knots and w; g the corresponding weights, and the composite

formula
=Y Qx(f)

KeTy

Typically, the elementary quadrature formula Qg (f) is first defined on the reference element K
Qh =3 af = [ i@
Then, introducing the mapping ¢ = Bg® + bx from K to K,

/f dx—\detBK|/f #)dé ~ | det Bx| Q. ()

and formula (6.13) will have w; g = |det Bx|w; and 2, x = BgZ% + bx. We give here three
examples of quadrature formulas on triangles. Let us denote by cx the barycenter of the triangle
K, by m; , i =1,2,3 the mid-points of the edges of K and by a; i, i = 1,2, 3 the vertices of K.
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e Formula exact on Py

Qk(f) = |K|f(ck),

e formula exact on Py

3
Qi (1) = 1S pmise),
=1

e formula exact on Py

3

3
Qr(f) = |K| %Z flaik) %meg, —|— f(CK)
= 7=1

We define now an approximate bilinear form ay,(-, ) and forcing term Fj,(-) as

ngp
ap(un,vn) = Qu(Vuy - Vo) = Z ZWI,K p(z,x)Vun(zik) - Vor(2,k)
KeTy, i=1
ngp
Fr(vn) = Qu(fon) = > > wik flzx)vn(z.k)
KeT, =1

and introduce the generalized (Galerkin formulation
find uy € Vi, s.t. ap(uy,vp) = Fp(vn) Yoy € Vi (6.14)

Observe that, in general, aj (-, -) is well defined only in the discrete space Vj, (which contains
only continuous functions) but not in the continuous space H} (). Indeed HE(Q) ¢ C°() for
d > 1, so we are not allowed to take point values for H! functions and the bilinear form a(-, -)
is not continuous in H'(Q).

A general result on the generalized Galerkin formulation is the following:

Lemma 6.2 (Strang’s Lemma). Assume that

e ayp: Vi, x Vi = R is continuous and uniformly coercive in Vy, i.e. 3 a* > 0:
ap(vp,vp) > Oz*”UhH%/ Vh>0 Vv, eV, (6.15)
e Fj : Vi, — R is bounded.

Then

1. there exists a unique solution uy € Vj, to problem (6.14) that satisfies

Fh(vn)

Jupllvy < —
" * onevi llvnllv
2. it holds
" . M 1 a(wp,vy) — ap(wp, vp
lu—willy < inf {1+ D)lu—wplly + = sup 20rvn) = an(wn, vn)
whEVh (6% « 'UhGVh ”UhHV
1 F(v,) — F
+— sup (vn) = Fhlvn) 6 1)

Q7 vpeVy thHV
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Proof. The first part is just an application of Lax-Milgram’s Lemma in V}. For the second part,
let wy, € Vj, be arbitrary, then

o Juy, — wall§r <an(uj, — wn, uj, — wp) = Fy(uh — wn) — ap(w, uj, — wp)
=a(u,uj, — wp) — Fuj, —wp) + Fp(up — wp) — ap(wn, up, — wp) £ a(wp, uj, — wp)
=a(u — wp, uj, — wp) + [a(wp, up, — wp) — ap(wp, up, — wp)]
+ [Fh(up — wn) — F(uj, — wp)]

a(wp, vyp) — ap(wp, vp)

<M |lu—wllvluy — whllv + [lu, — wallv sup

vREVR thHV
Fh Vp) — F Up,
g, — . sup T =)
vp€Vh l[vnllv
from which the thesis follows by triangular inequality. O

Estimate (6.16) contains 3 terms. The first one inf,,, ey, (1+M/a*)||lu—wp ||y is the standard
best approximation error in V3. The other two

sup a(wp,vp) — ap(wp, vp) sup F(vp) — Fp(vp)
v EVR ”UhHV ’ v EVY ||vh||

represent consistency errors due to the quadrature formula.

The important questions are: whether these two errors are of the same order of the best
approximation error; and whether the quadrature formula leads to a uniformly coercive discrete
bilinear form ay(-, ). The following result holds (see e.g. [4]):

Lemma 6.3. Assume that the quadrature formula Q. is exact on P,(K), p > r, and the mesh
is reqular with ypr > hi, VK € Tp,. Then, for anyu € H™ ' and its finite element interpolation
Iju € X3, it holds

a(lpu, vy) — ap(Ipu, vy)

sup < OV 2|l o200 (o 0| 1 ) (6.17)
v €EVRY HUhHV

F(vy) — Fy(v
sup (vn) = Fnwn) CRP~" 2| || gro-r2 (0 (6.18)
v EVR ||vhHV

Proof. Forany § € C°(K), let us define E:(9) = [z §(2)di—Qf(g). By assumption Er(g) = 0,
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Vg € P,(K). Let us consider first the term involving the bilinear form af(-,-).

a(wp, vy) — ap(wp, vy) = Z / pNwy - Vo — Qi (uVwy, - Vo)

KeTy,
= Y |det Bx| Eg(jix By Vi - B Vink)  [with pr, di € Proy(K)]
KeTy A
PK dK
= Y |det Bx| Eg((iixpx — 1% (i) - dxc)
KeTy
< Z ’detBK‘C‘ﬂKﬁK’WpfrJrQ,oo([{)HqAKHLoo([()
KeTy
p—r+2
<C Y |det Bi| [ > ikl oo ooy DR e i) | il oo i)
KeTy, 7=0
p—r+2
<C Z |detBK| Z ’ﬂK|WP—r+2—j,oo(f()‘ﬁK|Hj,oo(f() ||QKHL2(K)
KeTy, 7=0

[by equivalence of norms in finite dimensional spaces]

r—1
<C Z | det Br| ||B;(1”2 Z |ﬂK’Wp—r+2—j,oo(f()|th7K’Hj(f()||V@h7K||L2(f()
KeTy, 7=0
r—1
<C Z |dGt BK| ||B;(1”2 Z |ﬂK’Wp—r+2—j,oo(f<)|@h,K|H.7'+1(f<)|@h,K|H1(f<)
KeT, §j=0
Then take wy, = Iju and note that for i = 0,...,r,

| g ey < Vi gy + i = T oy < N0y + Cliie e 1y
< C|det Bk|™? || Bg | (|u|H,.(K)+||BKHr+1 "l e ()
< O|det Bx| ™2 || B[l grr+1.s0)-

Hence

a(Lyu,on) = an(Thu,on) < C Y B PIBk P~ | llwo-rzo0 ) lll e o) [on a1 1)
KeTh

which leads to (6.17).
Let us consider now the consistency error on the right hand side.

F(Uh) Fh Uh Z/fvh_QK(fvh)

KeT,

;. - 1 .
= Z |det By |E g (frOn,Kk), [setting v = — [Uh,K]

= Z \detBK] Ek(fK(@th—Q_JK»—i-Ek(fK)’l_)K

KETn (A) (B)
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~

For a quadrature formula exact on P,(K’) one has for any 1 < s < p and dimension d < 3,
E(fx) = Eg(fx = Ipfr) < Cllfic = I3 ficl oo iy < Ol = T ficll oy < Ol o (i)

We take in particular s = p —r + 1. Moreover, Ux < [[0n,k || 2, S0 that

(B) < C’fK|Hp—r+2(f<)||@h,K||L2(i()'
On the other hand,
(A) < Eg(fx(tnx = 0x)) < Eg((fe = 17" fre) (0n, 5 — 0xc))
< Ollfic = 157" fiell oo iy 100, = ¢l oo i)
< CHfK — I?{_erHH%k)H@h,K — T)KHLQ(IA(), [by norm equiv. on IP’T(K’)]
< C|fK|Hp—r+1(f<)’@h,K’H1(K)

and finally

F(vy) = Fp(vy) <C ) | det Bg]| [|fK|Hp—r+1(f<)|@h,K’H1(K) + IfKIHp_Hz(k)Hfih,KHLz(fg)]
KeTy

<C Z HBK”p_7qu2 [|f‘HP—’“+1(K)|Uh|H1(K) + |f’HP—T+2(K)”Uh||L2(K)]

KeTy,
hence Flon) — Fi(un)
vp) — v
sup — = < ChP T2 £l ez
vh €V [[vnllv
and this concludes the proof. ]

From the previous Lemma, we see that if we wish to have a consistency error of the same
order of the finite element approximation error, we have to take p — r + 2 = r which implies
p = 2r — 2. The following result follows easily from Lemmas 6.3 and 6.2:

A~

Lemma 6.4. Assume that the quadrature formula Q. is exact on Pop_o(K) and has positive
weights. Then problem (6.14) is well posed and

[ = upllgr < CB (Julgras + lull grea || pllwree + (1 F 1| 2r) (6.19)

Proof. We first show that if @ is exact on Pgr_g(f( ) and has positive weights, then the discrete
bilinear form ay(up, vy) is uniformly coercive. Indeed

ngp
an(vn,vn) = Y > wik plz,k) [ Vou(zuk)
KeT, 1=1
ngp
2 min p(z) > wik [Von(zk)?
v KeTy, =1
=||Vop||? since Qi is exact onPay,_o

L2(Q)
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By Strang’s Lemma 6.2, it follows that the problem (6.14) is well posed. Still from Strang’s
Lemma and Lemma 6.3, it holds

. M 1 a(wp,vy) — ap(wp, v 1 F(vp) — Fp(v
lo—willv < it 40+ D) wplly + s sup ) ol ) L L, o) = F(on)
wh€Vh o A ypeVy [vnllv a” y eV, |vn v
M 1 a(lTu,vp) — ap(L7u,v 1 F(vy) — Fp(v
< (T + —)llu—Thully + — sup (T, vn) = an(Tj, on) + — sup (vs) h(on)
a O eV, [[vnllv O eV, [[vnllv

< OB (|ulgrer + llpllwreellull gren + [ fllmr) -

Error estimate on functionals:

We consider now the approximation of a quantity of interest Q(u) by Q(uy), where Q : V —
R is a linear functional. Observe that in the generalized Galerkin framework, the Galerkin
orthogonality does not hold any more. However, we can derive the following generalization of
the Galerkin orthogonality:

a(u —up,vp) = [F(vn) — Fr(vp)] — [a(uy, vn) — ap(uy,, vp)], Yo, € Vp, (6.20)
We define now the (continuous) dual problem
find p € Vst. a(v,¢) =Q(v) YveV (6.21)

and the finite element interpolant I ¢ € Vj,. We thus have the following characterization of the
error on the quantity of interest

Q(u) = Q(up) = a(u — uy, §)
= a(u—up, ¢ — I,0) + [F(1;0) — Fi(1;0)] — la(uy, I1,¢) — an(uy,, I[1¢)]  (6.22)

For the consistency errors F(I}¢) — Fi,(I;¢) and a(uy,, I} ¢) — an(uj, I ¢) a similar result as
in Lemma 6.3 can be established (see [1]):

~

Lemma 6.5. Assume that the quadrature formula Q. is evact on P,(K), p > r, and the mesh
is reqular with hx < ypx, VK € Ty. Then, for u,¢ € H™™' and u}, solution of (6.14), it holds

a(uf,, Ihén) — an(uh, Iron) < C¥2||pllworoo @10l e+ @) (WP [l ey + B lu — gl )
(6.23)

F(I}¢) = Fu(Ihd) < CRPYY £l goer (o |8l v ) (6.24)

Proof. We start with the consistency error on the right hand side.

F(on) = Fa(on) = Y [ fon = Que(fun) = 3 |det BiclEg(Fucon)

KeTy, KeTy,
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~

Since E, is exact on Py(K), p > 1, we can further write

Ep(frtnw) = Ep(frtnx — I(frink)) < C|fK@h,K’Hp+1([()
ptl
< CZ ‘fK’HpH—j(f()|ﬁh,K|Wj,oo(i()
§=0
'
< CZ ‘fK‘Herlfj(f()|{}h,K|Hj(f()7 [by norm equiv. on P,(K)]
§=0
Taking now vy, = I} ¢ and proceeding as in the proof of Lemma 6.3 we have for any i = 0,...,r,
A A 1 .
(50K | iy < Cldet Br| "2 || B ||*[| 6] rr+1 (k) and

F(I}¢) — Fa(Ihd) < C Y Bk 1l oo 16l sy < COPEY|Fll ool o0
KeTy,
Concerning the consistency error for the bilinear form, we have
a(wp, vp) — an(wn,vn) = Y /KMth -Von — Q (uVwy - Von) = Y | det Bi| Eg (fxcprir)

KeTy, KeTh

with pr = B;(T@wh,K and §g = B[}T@fzh,;{. Since E is exact on ]P’p(f(), p > 1, we can further
write

Eg(ixbrix) = Eg(ixprdx — 1) (AxPrix)) < Clakbrdx | g i)

r—1
< CZ |ﬂKﬁK|WP+1—j,oo(f{)’(jK|Hj(R)
=0
r—1p+l—j
< C Z Z |/~1K|Wp+17jfs,oo([%) ’ﬁK‘Ws,oo(f()‘qK‘Hj(f()
j=0 s=0
r—1p+l—j
< CHB;(lez Z |t lyyro1--s.00 () VO s 20y |V O i 1
j=0 s=0
r—1 nj
< CHB;_(IHQ Z Z mK‘kars,oo(k)|wh,K‘Hs+1(f<)‘@h,K‘HjJrl(k)y nj =min{p +1—j,r—1}
j=0 s=0

We now take vy, = Ij ¢ for which we have \IA;(QASK\H%K) < Cldet BK|_%”BK||i||¢”Hr+I(K) and
wy, = uj, for which we have

mh,K‘Hi(f{) Y |fLK|Hi(f() +lax — f;‘(ﬂmm([‘() + |f;(aK - ﬂZ,K’Hi(K)
< C(\fLK\Hi(f() + |ﬂK’HT+1(f() + Hf;@K — ﬁ};’KHHl(k)), [by norm equiv. in P, (K)]
< C(mK‘Hi(k) + mK’HHl(}%) + Hf};aK - ﬁKHHl(K) + ik — ﬁZ,KHHl(k))
< C(WK‘HZ'(I%) + |ﬂK’Hr+1(f() + [lax — QZ,KHHI(K))

_1 i *
< Cldet B[ 72 ([ Bk [*lull grs1.(x) + 1w = whll 1 (1))
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Finally

a(uf,, I¢) — an(up, 1) < C Y ||BE<1||2(HBKllpJ’?’HMHWpHm(K)|\U||Hr+1(K)||¢||Hr+1(K)
KeTy
r—1 1j

Y D IBIPT S |l oo ey lu — u2||H1(K)||¢||Hr+1(K))
7=0 s=0

< OV ||pllwosroo@ 0l 10y (R |ull ey + B2l = wi |l ey )
O

From the previous Lemma we see that for the consistency error to be of order h?" we need
p+ 1> 2r, hence p > 2r — 1 a slighly stronger condition than the one of Lemma 6.4:

Lemma 6.6. Assume that the quadrature formula Q  is exact on Pop_1(K) and has positive

weights. If the solution u of (6.12) as well as the dual solution ¢ of (6.21) satisfyu, € H™ (),
then

Q(u) = Q(uy) < Cu, MR ([ull sy (@) + 11l 2o )1l 110

where the constant C' depends on ||pl|yy2rec () and v but is otherwise independent of h.
Proof. Using the characterization (6.22) of the error on the Quantity of Interest we have
Q(u) = Q(up) = alu — up, ¢ — [;¢) + [F(1;0) — Fu(I1,0)] — la(up, I,¢) — an(uy, I;¢)]
< Mllu— vl gyl — ol m ) + CR | fll a2 @y |6l 1 )
+ CY | pllwroo @ 1o 1) (R lull ey + BT llw = whll )

Replacing the result of Lemma 6.4 and the interpolation error estimate [¢ — I} g1q) <
Ch"|@|gr+1(q) leads to the desired result. O
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