


3.2 Finite element approximation
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let's by an error estimate :
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CHAPTER 4 Parabolic problems - that equation .

-div(Ava) = + 2x0,i)

[ u(x , 0) = Mo(X) - FW(n (X , +)) = g(t) 22

popagation of the heat in

us (xit) : ex(0,i)->⑪
a medium .

I is the diffusion matrix, A is positive definite.

4 . 1 Weak formulation & well posedness.
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system of ODEs.
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JENYN + f AUTON
= If M = UN

1

+ = Strw]
Eun(PEC) - E11 Un(1 (g) + SSAUR

T

= S So fun.
T

·cerity J I unlo =Au

lulem + &Mig* So Sefur + Ellen lik
)



the requence Un is bounded in 100
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·luch a limit is a solution of the heat

equation.

Let's continue with the bounds.
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Read here if you are interested

in the fully detailed mate . prof !
CHAPER 7 :-


