Numerical Integration of Stochastic Differential Equations E PFL
Week 2024-11-18 to 2024-11-22 Prof. Fabio Nobile

Series 9 - November 20, 2024

Exercise 1.

1) Show that the following nonlinear SDE
dXt :dt+2\/ Xtth (11)

has solution X, = (W, + /Xy)? for t < 7 =inf{t >0 : W, < —/X,}.

2) Show that the following nonlinear SDE

dX, = <\/1+X§+%Xt>dt+\/1+X§th (1.2)

has solution X (¢) = sinh(arcsinh(Xy) 4+t + W;).

Solution

1) We consider the candidate solution Xt = (W, + v/X)? and apply Itd lemma to X,. Calling f(t,z) =

(z + /X()?, one gets %(t,x} =0, ?(t,x) =2(x + /Xp) and —f(t, x) = 2. Therefore, observing that

62
ox2
Y, = W, is also an Itd process (dY; = dW,), it follows that

2
dF(E V) = (af(gtwo N af(é,xwt) .0+%%,12>dt+%_1m
- (2 : %)dt +2(W, + /X)dW, (1.3)

= dt + 20/ (W, + /X)2dW,, t<r.

and therefore

dX, = df(t,Y;) = dt +2\/ (W, + /X0)2dW, 14)

= dt +2\/ X, dW,, t<T.
Therefore, X (t) = (W(t) + /X;)? is solution of (1.1) up to t = 7.

2) Again, we apply Itd lemma to X(¢). Calling f(¢,2) = sinh(C + ¢t + z) with C constant, one gets
of 0% f

Z—f(t, x) = 8—‘(t, x) = cosh(C +t + z) and ;(t, x) = sinh(C + t 4+ x). Therefore, one obtains
_ af(tv Wt) af(ta Wt) 1 a2f(ta Wt) 2 af(tv W)
= (cosh(C’ +t+W,) + % sinh(C' +t + Wt)> dt + cosh(C +t + W,)dW, (1.5)

= <\/1 +sinh(C' +t + W,;)2 + % sinh(C +t + Wt))dt + \/1 + sinh(C + t + W,)2dW;



and hence

dX, = df(t,Y;) = (\/1 +sinh(C + ¢+ W,)2 + %sinh(C Yt Wt)>dt 4+ /1 +sinh(C + t + W,)2dW,

1
- (\/1 X2+ §Xt)dt+ J1 + X2dW,
(1.6)

Therefore, X(t) = sinh(C + t + W,) is solution of (1.2). To determine C, notice that X (0) = sinh(C),
hence C' = arcsinh(Xj).

Exercise 2.
Consider the modified Euler-Maruyama method given by
X1 =Xy + ftn, Xp)h + g(tn, Xp)En,
where {£,,},,~0 is a sequence of independent random variables such that £, is independent of X, for all n and
E[§,]=0, Elg]=h  E]=0, [E[&] =o(h?).

Since E[¢4] = E[AW/] for £ = 1,2,3 and E[£}] is bounded, then it is possible to prove that this method has
weak order 1.

i) Give an example of discrete random variables &,, satisfying the hypotheses above.

i1) Verify numerically that this method has weak order 1. Set f(z) = Az with A = 2, g(x) = px with
u=0.1, X,=1and T = 1. Choose different step sizes h = 2% with i = 4, ..., 10 and approximate the
expectations of the weak error via using M = 10? realizations of {&,,},>0-

Solution

An example of discrete random variable £, satisfying the requirements is
P(&, =Vh) = P(¢, = —Vh) =1/2,

and the plot of the weak order employing this random variable is given in Figure 1.

Exercise 3.

Consider the following geometric Brownian motion

dX, = pX,dt + o X,dW,, t € [0, T,

X(0)=X,€R (8:1)

with u, 0 € R. Consider a uniform partition P = {0 =ty < t; < ... <ty =T} of size At. For the linear SDE
(3.1), the Euler-Maruyama method produces the recurrence
Y= 0+ pAt+ocAW,)Y,, n=0-,N—1 (3.2)
1) Noting that AW, is independent of Y,,, take expected values to show that
E[Y, 1] = (1+ pADE]Y,].
Considering the limit At — 0 and N — oo with NA¢ = T fixed, show that

]E[YN] — eHT]E[Xo], N — o
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Figure 1: Weak order of convergence of the modified Euler-Maruyama method of Exercise 2.

2) Show that
E[Y 1] = (1 + pAt)? + c ADE[Y?]

and, hence under At — 0 and N — oo with NA¢ = T, one has that
E[YR] = e+ TE[X, ], N — oo.

3) For u=2,0=0.1,X,=1,T =1, M = 10, plot the weak error |E[Yy] — E[X/]|.

Solution

1) As E[AW, ] = 0 and by the property of independence of Brownian increments, one has
E[Y, 1] = E[(1+ pAt + c AW,)|E[Y, ] = (1 + pAt)E[Y,],
hence,
E[Va] = (14 n) VELX,]
Then, conclusion follows by taking the limit for n — oo.
2) Squaring (3.2) and taking the expectation we get
E[(1 + pAt + o AW,,)?E[Y2]
E[(1+ pAt)? + 2(1 + pAt)(c AW,,) + (0 AW, )?|E[Y;?]
(14 pAt)? + o2 At)E[Y,2]
(14 pAt)? + o2 At)"E[X{]
(1 + (2u + o) At + p?(At)?)"E[X3].

E[Y2]

Therefore
E[YZ] = = ((1+ (2u+0%) At + 2(AD)?)"E[X3).

and considering N = %, one gets
lim E[Y2]

= lim
N—oo N—oo N—oo

T T . o2 20T
(1+ @u+ o5+ pA(HH" = lim RG] = @t TE[X3).

(3.7)
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Figure 2: Weak convergence for the EM method applied to (3.1).

Exercise 4.

Consider the following Langevin dynamics

dX, = pX,dt + odW,, t € [0,T],

X(0) =X, eR (4.1)

with u, 0 € R. Consider a uniform partition P = {0 =, < t; < ... <ty =T} of size At. For the linear SDE
(4.1), the Euler-Maruyama method produces the following recurrence
Y, =1 —pAt)Y, +cAW,. (4.2)

Repeat the same computations of Exercise 3.

Solution
The Euler-Maruyama method (4.2), passing to the expectation, after recursion, yields

— 1 T N-
= lim (1 —p5) E[Xo]

= e "E[X)]

lim EY;

Squaring both sides of (4.2) and taking expectations, we get
E[Y2,,] = (1 — pAt)’E[Y;2] + 02 At.

A recursion yields

N-1
E[YZ] = (1 — pAt)*NE[Xo] + 02 At Y (1 — pAt)?). (4.4)

§=0

Under the hypothesis |1 — pAt| < 1, the second member on the right of (4.4) is a convergent geometric

series. Therefore, for N — oo, we have

o2

2 —2 2
E[Y?] — e 2#TE[X?] + e
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Figure 3: Weak convergence for the EM method applied to (4.2).

Concerning the numerical simulation, the results are shown in Figure 3.

Exercise 5.

Let us recall that if we consider an Itd stochastic differential equation (here one dimensional for simplicity)
dX, = a(t, X,)dt + b(t, X,)dW,
whose solution is X, then, X, solves the following Stratonovich SDE
dX, = a(t, X,)dt + b(t, X;) o dW,
where a(t,z) = a(t,z) — %b(t, x)%(a x). On the contrary, given a Stratonovich SDE
dX, = a(t, X,)dt + b(t, X;) o dW,,
then the corresponding It6 differential equation is

dx, - (2(75, ) + %b(t,x)%(t,m))dt bt X,)dW,.

Let A\, u € R and consider the SDE for ¢ € [0, 7]

AX(t) = AX()dt 4+ pX ()dW (1),

X(0) = X, (5.1)

1
The solution of (5.1) in the Itd sense is given by X (¢) = Xoe()‘_i“z)”/‘w(t).



Let P={0=1ty <t; <..<t, =T} be a partition of [0,T] of size At and define the Euler polygonal
interpolant W of Won P as

—nl 1<n<m, t,,;<t<t,.
t, —t

n—1
If we replace W by W in the SDE (5.1), we obtain the ordinary differential equation

W(t),

d A'HL J— Am ATYL —
S = AT () + p X () 652

X™(0) = X,
iv) Compute the solution X™(t) of (5.2).
v) What is the limit in L2(£2) of X™(t) as m — oo (i.e., as At — 0)?
In order to approximate numerically the solution X™ of (5.2) we can use the following scheme

1 tn+1 Am
Y / X™(s)ds, (5.3)

n

X\m(tn-ﬂ) = X\m(tn) + )‘X\m@n)At + N(W(tn-&-l) - W(tn)>

where we need to approximate the integral ft bt )/(\’”(s)ds.

vi) If we approximate the integral with the Euler formula

tpt1

X™(s)ds ~ AtX™(t,,),

tTI,

what method do we obtain?

vit) We now approximate the integral with the trapezoidal rule

bt At < <
X (s)ds ~ = (X (1) + XM (En 1)),
tn

and make an Euler prediction for the implicit term
XM (tr) & X" (ty) + AX (1) At 4 p X" (8,) (W (L 1) — W (1))
Write the method derived from these approximations.

viii) Let T =1, \=2, u =1, X, = 1 and consider a uniform partition of [0, 7] with At = 10~2. Implement
the numerical methods derived in points vi) and vii). What solutions do these methods converge to?
What are the strong orders of convergence of the methods? In order to observe numerically the strong
order, plot the error for different values of At = 27% with ¢ = 4,5, ..., 11 employing M = 10* different
Brownian paths.

Solution

i) We have almost everywhere that

dey o~ W(t;) —W(t;_1)
EW(U - ; ti—tia et (),
and hence y™(t) = X™(t) satisfies the ODE
ym(t) = frt)y™ DWW () — Wt )
where f™(t) = A+ ),
y(o) = XO) f ( ) ’u; tz tL—l tt*l’tz>( )



-t m
whose solution is given by y(t) = Xoeh M4 For ¢ € [0,T], we set k such that t,_; <t < t; and
compute

¢ k—1
/ Fr(s)ds = A+ S (Wts) — Wit 1)) + p(W(ty) — W(tkfl))_ttk__tf,; 1
0 =1 -

= X+ puW(t).

it) As t+— W(t) is almost surely continuous, we have for all ¢
t
lim fm(s)ds = Mt + puW(t) in L2(£2),

m—0o0 0

and consequently y™(t) = X™(t) converges to X (t) = e} #W(t) in L2(2), which is in fact the solution
of (5.1) in the Stratonovich sense. That makes sense because using W(t) is anticipating.

17) We obtain the Euler-Maruyama method from Series 1.

iv) The method can be explicitly written as
Xty = X+ AX At + p AW, X0+ = p AW, (AKX At + p X AW, ),

where X™ = X™(t,,) and AW, .1 = W (t,,1) — W(t,,).

v) The Euler-Maruyama method converges with strong order 1/2 to the It6 solution X (t). Moreover, we
verify that the second method converges to the solution X (t) = eM*#W(®) in the Stratonovich sense in
L2(£2) and that the strong order of convergence is 1. The plots are given in Figure 4.
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Figure 4: Euler-Maruyama and trapezoidal methods employed in Exercise 5 with their rates of convergence.
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