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Exercise 1.

Let G € M?(0,T) with t - G(t,w) continuous for almost every w and consider a partition P, = {0 =
tg <ty < ...<ty, =T} of [0,T] of size A, i.e., t; = jA for j = 0,...,m. Assume that E[G(t)G(s)] is a
continuous function of ¢t and s. Show that

lim Y "Gt ) (W(t;) — W(t;y)) = /O G(t)dW(t) in L2
Solution

From G define the step process G,,(r,w) = Z;’Ll G(tj1,w)Xpt, ,.1,(r) and define

ma T 2
I,=E (Z G(t; 1) (W(t;) — W(t; 1)) —/ G(t)dW(t)) ] . (1.1)
j=1 0
Then, by the It0 isometry we obtain
T 2 T
I, = E[( / (G () —G(t))dW(t)) 1 - / E[(Gon(t) — G(#)?]dt. (1.2)
0 0
Due to the assumption we have
limE[(G(s) ~ G(1))?] =0, (1.3)
which implies for all ¢ € [0, T]
Jim E[(G,,(t) — G(1)] =0. (14)
Moreover, we also have
E[(G(t) — G(1))?] < 2(E[G,,(1)?] + E[G(1)?]) < 4tI€I%3>T<]]E[G(t)2], (1.5)

where the right-hand side is finite by assumption. Therefore, applying the dominated convergence theorem we
deduce that I,,, — 0 as m — oo, which concludes the proof.

Exercise 2.

Let (W (t),t > 0) be a one-dimensional Brownian motion. Without implement the Itd formula but using
the construction of the stochastic integral, show that:

i) d(W?) =2WdW + dt,
i) d(tW) = Wdt + tdW.

Solution



i) We already know that

and hence s
2_ T 2 S—r
/ W(t)dW (t) = M _r
which gives
S S
W(s)? =W(r)?+ / de + / 2W (t)dW (t)
which implies the result.

ii) Observe that for a sequence of partitions P = {r = t, < t; < ... <t,, = s} such that max;;,, [t; —
t;_1| — 0 we have

/ tdW (t) = lim th ) —W(t; 1)) in L%(92).

m—0o0

As t — W(t) is continuous a.s., we also have

/SW(t)dt: lim ZW (t;—t; 1),

indeed since it is an ordinary Riemann sum, the integrand can be evaluated at any point in [t;_q,t,].
Therefore, we obtain

/SW(t>dt+/ tdW = lim Zt W(t;) —Wi(t; 1)+ Wi(t;)(t; —t; 1)

=rW(r )*SW( );

which shows the result.

Exercise 3.

Let F: [a,b] x R — R be a continuous function with continuous partial derivatives 0F /0t, 0F /0x, 0% F /0x?
and let (0F/0x)(t,xz) = f(t,z). Show the following analogue of the fundamental theorem of the Leibniz—
Newton calculus for the It6 calculus

b

a

b
[ sewanawi = re.wa| — [ (aw + 120 wo)ar

In particular, when F'(t,x) = F(x) is independent of ¢, it reads

b
/ SOV = Fw )|~ 5 [ r oo

Then, use this formula to compute
t
/ W(s)eW s dw (s).
0

Solution

The first result is obtained applying the Itd formula to compute dF' (¢, W(t)). Then, let f(z) = xze®, which
gives

F(x) = / yeVdy = (z — 1)e® + 1,
0

J(@) = (@ + Der



The formula yields

/t W(s)eW(s)dW (s) = (W(t) — 1)6W(t) +1-— % /t<1 + W(s))ew(s)ds.
0 0

Exercise 4.

Compute IE[BS j(;t BudBu] and E [B% (f: BudBu)2} for 0 < s < t.
Recall: If € ~ N(0,1), then E[¢*] = 3.

Solution
Let s < t. We have B, = j(;t Ljo,s((v)dB, therefore,

t t t t
E(BS/O BudBu> :E</O 1[075[(v)dBU/O BudBu> :/0 E[1j0.q(u)B,]du =0

If t < s, the same argument leads to the same result. For the second moment, we have

E lBE (/t BudBu)Q] =E l(/t BsBudBu>2] = E[/t Bngdu]

Recalling that s < u so that B, — B, is independent of By,

E(B2B2) = E[BX(B, — B, + B,)’| =E|[B2(B, — B,)’| +2E[BX(B, — B,)] +E(B?).

=s(u—s) =0

We can write B, = /sZ where Z ~ N(0,1) and therefore E(B%) = s?E(Z%) = 3s%. In conclusion,
E(B2B2) = s(u — s) + 3s* and

E lBg (/j BudBu>2] = /st s(u—s) 4 3s%du = %s(t —8)2 4 3s%(t — s).

Exercise 5.
Let X € M?([0,7T]) and consider the stochastic integral I, = fot X.dB,.

1) Use Itd’s formula to show that
¢ 1 t
L = [ 1117 sgn(1,)X,dB, + oo — 1) [ 111 X2ds,
0 0

2) Assume |I;| < K a.s. for some K > 0. Deduce that there exists ¢, = C(T',p) such that

t p T p—2 T
E(sup /XSdBS )gcpE (/ |Xs|2d,g> <cpTTE</ |XS|Pds>
0<t<T|Jo 0 0

for some constant ¢, > 0.
Hint. Use Doob’s martingale and Holder inequalities.

[SEAS]

3) Show that 2) works without asking for |I;| < K a.s. .



Hint. Take 7,, = inf{t < T';[I;| > n} and consider the martingale I;,, . Then take the limit for n — oo
and conclude by Fatou’s lemma.

Solution

1)

Let us apply Ito’s formula to the function f(z) = |z|P (which is twice differentiable, as p > 2 ) and
to the process I whose stochastic differential is dI, = X,dB,. We have f'(z) = psgn(z)|z|P~L, f(x) =
p(p — 1)|x|P~2, where sgn denotes the "sign” function ( = 1 for > 0 and -1 for z < 0 ). Then by Ito’s
formula

4 1 17
dL[" = f/(L,)dI, + §f (1)d(I),
= |L|" " san(1,)X.dB, + 5p(p — V|12 X2ds,
ie,as I =0,

t t
_ 1 _
L =p [ LI sen(L)XdB, + 50— 1) [ 1L XEds
o 0
One can of course assume X € MP?([0,7T]), otherwise the statement is obvious (the right-hand side is
=+00 ). Let I, = fot X, dB, and define I} = sup,_, L[ (I;), is a square integrable martingale and
by Doob’s inequality

t
X.dB,
0

p P
B( sup =Bl < (25 ) Bl
0<t<T] p—1

Let us now first assume |13 < K : this guarantees that |I|[” ' sgn(1)X. € M2([0,T]). Let us take the
expectation recalling that the stochastic integral has zero mean. By Doob’s inequality and Holder’s

inequality with the exponents g and LQ, we have
—

Blrif) < (=25) Bl = 5 (525) s -1 E( / Tlfsl“Xids)

()]

2
As we assume || < K,E[I/’] < 400 and in the previous inequality we can divide by E[I}p]li;, which
gives

1=Cq

[NES

T 2
< cE (I}“ / ngs> < B[P R
0

2

(=) ]
B[] < &°E [(/Txgds> : (/T|Xs|pds>1 .

Let 7,, = inf{t < T;|[;| > n} (7(n) = Tif {}= @).(,,),, is a sequence of stopping times increasing to 7,
as the paths of I are continuous and then also bounded. We have therefore I, ,, — I, as n — oo and

2
p

E[I]7 < coF

i.e.

] <PV E

tAT, t
It/\Tn = / Xsst :/ Xs]-{s<7'n}sta
0 0



so that one has

T T g
arca([nres) | cen( )
0 0

and we can just apply Fatou’s lemma. Finally, again by Holder’s inequality,

T § p—2 T
E (/ |XS|2ds> <T 7+ E / |Xs|pd51.
0 0

v

Exercise 6.

Consider the It6 process
t t
X=X+ [ fods+ [ g.dB = Xo+ g+,
0 0

where {B,}, is a standard Brownian motion, f € M1([0,T]), and g € M?([0,T)).
Let us focus first on the process
t
I, :/ gsdB,.
0

1) Show that I, is a martingale.
2) Show that

t
<I>t = / gg d57
0

where (I), is the quadratic variation of I, (i.e. that I? — (I), is a martingale).

It can be shown that _—
(I); = lim z;(ltjﬂ — I,,)? in probability,
=
where m = {0 =ty < -+ < ¢, =t} is any partition of [0,¢] and |7| = m;;mx [ti1 — ;]
We focus now on the process X,. By definition, (X), = (I); = fot g2 ds.
3) Show that

n—1

(X)e = lir% Z(Xt — X, )? in probability
PN J+1 J
j=0

4) Consider another Ité process
t - t » »
Yo=Yyt [ Fds+ [ G.dB,=Xo+ T+ 1
0 0
with f € M*([0,T)), and § € M2(|0,T)), by definition

t
(X,Y) = (1), = / 0sGods.
0



5) Show that

n—1

(X,Y) = lim Zo(Xt"“ — X,)(Y,,,, —Y;,) in probability,
using that
n—1
(I.1); = lim > (L., —1,)(I,, — 1) in probability.
j=0
Solution
1) If t > s one has
E[I(t)—I(s) | / X.dB, |F,| =0 as.

s —1ndependent

and therefore we have the martingale relation
E[I(t) | 7, = I(s) + E[I(t) = I(s) | Fs] = I(s) as. .
2) For the quadratic variation property we need to show that I(¢)? — (I), is a martingale
B[I(t)* —(I); | T, = B[(I(t) — 1(5))* + 2((L(t) — L(s))1(s)) + 1(t)* — ({I); — (I)5) — (D)5 | T]
=E[(I(t) —1(s))? | T ] +2E[(I(t) — I(s))I(s) | T ] / Xids] —

— E[( / ' X.dB,) + 1()* — E| / ' Xds)— (1),

=1(s)* = {I)s.
(6.1)
3) One has
n-l1 n=l ety tji1
Z(Xt]+1 Xt]-)Q :Z( fsds+/ gsst)2
J=0 J=0 “t; t;
noloptin nTloptin ty1 L ortia (6.2)
=S s S [ pas[ gany+ Y[ gy
J=0 J=0 tj J=0_ "%,
T, T, Ty

Since the function ¢t — f,(-) is integrable in ¢t (f € M([0,T])), let N € F be s.t. Yw € N we have
N = fOTfsds < oo then Yw € N¢

T3] < max|T, , — t\D/ £, ds

(6.3)
< ran_m|Itj+1 — Ith/ fsds| =0
0
Hence T} — 0 a.s. and in probability. Similarly for 75
tj
Ty < 2maxt,, — 1) [ 1.
fa (6.4)

t
<2max|l,  ~ 1]l [ fids| 0
J 7 0



since I, is continuous. Hence T, — 0 a.s. and in probability. Finally, T35 — j(;t g2 ds in probability by L?
convergence of the construction of the stochastic integral.

4) Analogous to Point 3).
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