
Numerical Integration of Stochastic Differential Equations (MATH-450) 30/01/2025
Prof. Fabio Nobile

Exam

Duration : 180 minutes (15h15 – 18h15)

Last name :

First name :

SCIPER :

No documents allowed.
All electronic devices are forbidden.
Please do not remove the staple.
Ask for supplementary sheets of paper if needed.
Implement your code using MATLAB or Python on the desktop and submit your code for
evaluation through Moodle. Only the files that will be submitted will be evaluated.

REMARK: All your answers should be justified in a clear and synthetic way.
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Problem 1

Let (Ω, A, {Ft}t≥0,P) be a filtered probability space and (W (t))t≥0 be a one-dimensional
standard Brownian motion with respect to the filtration {Ft}t≥0.

i) Let X1(t) = 1
a

W (a2t) with a ̸= 0. Show that (X1(t))t≥0 is a standard Brownian
motion with respect to the filtration {Fa2t}t≥0.

ii) Let X2(t) =

tW
(1

t

)
if t > 0,

0 if t = 0.
Show that (X2(t))t≥0 is a standard Brownian motion

with respect to its own filtration.
(Hint: it is enough to check that Xt has the law of a Brownian motion).

iii) Let X3(t) =
∫ t

0
W (s) dW (s). Compute E[X3(t)] and Var[X3(t)].

iv) Check whether the following processes (X(t))t≥0 are {Ft}t≥0 martingales

(a) X(t) = W (t) + 4t

(b) X(t) = W (t)2 − t

(c) X(t) = W (t)3

(d) X(t) = t2W (t) − 2
∫ t

0
sW (s) ds.
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Problem 2

Consider the following stochastic differential equationdXt =
(√

1 + X2
t + 1

2Xt

)
dt +

√
1 + X2

t dWt.,

X(0) = X0 ∈ R,
(1)

where {Wt}t≥0 is a standard one-dimensional Brownian motion.

i) Comment if (1) has solutions.

ii) Derive the stochastic differential of Yt = log
(√

1 + X2
t + Xt

)
and, hence, derive a

solution of (1).

iii) Given T > 0, estimate an upper bound to the following quantity:

E[ sup
0≤t≤T

|Xt|2].
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Problem 3

Consider the following stochastic differential equationdX(t) = f(t, X(t))dt + g(t, X(t))dWt

X(t0) = 2,
(2)

where {Wt}t≥0 is a standard one-dimensional Brownian motion. The stochastic Heun-
method applied to (2) is defined as

Yn+1 = Yn + 1
2 [f(tn, Yn) + f(tn+1, Yn + ∆tf(tn, Yn) + g(tn, Yn)∆Wn)] ∆t

+ 1
2 [g(tn, Yn) + g(tn+1, Yn + ∆tf(tn, Yn) + g(tn, Yn)∆Wn)] ∆Wn

(3)

Assume that f, g are globally Lipschitz, satisfy the linear-growth bound and are smooth.

i) Estimate the order of the local truncation error

E[|Yn+1 − X̃(tn+1)|2],

where Yn is the approximation obtained by (3) at time tn = t0 + n∆t and X̃(t) is the
the exact solution of (2) starting at the point X(tn) = Yn (Hint: use Taylor expansion
on (3) and the Itô-Taylor expansion of the exact solution X̃(tn+1).)

ii) Let T = 1. Implement the method (3) for the following SDEdXt = (−X(t) + 2t) dt + dWt

X(t0) = 2,

for ∆t = 0.1, 0.05, 0.01, 0.005, 0.001 and M = 200 realizations and plot the error
E[|YN − X(T )|2] versus ∆t. Which is the order of convergence that you observe?
Comment the results.

iii) Can you find more restrictive assumptions on f and/or g in (2) under which the local
truncation error is of higher order than what derived in i)?
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Problem 4

Let (Ω, A, {Ft}t≥0,P) be a probability space and (W (t))t≥0 be a one-dimensional standard
{Ft}-Brownian motion. Consider the following SDEdX(t) = k(α − log(X(t)))X(t)dt + σX(t)dWt, t ∈ [0, 1]

X(0) = X0 > 0,
(4)

where k, α, σ ∈ R.

i) Using the change of variable Y (t) = log(X(t)), compute the exact solution of (4) as
well as E[X(t)]. (Hint: recall that the expected value E[Z] of a lognormal random
variable Z = eW , W ∼ N (µ, σ2) is E[Z] = µ − 1

2σ2 )

ii) Let X(0) = 1, k = 0.4, σ = 0.5, γ = 0.1, α = 1. Implement the Euler-Maruyama
method for ∆t = 0.1, 0.05, 0.01, 0.005, 0.001 and M = 2000 realizations and estimate
the order of convergence of the weak error |E[X(t)] − E[YN ]| ≈

∣∣∣E[X(t)] − Ê[YN ]
∣∣∣,

where Ê is the Monte Carlo estimator and {Yn}n is the Euler-Maruyama solution, by
plotting it in a log-log scale.

iii) Discuss how the sample size M in the computation of Ê[YN ] should be chosen as a
function of ∆t to make the Monte Carlo error comparable to the weak error.

iv) Repeat point ii) with the choice of M = M(∆t) proposed in point iii). Comment the
results.
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Problem 5

Consider the stochastic differential equation

dX(t) = f(t, X(t)) dt + g(t, X(t)) dW (t), 0 ≤ t ≤ T,

X(0) = X0,

and the numerical approximation
{
Y ∆t

n

}N

n≥0
given by the Euler-Maruyama method with

time-step ∆t, where Y ∆t
n approximates X(n∆t), n = 0, . . . , N = T

∆t
. Suppose that we

want to approximate the quantity Z = E [φ (X(T ))], where φ is some sufficiently smooth
function. Let Z be the multilevel Monte Carlo estimator defined by

Z =
L∑

ℓ=0

1
Mℓ

Mℓ∑
i=1

(
φ

(i,ℓ)
ℓ − φ

(i,ℓ)
ℓ−1

)
,

with φ
(i,ℓ)
−1 ≡ 0, φ

(i,ℓ)
ℓ = φ

(
Y

∆t,(i)
Nℓ

)
, ∆tℓ = T/Nℓ, and where we use the same Brownian path

for φ
(i,ℓ)
ℓ and φ

(i,ℓ)
ℓ−1 , but independent Brownian paths for φ(i,ℓ)

· and φ(j,k)
· , if i ̸= j or ℓ ̸= k.

i) Show that the mean square error MSE
(
Z

)
:= E

[
(Z − Z)2

]
can be decomposed into

the sum of the variance and the square of the bias. Characterize further the variance
as the sum of contributions over the levels l = 0, . . . , L.

ii) Show that for the bias we have (
bias

(
Z

))2
≤ C∆t2

L,

where ∆tL is the stepsize of the finest level.

iii) Show that Var (φℓ − φℓ−1) ≤ C∆tℓ for a constant C > 0. Use this to give a recipe to
choose the number of samples per level Mℓ in order to obtain

Var
(
Z

)
≤ C∆t2

L

L + 1
L

.

iv) Assuming that we want to achieve an accuracy of MSE
(
Z

)
= O (ε2), derive the

corresponding computational cost of the multilevel Monte Carlo estimator with the
choice of Mℓ proposed in iii).

v) Explain briefly, in what sense the multilevel Monte Carlo is a better estimator than
the standard Monte Carlo one. No additional computations are necessary.

vi) Suppose that we want to apply the MLMC approach based on the Euler-Maruyama
method to stiff problems. What issue might we encounter? Give a modified version
of the MLMC estimator, still using EM, for such a scenario.

vii) What kind of numerical scheme could we consider instead of the Euler-Maruyama
method, so that we can still use the estimator Z for stiff problems? Explain what
additional computational cost arises with the new numerical scheme.
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Additional paper
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