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Problem Set 5 - Answer Key

Consider the following filtrations from the lectures:

Ft = σ(L0, N(u), Z(u); 0 ≤ u ≤ t) (the information we have)

Fc
t = σ(L0, N

c(u); 0 ≤ u ≤ t) (what we want to make inference about)

Gt = σ(L0, N
c(u), C(u); 0 ≤ u ≤ t) (auxiliary filtration to define independent censoring)

where C(t) = I(t ≤ T ∗) and T ∗ is the censoring time, N c(t) = I(t ≥ T ) and T is the event time,
N(t) = I(t ≥ T̃ ,D = 1) with T̃ = min(T, T ∗) and D = I(T < T ∗), and Z(t) = I(t ≤ T̃ ). Thus,
Ft ⊆ Gt ⊇ Fc

t . L0 is the (possibly empty) set of covariates known at time t = 0.

1. From the lectures we recall that the censoring is independent if the compensator Λc of N c with
respect to Fc is also the compensator of N c with respect to G. This can be rephrased as

E[N c(t)|Gt] = E[N c(t)|Fc
t ]. (1)

Thus, (1) hold if and only if we have independent censoring. We will often focus on the

intensity λc instead of the cumulative intensity Λc(t) =
∫ t

0
λc(s)ds.

In the lectures, you learned that the independent censoring assumption in this context is that
the intensity of the observed counting process N with respect to the observed information F
is

λ(t) = Z(t)α(t), (2)

where α(t) is the hazard function: 1

α(t) = α(t, L0) = lim
h→0+

1

h
P (t ≤ T < t+ h|t ≤ T, L0).

It turns out that (2) defines the intensity of N with respect to F if and only if 2

lim
h→0+

1

h
P (t ≤ T < t+ h|t ≤ T, L0) = lim

h→0+

1

h
P (t ≤ T < t+ h|t ≤ T̃ , L0). (3)

a) Show that independent censoring holds if T ⊥⊥ T ∗|L0, i.e. if we have random censoring
when conditioning on L0.

Solution Note that {t ≤ T̃} is equivalent to {t ≤ T, t ≤ T ∗}. We thus have

P (t ≤ T < t+ h|t ≤ T̃ , L0) = P (t ≤ T < t+ h|t ≤ T, t ≤ T ∗, L0) = P (t ≤ T < t+ h|t ≤ T, L0)

where we used random censoring for the last equality, so random censoring implies that (3)
holds, and thus that (2) holds, which is the independent censoring assumption in this setting.

2. Consider the counting process N c and suppose that the intensity λG of N c with respect to G
is predictable with respect to Fc. Show that independent censoring is satisfied. 3

Solution By the innovation theorem, λFc

(t) = E[λG(t)|Fc
t−]. Since λG is predictable with

respect to Fc, λG(t) is measurable with respect to Fc
t−. Hence E[λG(t)|Fc

t−] = λG(t). Thus,

λFc

(t) = λG(t), i.e. independent censoring is satisfied.

1Of course, we may remove L0 from the conditioning set if L0 = ∅.
2See Fleming and Harrington (1991) for a proof.
3Hint: Use the innovation theorem and the fact that, if X is predictable with respect to F , then X(t) is measurable

with respect to F(t−).



3. Suppose the intensity λG(t) with respect to G is I(T ≥ t)(2− I(T ∗ ≥ t)).

a) Sketch λG for the scenario T ∗ < T .

b) Which of the following is true: The short-term risk of death for a censored individual is

(i) higher than

(ii) the same as

(iii) lower than

the short-term risk of death among the subjects that are alive and not censored. Can you
think of an example where this is the case?

c) Show that independent censoring is not satisfied in this situation.

Solution

a)
t

2

1

T ∗ T

b) λ(t)dt is heuristically the short-term risk of death from t to t+ dt. We see that this risk
is lower (i.e. 1) before T ∗, and higher (i.e. 2) between T ∗ and T , hence the answer is (i).
This could e.g. be the case if subjects receive extra care or closer monitoring during the
follow-up period than they would otherwise.

c) We calculate λFc

(t) using the innovation theorem. We have

λFc

(t) = E
[
λG(t)|Fc

t−
]

= E
[
I(T ≥ t)(2− I(T ∗ ≥ t))|Fc

t−
]

= I(T ≥ t)
(
2− E

[
I(T ∗ ≥ t)|Fc

t−
])

,

where we used the fact that I(T ≥ t) is predictable with respect to Fc to obtain the
last line. Comparing the expressions for λG and λFc

we see that we have independent
censoring if and only if

E
[
I(T ∗ ≥ t)|Fc

t−
]
= I(T ∗ ≥ t) for all t. (4)

However, (4) does not hold, since I(T ∗ ≥ t) is not predictable with respect to Fc.

4. Let N be a counting process with jump times T1, T2, · · · . Argue that the (Stieltjes) integral∫ t

0
H(s)dN(s) is equal to

∑
Tj≤t H(Tj).

4

Solution We use the definition
∫ t

0
H(s)dN(s) =

∑
j:tj∈[0,t]

H(tj) · (N(tj)−N(tj−)), and make

a few observations:

• N(t) is a right-continuous counting process, which means that N(t) − N(t−) = 1 if N
jumps at t, and zero otherwise.

• The tj ’s that contribute to the sum is exactly the event times.

• The function H is evaluated at the event times.

4Hint: Use the definition
∫ t
0 H(s)dN(s) =

∑
j:tj∈[0,t]

H(tj) · (N(tj)−N(tj−)), where N(t−) = lim
s>0,s→0

N(t− s).



These three points lead to the result
∑

j:tj∈[0,t]

H(tj) · (N(tj)−N(tj−)) =
∑

Tj≤t H(Tj).

5. Calculate the Nelson-Aalen estimator Ĥ(t), t ≥ 0, for the data set below by hand.

i T̃i Di

1 2 1
2 2.5 0
3 5 1
4 5.5 0
5 9 1
6 12 1

Draw the result, and use ”(”,”)”,”[”,”]” to indicate the continuity properties of Ĥ at the jump
times (here ”[” at a point indicates continuous from the right at that point, ”(” at a point
indicates not continuous from the right at that point, ”]” at a point indicates continuous from
the left at that point, and ”)” at a point indicates not continuous from the left at that point,
).

Solution We augment the table to make the calculation easier:

i T̃i Di Z(T̃i) ∆Â(T̃i) Â(T̃i)

1 2 1 6 1/6 0.17
2 2.5 0 5 0 0.17
3 5 1 4 1/4 0.42
4 5.5 0 3 0 0.42
5 9 1 2 1/2 0.92
6 12 1 1 1 1.92

We have now included a column Z(Ti), which is the number at risk right before T̃i, and a
column ∆Â(T̃i) which shows the increments of the Nelso-Aalen estimator at each T̃i; when
Di = 0 there is no event, and the Nelson-Aalen estimator has an increment of 0, and when
Di = 1 at T̃i the Nelson-Aalen estimator has an increment of 1/Z(T̃j). The rightmost column
contains the Nelson-Aalen estimator, which is the cumulative sum of the column to the left of
it (up to two decimal places). The plot is shown below:

t

1

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

6. Suppose we follow n individuals over a study period. We will now consider an estimator of
the survival probability P (T > t) as a function of t. To formulate the estimator, we introduce
the variables {T̃i, Di}ni=1, where Di = 1 if subject i dies in the study period (so that T̃i = Ti)
and Di = 0 if subject i is censored at T̃i( so that Ti > T̃i). The estimator, which is called the
Kaplan-Meier estimator, then takes the form5

Ŝ(t) =
∏

j:Tj≤t,Dj=1

(
1− 1

Z(Tj)

)
,

5As in the lectures, we only consider the case without ties; the estimator looks slightly different if some event times
are tied.



so that the product is over the observed failure times, and Z(t) =
∑n

i=1 Zi(t) is the number
of individuals at risk (i.e. alive and not censored) just before t. Here, Zi(t) is 1 if subject i is
at risk just before t, and 0 otherwise. 6

a) Suppose there is no censoring, i.e. that all individuals are followed up over the entire
study period. Show that then Ŝ(t) = 1 − F̂ (t), where F̂ is the empirical distribution
function

F̂ (t) =
1

n

n∑
i=1

I(Ti ≤ t).

b) A student (not enrolled in MATH-449 - Biostatistics) gets inspired by the relationship
between the Kaplan-Meier estimator and the empirical distribution function. He reasons
that, if he modifies the sample by just removing the subjects that are censored during
the follow-up period, he can estimate the survival function by 1 minus the empirical
distribution function of the modified sample. His proposed estimator is

Ŝ⋆(t) = 1− F̂ ⋆(t),

where F̂ ⋆(t) = 1
n⋆

∑n
i=1 I(Ti ≤ t,Di = 1), and n⋆ =

n∑
i=1

I(Di = 1).

Argue that the estimator Ŝ⋆ will fail to estimate S in the presence of censoring, even if
we have independent censoring.

Solution

a) When there is no censoring the estimator reduces to Ŝ(t) =
∏

j:Tj≤t

(
1 − 1

Z(Tj)

)
. Now,

order the event times such that 0 < T1 < T2 < · · · . Since we have no censoring, the
process Z(t) will jump with a length of 1 for every event time. Now, fix t, and let
Tj′ = max{Tj : Tj ≤ t}. The Kaplan-Meier estimator is thus a telescoping product,
which reduces to∏

j:Tj≤T ′
j

(
1− 1

Z(Tj)

)
=

∏
j:Tj≤Tj′

Z(Tj)− 1

Z(Tj)

=
Z(T1)− 1

Z(T1)
· Z(T2)− 1

Z(T2)
· Z(T3)− 1

Z(T3)
· · · Z(Tj′)− 1

Z(Tj′)

=
1

Z(T1)�
����Z(T1)− 1

Z(T2)
·
�

����Z(T2)− 1

Z(T3)
· · ·

�
���

��
Z(Tj′−1)− 1

Z(Tj′)

(
Z(Tj′)− 1

)
=

Z(Tj′)− 1

Z(T1)
.

Thus,

1− Ŝ(t) = 1− Z(Tj′)− 1

Z(T1)

=
Z(T1)− Z(Tj′) + 1

Z(T1)
.

6In the lectures we will see that the Kaplan-Meier estimator is a consistent estimator under the independent
censoring assumption. By consistent we mean that, for any ϵ > 0, lim

n→∞
P
(
sup
s≤τ

|Ŝ(s)− S(s)| ≥ ϵ
)
= 0, where τ is the

end of the study period.



Now, Z(t) =
∑n

i=1 Zi(t) =
∑n

i=1 I(Ti ≥ t) in the case of no censoring. We thus have that
Z(T1) = n, and

Z(T1)− Z(Tj′) + 1 = n−
n∑

i=1

I(Ti ≥ Tj′) + 1

= n−
n∑

i=1

(
1− I(Ti < Tj′)

)
+ 1

=

n∑
i=1

I(Ti < Tj′) + 1

=

n∑
i=1

I(Ti ≤ Tj′)

=

n∑
i=1

I(Ti ≤ t).

We thus have that

1− Ŝ(t) =
Z(T1)− Z(Tj′) + 1

Z(T1)

=

∑n
i=1 I(Ti ≤ t)

n

= F̂ (t).

b) Clearly enough, removing individuals that are observed in parts of the study period,
but that did not experience events while under observation, will not provide a coherent
estimation strategy. After all, the subjects that were observed in parts of the study period
without dying provide useful information regarding the survival experience; they could in
principle have died while under observation, but didn’t. Moreover, there is no guarantee
that all subjects in a given study will die before the end of the study (this typically doesn’t
happen), but the estimator Ŝ⋆ is defined for such a population.

More rigorously, we may consider the limiting distribution of F̂ ⋆:

lim
n→∞

F̂ ⋆(t) = lim
n→∞

1

n⋆

n∑
i=1

I(Ti ≤ t,Di = 1)

lim
n→∞

1/n

n⋆/n

n∑
i=1

I(Ti ≤ t,Di = 1)

Now, n⋆/n = 1
n

n∑
i=1

I(Di = 1) → P (D = 1), and 1
n

∑n
i=1 I(T ≤ t,D = 1) → P (T ≤

t,D = 1) (using the law of large numbers, assuming independent observations), which
gives

lim
n→∞

F̂ ⋆ =
P (T ≤ t,D = 1)

P (D = 1)

= P (T ≤ t|D = 1),

and thus Ŝ⋆(t) = 1 − F̂ ⋆(t) estimates P (T ≥ t|D = 1) = P (T ≥ t|T < T̃ ), the survival
function among the subjects that eventually died during the study, which is not what we
are interested in.

7. Prove the following result:



Theorem 1 (identification under independent censoring) Under independent censoring,
the intensity of the right-censored counting process Ni can be written as

λi(t)dt = Zi(t)αi(t)dt

where Zi(t) = I(t ≤ T̃i) and αi is the hazard of the ”complete” counting process

λc
i (t)dt = Zc

i (t)αi(t)dt

where Zc
i (t) = I(t ≤ Ti).

As a hint: use the Innovation theorem:

Theorem 2 (Innovation theorem) An intensity λF ′′

i (t) with respect to a filtration {F ′′
t }

such that {F ′
t} ⊇ {F ′′

t }, satisfies

λF ′′

i (t) = E(λF ′

i (t) | F ′′
t−).

Solution See slide 145 in the lecture notes.


