

MATH-449 - Biostatistics
EPFL, Spring 2022
Problem Set 1

1. Determine whether each of these questions are phrased as causal questions or not (yes or no).
 - a) Does the Moderna vaccine reduce the risk of severe COVID-19 infection?
 - b) Do women with breast cancer survive longer than men with prostate cancer?
 - c) Is the life expectancy in Switzerland longer than the life expectancy in Italy?
 - d) Does drinking 0.5 L beer compared to 0.5 L Coca Cola at 19h00 affect the quality of sleep?
 - e) Would drinking a cup of coffee 2 hours before your exam improve your performance?
2. Based on the definition of a causal effects in the lecture slides, argue whether the following statements about a covariate $L \in \mathbb{R}$, a treatment $A = 0, 1$ and an outcome $Y \in \mathbb{R}$ are right or wrong (there is no guarantee that A is randomly assigned).
 - a) $\mathbb{E}(Y^{a=1} | L = l) - \mathbb{E}(Y^{a=0} | L = l)$ is a causal effect .
 - b) $\mathbb{E}(Y | A = 1, L = l) - \mathbb{E}(Y | A = a, L = l)$ is a causal effect .
 - c) $\mathbb{E}(Y^{a=1} | A = 1, L = l) - \mathbb{E}(Y^{a=0} | A = 1, L = l)$ is a causal effect .
 - d) $\frac{\mathbb{E}(Y^{a=1})}{\mathbb{E}(Y^{a=0})}$ is an average over individual level (additive) causal effects.
3. Translate these English sentences to mathematical (counterfactual) statements.
 - a) The average causal effect of receiving a COVID-19 vaccine ($A = 1$) vs placebo ($A = 0$) on mortality after one year ($Y = 1$ is death, $Y = 0$ is alive) in the entire population of interest.
 - b) The average causal effect of receiving a COVID-19 vaccine ($A = 1$) vs placebo ($A = 0$) on mortality after one year ($Y = 1$ is death, $Y = 0$ is alive) among those who received placebo in the observed (factual) data.
 - c) The average causal effect of receiving a COVID-19 vaccine ($A = 1$) vs placebo ($A = 0$) on mortality after one year ($Y = 1$ is death, $Y = 0$ is alive) among those who received treatment in the observed (factual) data.
 - d) The average causal effect of receiving a COVID-19 vaccine ($A = 1$) vs placebo ($A = 0$) on mortality after one year ($Y = 1$ is death, $Y = 0$ is alive) in men ($X = 1$).
 - e) Are your answers in a)-d) estimands, estimators or estimates?
4. Suppose investigators had access to data from a study in which they observed for each patient a binary outcome Y , a binary treatment A and a 4-level baseline covariate L . The parameters of the joint density of (L, A, Y) were computed from the data and summarized in Table 1 (where we suppose that the sample size was so large, that sampling variability is not a concern).
 - a) From the parameters in Table 1, compute $\mathbb{E}[Y]$.
 - b) Suppose now that the data did not in fact arise from a regular observational study, but had instead come from a special trial. Upon recruitment into the study, each patient's covariate L is measured and then they are sorted into groups based on that covariate's value. In each group, the investigators conduct a separate experiment, which are identical except they use a special coin to randomize patients to either treatment ($a = 1$) or control ($a = 0$), with "heads" corresponding to treatment and "tails" corresponding to control. The probabilities for heads for each of these sub-trials is given by the column labeled $P(A = 1 | L = l)$. Assume consistency holds ($Y^A = Y$), and that patients perfectly complied with their assignments. With the information in the table, compute the effect of treatment $\mathbb{E}[Y^{a=1} - Y^{a=0} | L = l]$ for each subgroup $L = l$ that was targeted in each of the sub-trials. What additional assumptions did you use along the way, that was justified given the source of the data?

- c) From the quantities computed in part a), use laws of probability to compute the average treatment effect, among the whole population, $\mathbb{E}[Y^{a=1} - Y^{a=0}]$.
- d) Draw a directed acyclic graph (DAG) that could depict the mechanism that generated the observed data.
- e) The data analyst for the study approaches you and said they made a terrible mistake: when preparing the column $P(A = 1 | L = l)$ in Table 1, they reverse coded the treatment variable, so in fact the true values of the treatment propensities are 1 minus those listed in the table. What will be the values of the previously computed parameters, and explain in words why these changes did (or did not occur).

	$P(Y = 1 A = a, L = l)$	$P(A = 1 L = l)$	$P(L = l)$
	$a = 1$	$a = 0$	
$l = 1$.1	.8	.2
$l = 2$.2	.7	.4
$l = 3$.3	.6	.6
$l = 4$.4	.5	.1

Table 1: Parameters of $P_{L,A,Y}$ observed in the conditionally randomized trial.

5. Consider a covariate $L \in \mathbb{R}$, a treatment $A = 0, 1$ and an outcome $Y \in \mathbb{R}$.

- a) Investigator 1 claims that $A \perp\!\!\!\perp Y \implies A \perp\!\!\!\perp Y | L$. Show that the statement is wrong.
- b) Investigator 2 claims that $A \perp\!\!\!\perp Y | L \implies A \perp\!\!\!\perp Y$. Show that the statement is wrong.