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Problem Set 9

1. As before we let X ∈ {0, 1} be a treatment, T be a survival time, and T x for x ∈ {0, 1}
be the survival time if X is set to x. We assume that causal consistency holds, i.e. that
T = XT x=1+(1−X)T x=0, and we are interested in estimating functions of T x, e.g. P (T x > t).
We let L be a set of pretreatment variables (we typically take L to be a discrete variable, but
this is unimportant). We have earlier seen that, under conditional exchangeability given L,
T x ⊥⊥ X|L1, P (T x > t) can be written as

E [I(T x > t)] = P (T x > t) =
∑
l

P (T > t | X = x, L = l)P (L = l). (1)

Suppose we know how to model P (T > t|X = x, L = l). The formulation (1) then suggests an
estimator for P (T x > t): By using estimates P̂ (L = l) and P̂ (T > t|X = x, L = l) from the
model, multiplying them together, and summing over l, we can estimate P (T x > t) with∑

l

P̂ (T > t | X = x, L = l)P̂ (L = l). (2)

(a) Verify that (1) can be written as

E

[
I(X = x)

P (X = x | L)
I(T > t)

]
(3)

by the law of total probability, assuming that P (X = x|L) > 0 almost surely.

(b) Suppose you are given an i.i.d. sample {(Xi, Ti, Li)}ni=1 (i.e. assume there is no censoring),

and that you have access to estimates P̂ (X = x|L = l) of P (X = x|L = l) for x ∈
{0, 1} and all l. Argue that the formulation (3) suggests the inverse probability weighted
estimator

1

n

n∑
i=1

I(Xi = x)

P̂ (Xi = x | L = Li)
I(Ti > t) (4)

for P (T x > t).

(c) We will now inspect the performance of the estimators (2) and (4) using simulations. We
will do this by

(i) Generate an i.i.d. sample {Li}ni=1 from a known distribution.

(ii) Generate {Xi}ni=1 independently from the same distribution, but such that Xi de-
pends on the realisation Li.

(iii) Generate {Ti}ni=1 as in ii), such that Ti depends on the realisations Li and Xi.

A simple example of this is shown below:

1 library(zoo)

2 library(survival)

3 set.seed(42)

4 n = 1e3

5 timegrid = seq(0,10,length.out=1e4)

6

7 L_prob_vec = c(0.1,0.25,0.15,0.1,0.4)

8 len = length(L_prob_vec)

9 # Sampling L with possible values 1,...,5 based

1Recall that, under exchangeability (Tx ⊥⊥ X for x ∈ {0, 1}) we have that the identity P (Tx > t) = P (T > t|X = x)
holds. P (Tx > t) can thus be assessed as P (T > t|X = x) can be estimated from observed data. Exchangeability
will often fail to hold in real-life settings, so we will need to come up with formulas for estimating P (Tx > t) under
weaker assumptions.



10 # on the probabilities in L_prob_vec

11 L = sample(1:len,n,replace = T,prob = L_prob_vec)

12 # Defining probabilities for outcomes of X given realisations of L

13 X_prob = 1 - (0.90/L) # Sampling X

14 X = rbinom(n,1,prob=c(X_prob,1-X_prob))

15 # Sampling exponentially distributed survival times depending on

16 # the realisations of X and L (no censoring)

17 TT = rexp(n,1+0.5*X - L*0.9/len)

18 # Estimation:

19 # Estimating the distribution of L

20 L_dist = table(L)/length(L)

21 # We can implement the estimator (2) without modelling assumptions since L

22 # is discrete and the sample size is large

23 survMat_X0 = survMat_X1 = matrix(NA,ncol=length(timegrid),nrow=len)

24 survMat_X0[,1]=survMat_X1[,1] = 1

25 for(i in 1:len){ if(any(X==0 & L==i)){

26 SFT_X0Li = survfit(Surv(TT[X==0 & L==i])~1)

27 tms0 = sapply(SFT_X0Li$time, function(tm) max(which( timegrid <= tm )))

28 survMat_X0[i, tms0 ] = SFT_X0Li$surv

29 }

30 if(any(X==1 & L==i)){

31 SFT_X1Li = survfit(Surv(TT[X==1 & L==i])~1)

32 tms1 = sapply(SFT_X1Li$time, function(tm) max(which( timegrid <= tm )))

33 survMat_X1[i, tms1 ] = SFT_X1Li$surv

34 }

35 survMat_X0[i,] = na.locf(survMat_X0[i,])

36 survMat_X1[i,] = na.locf(survMat_X1[i,])

37 survMat_X0[i,] = survMat_X0[i,] * L_dist[i]

38 survMat_X1[i,] = survMat_X1[i,] * L_dist[i] }

39 # The estimator (2):

40 S_X0 = apply(survMat_X0,2,sum)

41 S_X1 = apply(survMat_X1,2,sum)

42 # Estimating the probability of X=0 given L=i and X=1 given L=i

43 PX0_L = PX1_L = rep(0,len)

44 for(i in 1:len){

45 PX0_L[i] = sum( X==0 & L==i )/sum(L==i)

46 PX1_L[i] = sum( X==1 & L==i )/sum(L==i) }

47 # The estimator (3):

48 S_X0_ipw = sapply(timegrid,function(tm) mean(1*(X==0)/PX0_L[L] * 1*(TT>= tm)))

49 S_X1_ipw = sapply(timegrid,function(tm) mean(1*(X==1)/PX1_L[L] * 1*(TT>= tm)))

50 # The estimated survival differences:

51 Surv_difference = S_X1 - S_X0

52 Surv_difference_ipw = S_X1_ipw - S_X0_ipw

53 # plot(timegrid,Surv_difference,type="s")

54 # lines(timegrid,Surv_difference_ipw,type="s",col=3)

Extending on the above code, write a routine for comparing the variances of the estimators
(2) and (4) in this simulation setting (i.e. with a discrete variable L taking values in
{1, 2, 3, 4, 5} with probabilities given in L prob vec, P (X = 1|L = l) = 1 − 0.9

l , and T
given X and L exponentially distributed with rate 1+0.5X− 0.9

lenL, where len is the length
of the vector L prob vec). You can do this by repeating the simulation m times and store
the obtained estimates Surv difference and Surv difference ipw after each repetition.
Then, using the stored simulations, obtain approximate 95% confidence intervals for the
estimators (2) and (4) by calculating the 2.5th and 97.5th percentiles for each time point
in timegrid. You may find the following lines of code helpful:
Surv difference matrix = Surv difference matrix ipw

=matrix(0,nrow = m, ncol=length(timegrid))

Then store the j-th realisation of Surv difference in the j-th row of Surv difference matrix



etc. You can then use the commands Qfun = function(cl)quantile(cl,prob=c(0.025,0.975))

quantile S = apply(Surv difference matrix,2,Qfun)

quantile S ipw = apply(Surv difference matrix ipw,2,Qfun) to obtain the quan-
tiles, i.e. the approximate confidence intervals.

(d) Set m = 500 and compare the estimates of P (T x=1 > t)− P (T x=0 > t) obtained by (2)
and (4) with their approximate 95% confidence intervals. Why are they so similar in this
case?

(e) Set X prob = 1 -(0.95/L) instead of X prob = 1 - (0.90/L) and perform the calcula-
tion in point d) again. Why is the performance of the two estimators different this time?
Note that we have not made any model assumptions in our estimation procedure.

(f) Perform the same calculation as in d), but this time set
L prob vec = c(0.1,0.25,0.15,0.1,0.1,0.05,0.05,0.05,0.1,0.05). What do you
see?

2. You have access to time-to-event data that follow a Cox model, so that the hazard takes the
form α(t | X = x) = α0(t)e

βx for x ∈ {0, 1} for t ∈ [0, τ ].

(a) Starting from the definition of the hazard, verify that the hazard ratio under the Cox
model is

eβ =
limh→0+

1
hP (t ≤ T < t+ h | t ≤ T,X = 1)

limh→0+
1
hP (t ≤ T < t+ h | t ≤ T,X = 0)

(5)

for all times t ∈ [0, τ ].

(b) Suppose that the data were from a randomized trial. Suppose also that causal consistency
holds for the failure times, i.e. T = XT x=1 + (1−X)T x=0, where T denotes the failure
time, X is the treatment, and T x is the failure time if X is set to the value x. Because
the failure times come from a randomised trial, we have that T x ⊥⊥ X for x ∈ {0, 1}.
Starting from (5), show that

eβ =
limh→0+

1
hP (t ≤ T x=1 < t+ h | t ≤ T x=1)

limh→0+
1
hP (t ≤ T x=0 < t+ h | t ≤ T x=0)

(6)

for all times t ∈ [0, τ ]. State the assumptions you use in each step from (5) to (6).

(c) A friend of you struggles to formalise an interpretation of the coefficient eβ from (a). He
comes up with the following candidates:

i) eβ is the marginal hazard in the population when X is set to one divided by the
marginal hazard in the population when X is set to zero.

ii) eβ is the hazard when X takes the value one divided by the hazard when X takes
the value zero.

We assume that the model α(t | X = x) = α0(t)e
βx for x ∈ {0, 1} is true. Under what

assumptions is the interpretation i) correct. Under what assumptions is the interpretation
ii) correct? Are the assumptions needed for the interpretation ii) weaker or stronger than
the assumptions needed for the interpretation i)?2

3. Suppose the hazard of a failure time T given the covariates X and V takes the form

α(t | X,V ) = α0(t) +XαX(t) + V αV (t), (7)

where X ∈ {0, 1}, and V is a discrete random variable. We assume that causal consistency
holds, i.e. that T = XT x=1 + (1−X)T x=0, and that T x ⊥⊥ X | V for x ∈ {0, 1}.

2Hint: Look at the assumptions used in (a) and (b).



(a) Show that

α(t | X = x, V ) = lim
h→0+

1

h
P (t ≤ T x < t+ h | t ≤ T x, V ). (8)

Let h[f(T x=0, T x=1)](t) be the hazard difference

lim
h→0+

1

h

(
P (t ≤ T x=1 < t+ h | t ≤ T x=1)− P (t ≤ T x=0 < t+ h | t ≤ T x=0)

)
. (9)

We will in steps (b)–(d) show that h[f(T x=0, T x=1)](t) is collapsible on V if the model
(7) holds.

(b) Use the identity (8) to show that

h[f(T x=0, T x=1 | V = v)](t) = αX(t). (10)

(c) Use laws of probability to show that (9) is equal to

αX(t) + αV (t)
(
E[V | t ≤ T x=1]− E[V | t ≤ T x=0]

)
. (11)

(d) Use laws of probability and the model assumption (7) to show that

E[V | t ≤ T x] =

∑
v
ve−

∫ t
0
vαV (s)dsP (V = v)∑

v′
e−

∫ t
0
v′αV (s)dsP (V = v′)

. (12)

Conclude that E[V | t ≤ T x] is constant as a function of x, and combine this fact with
the result from c) to infer that (9) is equal to αX(t). Conclude that h[f(T x=0, T x=1)](t)
is collapsible on V for any choice of weights {wv(t)}v.

4. 3

In R, write the following commands:

library(boot)

library(survival)

set.seed(42)

The data set melanoma is automatically loaded.

We will compute Kaplan-Meier estimates for the all-cause mortality (death from melanoma
and death from other causes). If we consider all patients, this may be performed by the
command:

fit.mel0 = survfit(Surv(time, status %in% c(1,3)) ~ 1, data = melanoma, conf.type = "plain")

We can plot the Kaplan-Meier estimate with standard confidence limits by:

plot(fit.mel0, mark.time = FALSE, xlab = "Days after operation")

The following command gives a summary of the results:

summary(fit.mel0)

a) Make Kaplan-Meier plots for the total population and interpret the plots. Determine the
lower quartile with 95% confidence limits using the output from the summary-command.
(Note that the lower quartile corresponds to 75% survival probability.)

3Inspired by ”Practical exercise 2” from ”STK4080 - Forløpsanalyse”, autumn 2014.



b) Make Kaplan-Meier plots for patients with ulceration present and absent and interpret the
results. Is it possible to estimate the lower quartile for both ulceration groups? Estimate
the lower quartile with confidence limits if possible.

c) Can we interpret the difference between the Kaplan-Meier curves in b) as the causal effect
of an ulceration being present versus absent?

d) Use the function coxph to fit a Cox model with ulceration as the only covariate. Print
and interpret the hazard ratio. Let X = 1 denote presence of ulceration and X = 0
denote absence of ulceration. Plot log(− log(Ŝ(t | X = 1))) and log(− log(Ŝ(t | X = 0)))
to visually inspect whether the proportional hazards assumption is reasonable.

e) Make Kaplan-Meier plots for the three thickness groups 0–1 mm, 2–5 mm, 5+ mm and
interpret the plots. Estimate the lower quartile with confidence limits if possible.


