
BIOSTATISTICS (MATH-449)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Mock exam

Date: 27th of May, 2025
Time: 10:15–12:00

Name:

SCIPER:

INSTRUCTIONS TO CANDIDATES

• This is a mock exam. The final one will contribute 80% to your final grade. To
obtain the maximum number of points you should be clear about your reasoning and
present your arguments explicitly. You have 3 hours to complete the exam. You have
2 hours to complete the mock exam. (We are not expecting to finish all questions
within the 2 hours, but we wanted to give more opportunities to practice material.)

• All that can be used for this exam is a pen. No notes, books, summaries, formula
collections or calculators are allowed. All questions should be answered.

• The finest enumerated item in each question will be marked on a scale of 0−2 points,
indicating an incorrect, partially correct and completely correct answer respectively
(half-points are not given). The mock exam has 4 questions with a total of
32 points.

• Write the answer to every question in the other booklet (Final exam -
answers). (This is a mock exam, you will not be provided with an answer booklet.)
The questions are provided in this booklet. Scrap paper during the final exam will
be provided for rough work, but only answers written in the other booklet will be
marked.

• At the end of the exam, you will have to return everything: the booklet with the
questions, the booklet with your answers, and the scrap paper.

Mark question 1 (TOT: 8 points):

Mark question 2 (TOT: 6 points):

Mark question 3 (TOT: 6 points):

Mark question 4 (TOT: 12 points):
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Question 1.
Let L,U,A and Y denote a measured baseline covariate, an unmeasured variable, treatment
and outcome, respectively. Investigators 1, 2 and 3 propose causal models represented by
the causal graphs G1,G2 and G3 respectively:
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(a) Does any of the graphs G1, G2 and G3 imply independencies in the observed law
p(l, a, y)? Can the observed law p(l, a, y) be used to falsify G1, G2 and G3? If yes,
state the independencies that can be falsified.

(b) Consider the causal effect E[Y a=1 − Y a=0], assuming that consistency and positivity
hold, and that
(i) G1 is correct.
(ii) G2 is correct.
(iii) G3 is correct.
For parts (b) (i)–(iii), express E[Y a=1 − Y a=0] as a function of the observed law
p(l, a, y) if this is possible, otherwise explain why it is not possible. Your expression
should be "minimal", in the sense that none of the terms should contain unnecessary
variables.
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Solutions:
(a) G1 implies that A ⊥⊥ L. Therefore the observed law p(l, a, y) can be used to falsify

G1 whenever p(l, a, y) violates A ⊥⊥ L.
Graphs G2 and G3 do not imply any independence in the observed law. Therefore,

the observed law p(l, a, y) cannot be used to falsify G2 or G3.
(b) (i) Under G1, Y a ⊥⊥ A. Therefore,

E[Y a=1 − Y a=0] = E[Y |A = 1]− E[Y |A = 0]

(ii) Under G2, Y a ⊥⊥ A|L. Therefore,

E[Y a=1 − Y a=0] =
∑
l

(E[Y |A = 1, L = l]− E[Y |A = 0, L = l])P (L = l)

(iii) Under G3, we have neither Y a ⊥⊥ A, nor Y a ⊥⊥ A|L. However, there is no causal
effect of A on Y . Thus, Y a=1 = Y a=0 = Y and E[Y a=1 − Y a=0] = 0
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Question 2. (a) Let α(t) be a hazard function and S(t) the corresponding survival func-
tion for a (continuously distributed) survival time T . Show the identity

S(t) = exp

(
−
∫ t

0

α(s) ds

)
.

(b) Let Zj(t) denote the number of individuals at risk and Nj(t) the counting processes of
events in group j. State the formula for the Kaplan-Meier estimators of the survival
functions for the groups j = 1, 2.

(c) It is sometimes considered insufficient to just present Kaplan-Meier (survival) curves
without a formal test of the difference between the groups. The most commonly used
test for this purpose is the log-rank test, which is based on a test statistic defined on
a time interval [0, τ ]. This statistic can be expressed as

Q(τ) = N2(τ)−
∫ τ

0

Z2(t)

Z•(t)
dN•(t),

where Z•(t) = Z1(t) + Z2(t) and N•(t) = N1(t) +N2(t).
Show that, under the null hypothesis of equal survival distributions in the two

groups, it holds that E(Q(τ)) = 0.
Hint: You can use that, under the null hypothesis, the counting process Nj(t)

had cumulative intensity process Λj(t) =
∫ t

0
Zj(s)α(s) ds where α(s) is the common

hazard function under the null hypothesis.
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Solutions:
(a) By definition the hazard α(t) = f(t)

S(t)
= −dS(t)

S(t)
. Thus, the cumulative hazard equals

Λ(t) =
∫ t

0
λ(s) ds = −

∫ t

0
dS(s)
S(s)

= − log(S(t)) giving S(t) = exp
(
−
∫ t

0
α(s) ds

)
.

(b) The Kaplan-Meier estimators are given as

Ŝ(t) =
∏
s≤t

[
1− dNj(s)

Zj(s)

]
.

(c) We can rewrite hazards for the groups, since under the null α1(t) = α2(t) = α(t),

Z(τ) = N2(τ)−
∫ τ

0

Z2(t)

Z•(t)
dN•(t)

=

∫ τ

0

Z1(t)

Z•(t)
dN2(t)−

∫ τ

0

Z2(t)

Z•(t)
dN1(t)

=

(∫ τ

0

Z1(t)

Z•(t)
dΛ2(t)−

∫ τ

0

Z2(t)

Z•(t)
dΛ1(t)

)
−
(∫ τ

0

Z1(t)

Z•(t)
dM2(t)−

∫ τ

0

Z2(t)

Z•(t)
dM1(t)

)
=

(∫ τ

0

Z1(t)Z2(t)

Z•(t)
α(t) dt−

∫ τ

0

Z2(t)Z1(t)

Z•(t)
α(t) dt

)
+M∗(τ) = 0 +M∗(τ)

where M∗(t) = −
(∫ t

0
Z1(s)
Z•(s)

dM2(s)−
∫ t

0
Z2(s)
Z•(s)

dM1(s)
)

is a martingale with expectation
zero. Thus E(Z(τ)) = 0 under the null hypothesis.
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Question 3. We will consider the so-called accelerated failure time (AFT) model. In this
model, the distribution of a survival time T conditional on a covariate x is given through
the relation

log(T ) = µ− β′x+ σW

where β′ is a regression parameter, W is a random variable typically with mean zero, and µ
and σ are so-called location and dispersion parameters generating a family of distributions
µ+ σW .

(a) Show that the survival function for T given x can be expressed as
S(t | x) = S0(exp(β

′x)t)

where S0(t) = P (exp(µ+ σW ) > t).
Give an explanation for the name "AFT-model" based on this representation (1-3

sentences).
(b) Show that the hazard function of T given x can be written as α(t | x) = exp(β′x)α0(exp(β

′x)t),
where α0(t) = α(t | 0) = − d

dt
log(S0(t)) is the hazard function when x = 0.

(c) Assume now that S0(t) = exp(−btk) for parameters b > 0 and k > 0, which means
that exp(µ+ σW ) has a Weibull distribution (you do not need to know more about
this distribution). Demonstrate that, in this case, the accelerated failure time model
is also a proportional hazards model on the form α(t | x) = h0(t) exp(γ

′x) with a
constant hazard ratio.

Determine the relation between the coefficient β′ in the accelerated failure time
model and the coefficient γ′ in the proportional hazards model.
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Solutions:
(a) We have

S(t | x) = P (T > t) = P (log(T ) > log(t)) = P (µ− β′x+ σW > log(t))

= P (µ+ σW > log(t) + β′x) = P (exp(µ+ σW ) > t exp(β′x))

= S0(exp(β
′x)t).

This survival function depends on time t multiplied by an acceleration factor
exp(β′x), so we can consider time as moving exp(β′x) faster with covariate x.

(b) To get to the hazard function, we use the representation from Problem 1, question
(a): S(t) = exp

(
−
∫ t

0
α(s) ds

)
which corresponds to

α(t) =
d

dt
(− log(S(t))) =

−dS(t)

S(t)
.

Hence, the hazard in an AFT model is given as

α(t | x) = exp(β′x)(−S ′
0(exp(β

′x)t))

S0(exp(β′x)t)
= exp(β′x)α0(exp(β

′x)t).

(c) We can use the first representation S(t | x) = S0(exp(β
′x)t), which with S0(t) =

exp(−btk) gives

S(t | x) = exp(−b(exp(β′x)t)k) = exp(−b(exp(kβ′x)tk)) = exp(−b(exp(γ′x)tk)),

which is also the survival function of a Weibull distribution. The hazard correspond-
ing to this survival function is given as

α(t | x) = bk exp(γ′x)tk−1 = exp(γ′x)bktk−1 = exp(γ′x)h0(t),

where h0(t) = bktk−1 is the baseline corresponding to a so-called Weibull survival
function S0(t) = exp(−btk). We recognize this model as a proportional hazards model
with proportionality factor exp(γ′x) = exp(kβ′x). Thus the regression parameter in
the proportional hazard model equals γ = kβ compared to the model log(T ) =
µ− β′x+ σW .
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Question 4. Consider a chain-binomial SIR model with discrete time dynamics, for a fixed
population of size n. Infections are assumed to happen in (discrete) generations. In the fol-
lowing, we assume that once an individual becomes infective, they remain infective for one
generation, and then they are immunized, hence, they are removed. Moreover, each suscep-
tible form generation t remains susceptible in generation t+1, if they avoided infection from
all infectives of generation t. Infectious events at a given generation t occur independently
from each other. Denote the number of susceptibles and infectives in generation t with St

and It, respectively.
(a) In the Reed-Frost model, it is assumed that each infective has the same per contact

infection probability p in every generation. Moreover, each potential infection is not
affected by any other contacts, neither from previous generations nor in the current
generation. That is, if a susceptible individual escaped infections in the previous
generations, or was not infected by other contacts in the same generation, they did not
develop immunity, nor did they become more susceptible. Under these assumptions,
write down the transition probability of the (Reed-Frost) model, that is, derive

P (St+1 = st+1, It+1 = it+1|S0 = s0, . . . , St = st, I0 = i = 0, . . . It = it).

Does {St, It}t=0,1,... satisfy the Markov property? Justify!
(b) Suppose you observe a particular chain of the number of infectives {i0, i1, . . . iT = 0}.

Write down the probability of observing this chain, in other words, what is

P (I0 = i0, . . . , IT = 0)?

(c) Denote the final number of infected among the initially susceptible with Z, and the
probability of observing Z = j given S0 = k, I0 = i with

P (Z = j|S0 = k, I0 = i) =: mijk.

Argue that the recursive expression

mijk =

(
k

j

)
mijjq

(i+j)(k−j), j < k, where mikk = 1−
k−1∑
j=0

mijk, q = 1− p,

is correct. A derivation of the formula is sufficient but not necessary for obtaining
full points.

(d) Suppose that the number of infectives in the new generation, does not depend on
the exact number of the infectives in the previous generation, just on the presence
of at least one infective. That is, if there is any infective present in a generation,
the probability of infecting a given individual is p if there is any infective present,
otherwise it is 0. Under this new assumption, corresponding to the Greenwood model,
write down the transition probability

P (St+1 = st+1, It+1 = it+1|S0 = s0, . . . , St = st, I0 = i = 0, . . . It = it).

(e) Give a formula for the reproduction number R0 both in the Reed-Frost and the
Greenwood model. Is it true that in these models, if R0 > 1 the epidemic will always
take off, that is, a large outbreak will occur? Justify!

(f) We have simulated N = 1000 realizations from both the Reed-Frost and the Green-
wood models, with fixed parameters and initial conditions, I0 = 1, n = 100, under
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different infection probabilities p. The distribution of the final size of the epidemic,
can be estimated with the histograms, depicted below.

Match the different model and infection probability pairs to the histograms.
(i) p = 1 · 10−2, Reed-Frost
(ii) p = 2 · 10−2, Reed-Frost
(iii) p = 4 · 10−2, Reed-Frost
(iv) p = 1 · 10−2, Greenwood
(v) p = 4 · 10−2, Greenwood
Give a brief justification (3-4 sentences in total) for your choice.
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Solutions:
(a) Based on the description of the model, the number of new infectives in the new

generation only depends on the number of infectives and susceptibles in the previous
generation. In addition, the number of new susceptibles is deterministically follows
from the number of new infectives and the number of previous susceptibles, that is

P (St+1 = st+1, It+1 = it+1|S0 = s0, . . . , St = st, I0 = i = 0, . . . It = it)

=

{
P (It+1 = it+1|St = st, It = it) if st+1 = st − it+1

0 otherwise,

therefore the Markov property is satisfied.
Since each susceptible individual can avoid infection by a given infectious individ-

ual with probability 1 − p independently from each other, the probability, that a
susceptible avoids infection, conditional on that there are it many infective in gener-
ation t is (1 − p)it , so the probability that they get infected is 1 − (1 − p)it . Since
we condition on that there are st many susceptibles in generation t, and infections
(e.g. successes) happen independently from each other, the new infections have a
Binomial(st, (1− (1− p)it)) distribution, thus the transition probability is

P (It+1 = it+1|St = st, It = it) =

(
st
it+1

)(
1− (1− p)it

)it+1
(
(1− p)it

)st−it+1 .

(b) Using that there exists a deterministic relationship between the susceptibles and the
infectives, that is, s0 = n− i0, s1 = s0 − i1, s2 = s1 − i2, . . .

P (I0 = i0, . . . , IT = 0) = P (I0 = i0, . . . , IT = 0, S0 = s0, . . . , ST−1 = sT−1),

for the recursively determined values of st. Then, by the definition of conditional
probability and the fact that {It, St} is Markov, we can rewrite

P (I0 = i0, . . . , IT = 0, S0 = s0, . . . , ST = sT )

= P (IT = 0, ST = sT |I0 = i0, . . . , IT−1 = it−1, S0 = s0, . . . , ST−1 = sT−1)

· P (IT−1 = iT−1, ST−1 = sT−1|I0 = i0, . . . , IT−2 = it−2, S0 = s0, . . . , ST−2 = sT−2) . . .

· P (I0 = i0, S0 = s0)

= P (IT = 0|IT−1 = iT1 , ST−1 = sT−1) · P (IT−1|IT−2 = iT−2, ST−2 = sT−2) . . .

· P (I1|I0 = i0, S0 = s0) · 1

=
T−1∏
t0

(
st
it+1

)(
1− (1− p)it

)it+1
(
(1− p)it

)st−it+1 .

(c) mijk stands for the probability of observing an infectious chain that had in total
j many new infectives among the initially k many susceptibles, if we had initial
conditions S0 = k, I0 = i. Denote, the probability, that precisely the set K ⊆
{1, . . . k} with |K| = j was infected during the course of the epidemic with miKk.
Due to symmetry

mijk =

(
k

j

)
miKk.
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Divide the total susceptible population into two compartments, K and Kc =
{1, . . . , k} \ K. We can consider the final size probabilities in these two compart-
ments separately. For K, all susceptibles within this group must be infected, that
is, we start from j = |K| susceptibles and i infectives, and we are interested in the
probability that all j susceptibles will become infected during the epidemic, that
corresponds to mijj.

For Kc, none of the initial susceptibles can become infected. That is, in the first
generation, they should avoid infection by the i many initial susceptibles, with prob-
ability (qi)k−j. Then in the subsequent generations, they should escape infection
from all newly generated infectives, until all individuals in K are infected. This can
happen with probability

(qi1)k−j(qi2)k−j . . . (qiTK )k−j,

where TK is the index of the generation when the last individuals in K became
infected. Since we fixed that, only the individuals in K became infected, and that
|K| = j, it follows that

(qi1)k−j(qi2)k−j . . . (qiTK )k−j = (qj)k−j.

Putting everything together and using the independence of infectious contacts

mijk =

(
k

j

)
miKk =

(
k

j

)
mijj(q

i)k−j(qj)k−j =

(
k

j

)
mijj(q

i+j)k−j,

which gives the desired result.
(d) We can use an analogous argument as in the solution of sub-question (a), except that

now, given that there are it > 0 many infective in generation t, the probability that
a given susceptible becomes infected is p and the escape probability is 1 − p. Thus
the number of new infections is Binomial(st, p) distributed, that is

P (It+1 = it+1|St = st, It = it) =

(
st
it+1

)
pit+1qst−it+1 if st ≥ it+1, it > 0,

and it is 0 otherwise.
(e) The reproduction number denotes the expected number of infections induced by

a single infective individual in a large, completely susceptible population. In the
population of size n, the population cannot be “larger” than n. Thus, for both the
Reed-Frost and the Greenwood model, the expected number of infections induced by
a single infectious individual is n · p ≈ s0 · p.

Since we are in the context of stochastic epidemic models, there is a non-zero
probability, that the infection will die out before “blowing up”. For example, the
probability that the infection will die out after the first generation is (qit)st , that is
non-zero, even when q is small and st is large, i.e. R0 >> 1.

(f) The pairs are (iii, A), (iv, B), (i, C), (v, D), (ii, E).
The lowest infection probability (1·10−2 =⇒ R0 = 1) corresponds to figures B and

C, as in those cases, the epidemic dies out with only a small number of susceptibles
being infected. In the case of the Greenwood model, it does not matter if i1 >> 1, the
probability of extinction in the next generation is the same regardless of the current
infective size, while in case of the Reed-Frost model, once the size of the infectives
start to increase, the infection is less likely to go extinct. Thus, the distribution
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under the Reed-Frost model has a longer tail/larger variance, so Reed-Frost is C and
Greenwood is B.

By similar reasoning, in the case of the Reed-Frost model, if R0 > 1, either the
infection dies out quickly, or there is a possibility of a major outbreak, since as the
number of infectives increases, the probability of new infections increases exponen-
tially. Therefore, sub-figures A and E, correspond to the Reed-Frost model, and since
the expected final size of the epidemic is greater for sub-figure A, it corresponds to
p = 4 · 10−2 and B to p = 2 · 10−2.

By all other options being excluded, sub-figure D corresponds to the Greenwood
model with p = 4 · 10−2. Alternatively, since the probability of new infections (suc-
cesses) are independent of the current size of the infectious population, if the infection
takes off, the distribution of the Greenwood model is “Binomial-like” (it is not Bino-
mial, since the probability of new infections still depend on the current size of the
susceptible population).
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