
Section 13

Lecture 7
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Relation between Nelson-Aalen and Kaplan-Meier

Partition an interval [0, t] into a number of intervals 0 < t0, t1, · · · tK = t, define
�tk = tk � tk�1. Then

S(tk)� S(tk�1) ⇡ �S(tk�1)dH(tk) = �S(tk�1)(H(tk)� H(tk�1)),

and thus S(tk | tk�1) ⇡ 1� (H(tk)� H(tk�1)). Consider the product

S(t) =
KY

k=1

S(tk | tk�1),

⇡
KY

k=1

{1� (H(tk)� H(tk�1))}

Let K increase, then S(t) is equal to the so-called product integral

S(t) = lim
max�tk!0

KY

k=1

{1� (H(tk)� H(tk�1))} = R
ut

{1� dH(u)}.
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Product integrals and certain relations

Suppose we considered discrete (survival) distributions. Then, the product
integral would simply be

R
ut

{1� dH(u)} =
Y

ut

{1� dH(u)}.

Suppose now that H is absolutely continuous and thus dH(u) = ↵(u)du.
Use the (Taylor expansion) approximation e

�↵(u)du ⇡ 1� ↵(u)du we have
for small du (informally) that

R
ut

{1� dH(u)} = R
ut

{1� ↵(u)du} = e
�

R
ut

↵(u)du = e
�H(t).
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Relation between Nelson-Aalen and Kaplan-Meier

Remember that
P

Tjt
�Ĥ(Tj), is the Nelson-Aalen estimator.

Now, the Kaplan-Meier estimator can be expressed as

Ŝ(t) = R
ut

{1� dĤ(u)} =
Y

Tjt

{1� dĤ(Tj)}.
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Properties of the Kaplan-Meier estimator

Let S1 and S2 be two cadlag survival functions. Then, Duhamel’s equation
gives

S1(t)

S2(t)
= 1 +

Z
t

0

S1(s�)

S2(s)
d(H2 � H1)(s).

As a heuristic motivation for Duhamel’s equation, note that using the
usual formula for di↵erention, we would expect that

d(S1/S2) =
(dS1)S2 � S1dS2

S2
2

= S1d(H2 � H1)/S2,

then integrate on both sides.
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Properties of the Kaplan-Meier estimator

S
⇤(t) = R

ut

{1� dH
⇤(u)},

where H
⇤(t) =

R
t

0 J(u)dH(u)du.
We use Duhamel’s equation

Ŝ(t)

S⇤(t)
� 1 = �

Z
t

0

Ŝ(u�)

S⇤(u)
d(Ĥ � H

⇤)(u).

However, Ĥ � H
⇤ is a martingale, and the right hand side of the equation

above is a stochastic integral,that is, we can define G (t) = Ŝ(t�)
S⇤(t) . Thus,

E
�

Ŝ(t)
S⇤(t) � 1

 
= 0 and E

�
Ŝ(t)/S⇤(t)

 
= 1. This shows that the

Kaplan-Meier estimator consistently estimates S⇤(t).
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Large sample properties (informal argument)

To see that the Kaplan-Meier estimator is uniformly consistent, note that
when n grows, we have Ŝ(u�)/S⇤(u) ⇡ 1, S⇤(t) ⇡ S(t) and
H

⇤(u) ⇡ H(u). Ŝ(u�) ⇡ S
⇤(u). Using the representation by Duhamel’s

equation when n grows,

Ŝ(t)

S(t)
� 1 ⇡ �

Z
t

0
d(Ĥ � H)(u),

and thus
Ŝ(t)� S(t) ⇡ �S(t)

�
Ĥ(t)� H(t)

�
,

and Var(Ŝ(t)) ⇡ S(t)2Var(Ĥ(t)),
and thus we can use the properties of the Nelson-Aalen estimator.
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Estimation of the variance

Thus, we can estimate the variance of the Kaplan-Meier estimator by

⌧̂2(t) = Ŝ(t)2�̂2(t)

where �̂2(t) =
R
t

0 W (s)2dN(s) is the variance of the Nelson-Aalen
estimator.
In practice, the Greenwood estimator is often used, which is very similar:

⌧̃2(t) = Ŝ(t)2
X

Tjt

1

Z (Tj)(Z (Tj)� 1)
.
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Restricted mean survival

The mean survival
R1
0 S(t)dt depends heavily on the tails.

And we only observed individuals in a time interval [0, ⌧ ], so we cannot say
much about S(u), u > ⌧ unless we make strong assumptions.

However we can define the t restricted mean survival µt =
R
t

0 S(u)du.

µt can be interpreted as a the expected number of years alive up to time
t  ⌧ for a group of individuals.

We estimate µt by using the Kaplan-Meier estimator,

µ̂t =

Z
t

0
Ŝ(u)du.

We can estimate the variance of µ̂t by

v̂ar(µ̂t) =
X

Tjt

(µ̂t � µ̂Tj
)2W (Tj)

2.
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Section 14

Hypothesis testing
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Harmful medication
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Testing whether two hazards are equal

Consider two counting processes with intensities of the multiplicative
form

N1 with intensity �1(t) = ↵1(t)Z1(t),
N2 with intensity �2(t) = ↵2(t)Z2(t).

Suppose we want to test the null hypothesis

↵1(t) = ↵2(t), for all t 2 [0, t0].

In the survival setting, there is a one-to-one correspondence between
S(t) and the cumulative hazard H(t), and thus this hypothesis test is
also a test of

S1(t) = S2(t), for all t 2 [0, t0].
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Testing based on increments of Nelson-Aalen

Remember that the Nelson-Aalen estimator for Hh(t), h 2 {1, 2}, is
Ĥh(t) =

R
t

0 Wh(s)dNh(s), that is,
R
t

0 Jh(s)/Zh(s)dNh(s) when
Zh(t) > 0.

Let L(t) be a non-negative predictable weight process, which is zero
whenever J1(s)J2(s) = 0.

Define

Q1(t0) =

Z
t0

0
L(t)(dĤ1(t)� dĤ2(t)),

which accumulates weighted di↵erences in increments of two
Nelson-Aalen estimators.

We will use Q1(t0) to define test statistics.
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Test statistic

Theorem (The rank test statistic)

A test for the null hypothesis, H0, that ↵1(t) = ↵2(t), for all t 2 [0, t0]
can be based on the statistic

U1(t0) =
Q1(t0)p
V11(t0)

where V11(t0) =
R
t0

0
L
2(t)

Z1(t)Z2(t)
dN•(t), N•(t) = N1(t) + N2(t), and U(t0) is

approximately standard normally distributed under the null hypothesis.

We will show this in the next slides.
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The two next slides give a sketch of proof

Q1(t0) =

Z
t0

0
L(t)(dĤ1(t)� dĤ2(t))

=

Z
t0

0

L(t)

Z1(t)
dN1(t)�

Z
t0

0

L(t)

Z2(t)
dN2(t) (bc J1L = J2L = L)

=

Z
t0

0

L(t)

Z1(t)
dM1(t)�

Z
t0

0

L(t)

Z2(t)
dM2(t) (under H0, bc ↵1(t) = ↵2(t)).

Remember that dNh(t) = ↵(t)Zh(t)dt+ dMh(t) under the null hypothesis.
Q1(t0) is the di↵erence between two stochastic integrals of counting
process martingales, and therefore Q1 is a mean zero martingale.
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The variance of Q1

We use the definition of a predictable variation process of a stochastic
integral of a counting process martingale (See slide 155) to find that

hQ1i(t0) =
Z

t0

0

✓
L(t)

Z1(t)

◆2

↵(t)Z1(t)dt +

Z
t0

0

✓
L(t)

Z2(t)

◆2

↵(t)Z2(t)dt

=

Z
t0

0

✓
L
2(t)Z•(t)

Z1(t)Z2(t)

◆
↵(t)dt.

The estimator is defined by replacing ↵(t)dt with dĤ(t) = dN•(t)
Z•(t)

.
We will rely on the large-sample behaviour of this statistic. Thus, we should
check that the conditions for the Martingale central limit theorem hold. You can
do this by yourself for the log-rank test. Hint, note that 1p

n
Q1(t0) is a martingale

(as a process in t0), and check that the 2 su�cient conditions for the martingale
CLT hold.
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How to select an appropriate L(t) function?

Now we have a general way of defining test statistics.

The log-rank test, which is used in the applied literature very

frequently defines L(t) = Z1(t)Z2(t)
Z•(t)

such that the statistic is

Q1,logrank(t0) =

Z
t0

0

Z1(t)Z2(t)

Z•(t)
(dĤ1(t)� dĤ2(t)),

hQ1,logranki(t0) =
Z

t0

0
L(t)↵(t)dt.

Curiosity: note that 2L(t) is a harmonic mean,
2L(t) = 2 1

Z•(t)
Z1(t)Z2(t)

= 2
Z1(t)+Z2(t)
Z1(t)Z2(t)

= 2
1

Z1(t)
+ 1

Z2(t)

, which is also used to

study rates in other settings.
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How does log-rank perform

How does this perform?

What if the interest is survival at a given t?
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What is a good null hypothesis

Instead of assessing hazards, let us study tests of parameters X1 and X2 in
groups 1 and 2 at a prespecified time t0. The null hypothesis is

HX

0 : X1(t0) = X2(t0), (13)

where X could be the survival function (Sh(t0), h = 1, 2), the restricted
mean survival function (µh(t0), h = 1, 2) etc.
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Example survival

Instead of the log-rank test, consider for example a test of survival at time
t0 for two independent groups h = 1, 2, defined by the statistic

QS(t0) = (bS1(t0)� bS2(t0))2/ bV (t0).

where

bV (t0) = var [bS1(t0)� bS2(t0)] = var [bS1(t0)] + var [bS2(t0)].

Note that QS(t0) is approximately �2 with 1 degree of freedom.
Hence, we can plug-in the variance estimator from the Kaplan-Meier
estimator and get a test of the survival functions.

PS: Alternatively we could use the statistic (bS1(t0)� bS2(t0))/
q

bV (t0), which
would be standard normal.
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When do we expect treatments to have identical survival
curves at all t 2 [0, t0]?

Perhaps justified when a treatment has no e↵ect whatsoever.

More dubious when comparing two di↵erent treatment, for example a new
treatment vs. an old treatment.

The time-dependent profile before t0 is not our primary interest in many
scenarios. In medicine, for example, we are often interested in comparing
di↵erent treatment regimes, such as radiation and surgery for a particular
cancer. Then, time to treatment failure is expected to di↵er in the shorter
term due to the fundamental di↵erence between the treatment regimes, but
the study objective is to assess longer-term treatment di↵erences.
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Hazards are building blocks

We must be careful about assigning causal interpretations to hazards.
However, hazards are key elements in the modelling of other parameters
that are easier to interpret, serving as building blocks.
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