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Plan for today

Clarify aims and expectations.

Give a high-level introduction to important topics in biostatistics.

Key topics
causal inference
survival analysis
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Section 1

Structure of the course

Mats J. Stensrud Biostatistics Spring 2024 3 / 419



Structure

90 minutes lectures every Tuesday 10h15
I will use the iPad as a digital blackboard

Moodle is our platform
Announcements
Links to relevant literature
Link to Ed Discussions
All questions about the course should be asked on Ed Discussions

Slides and problem sheets will be uploaded every Tuesday
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Exam

Midterm exam.

Final exam.
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Features of the course

This is a statistics course.

We will study theory and methods that are relevant to solve common
practical problems.

The course will contain proofs,
but all the results we are using will not be proved.
That said, I will strive to motivate all the results.

I will also spend time on discussing the interpretation of the results:
We will take interpretation seriously, and we try to think formally
about interpretation.
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Goal

After the course, you should be able to:

Understand mathematical and statistical theory for event history
analysis and longitudinal data analysis.

Furthermore, understand the concepts and ideas that this theory
expresses.

Apply these methods to data (there are ubiquitous applications!).

Critically evaluate how these methods are used in practice.

Build on the material in this course to derive new results yourself.
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Outline of the course

Core topics and principles in Biostatistics

Time-to-event outcomes (”survival analysis”)

Longitudinal data analysis
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We need a motivation

Why are you interested in biostatistics?

What types of questions are you interested in?

Why do you ask them?
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Statistical science (including biostatistics)

”Statistical science involves far more than data – it requires realistic causal
models for the generation of that data and the deduction of their empirical
consequences.”
Sander Greenland. The causal foundations of applied probability and

statistics. 2020. arXiv: 2011.02677 [stat.OT]
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Statistical science (including biostatistics)

”I will argue that realistic and thus scientifically relevant statistical theory
is best viewed as a subdomain of causality theory, not a separate entity or
an extension of probability. In particular, the application of statistics (and
indeed most technology) must deal with causation if it is to represent
adequately the underlying reality of how we came to observe what was
seen – that is, the causal network leading to the data.”
Greenland, The causal foundations of applied probability and statistics
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The Moderna vaccine

Figure 1: Classical pharmaceutical study.
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From the New York Times

Figure 2
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Some features of causal inference

I teach another course, Randomization and Causation (MATH-336),
which solely concerns causal inference.

Understanding causal inference is important in biostatistics.

I will introduce you to some basic ideas in the beginning of this
course. The causal material is related to MATH-336.
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Questions

Descriptive / predictive:
“Is this patient at high risk of developing complications during
surgery?”

Causal:
“Which type of anaesthetic should this patient receive to reduce the
risk of complications during surgery?”
“How does the amount of anaesthetic a!ect the risk of complications
during surgery?”
“What can be done to reduce the risk of complications during surgery
for an average / a particular type of patient?”
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Questions

Descriptive / predictive:
“Which type of client will buy which kind of product?”

Causal:
“Should advert be at the top or bottom of website to increase the
probability of viewing product?”
“How does the size of advert a!ect the probability of viewing product?”
“How can I get a client to buy my product?”
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Questions

Descriptive / predictive:
“Who is most likely to become long-term unemployed?”

Causal:
“Will a minimum wage legislation increase the unemployment rate of a
country?”
“How does the size of advert a!ect the probability of viewing product?”
“What can be done to prevent someone from becoming unemployed?”
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Motivation: Consider a table....

Table 1: Data from a study of A (an exposure) and Y (an outcome).

Y = 1 Y = 0
A = 1 10 90
A = 0 5 95

From the table we could draw statistical conclusions.

Units with A = 1 more often have Y = 1 than those with A = 0.

We could compute the proportions, p-value etc.

But we can’t draw any causal conclusions without more information.
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Suppose now that the units are individuals.

Table 2: Data from a study of A (an exposure) and Y (an outcome).

Y = 1 Y = 0
A = 0 10 90
A = 1 5 95

A = 1 is getting surgery, Y = 1 indicates survival after 1 year.

What does the table tell us now?

Could we infer that surgery reduces the risk of death?

Suppose that we say this was a randomized controlled trial, where A was
randomized?
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Observational data

Definition (Observational data)

A sample from a population where the treatment (exposure) is not under
the control of the researcher.

That is, the treatment (exposure) of interest is not randomly assigned.
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Back to our simple table

Table 3: Data from a study of A (an exposure) and Y (an outcome).

Y = 1 Y = 0
A = 1 10 90
A = 0 5 95
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More on the table

Y = 1 Y = 0
A = 1 10 90
A = 0 5 95

a row for each unit, labeled id :

id A Y

1 1 1
2 1 0
3 0 1
4 1 0
5 0 0
...

...
...

200 0 1
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Counterfactuals a.k.a. potential outcomes

We will posit unobserved fixed potential or counterfactual outcomes1

for each unit2 under di!erent treatments3

Hint: It is helpful to think about a counterfactual random variable as
a variable that does exist in this world, even before interventions
take place, but we are not able to observe it.

We will use superscripts to indicate that a random variable is
counterfactual. For example consider a random variable Y . A
counterfactual version Y

g is the value Y would have had under an
intervention g (also called treatment regime or treatment strategy).

To get started, in the first lectures, we will consider some simple
interventions g which only fixes a binary treatment A to a value
a → {0, 1}.

1I will use the terms ”counterfactuals” and ”potential outcomes” interchangeably.
2I will use the terms ”unit”, ”subject” and ”individual” interchangeably.
3I will use the terms ”treatment” and ”exposure” interchangeably.
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Let’s go further: Potential outcomes

Each potential outcome Y
a answers the question ”What would have

happened to outcome Y , if A had taken on a specific value a?” We can
expand the table to include the potential outcome:

id A Y Y
1

Y
0

1 1 1 1 ?
2 1 0 0 ?
3 0 1 ? 1
4 1 0 0 ?
5 0 0 ? 0
...

...
...

...
...

200 0 1 ? 1

Table 4: Data from the same study of A (an exposure) and Y (an outcome), with
the addition of the potential outcome variables.

That is, Y = I (A = 0)Y a=0 + I (A = 1)Y a=1.
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Why randomisation is the gold standard

In a randomised experiment, the treatment is assigned independently
of all other factors (e.g. by a coin flip or a random number generator).

In a randomised experiment one of the counterfactual outcomes Y a=0

or Y a=1 is unobserved.

However, randomisation ensures that it is random whether Y a=0 or
Y

a=1 is unobserved, that is,

P(Y a = y | A = 1) = P(Y a = y | A = 0), ↑a → {0, 1}, ↑y → Y.

because the treatment assignment is independent of all other factors,
including the counterfactual outcomes (Y a). This conditional
independence is called exchangeability.
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Following Robins, let’s reflect on why we analyse data

”A dataset is a string of numbers...

...These data represent empirical measurements...

...In an analysis, calculations are performed on these numbers...

...Based on the calculations, (causal) inference is drawn...

...Since the numerical strings and the computer algorithm applied to
them are well-defined mathematical objects, it would be important to
provide formal mathematical definitions for the English sentences
expressing the investigator’s causal inferences that agree well
with our informal intuitive understanding”, Robins (1987)
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What we talk about when we talk about a formal
framework

Want to be precise about

Target of inference: What is our causal estimand? What possible
decisions do we want to compare for what population?

Assumptions: Under what assumptions linking the data to the causal
question do our methods give valid conclusions (identifiability)? and
can we justify these assumptions?

Methods: what makes a method suitable to answer a particular
causal question?
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Terminology

Remember the di!erence between the following terms:

Estimand (a quantity of interest).

Estimator (an algorithm / function / rule that can be applied to
data).

Estimate (an output from applying the estimator to data).

We talk about bias of an estimator with respect to an estimand.
That is, the term bias (biased / unbiased) is defined with respect to an
estimand.
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Terminology
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Section 2

Prediction vs. causal inference
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Prediction and causal inference are di!erent exercises

Prediction: Learn about Y after observing A = a.
That is, infer properties of the law P that generated the observations Y .

Causal inference: Learn about Y after observing fixing A = a.
That is, infer properties of a counterfactual law, say, Pa,that would generate data

when a is fixed.
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Intervening is not the same as conditioning

Figure taken from Hernan, 2014, BMJ.
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Section 3

Defining a causal e!ect
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What is a causal e!ect

There is no such thing as ‘the’ causal e!ect.
Causal e!ects are defined as some counterfactuals with the same
conditioning set (conditions on the same subset of the population).
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We make decisions based on ”what if” questions...

Would starting treatment A prevent a heart attack?

Is Drug A better than Drug B?

How would breast cancer rates change if we instituted a policy in
which all women took vitamins?

Would the election campaign increase the number of votes?

Would university education increase my future earnings?

What would happen if I went to UNIGE instead of EPFL?
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Why so important in (bio)medicine

We treat patients, we make choices based on counterfactual
reasoning...
What if I accept the surgery? the vaccine? the training program?

We do not have a thorough understanding of the mechanisms.

So we need to the best out of observations, combined with the
mechanistic assumptions we are willing to make.

Observational data are increasingly available ...
Health registries, mobile devices, censors etc etc
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What is a causal e!ect (in a simple setting)

Consider the following observed random variables:

A binary treatment A → {0, 1}.
An outcome Y → Y.

A vector of baseline covariates L → L.
Define the counterfactual or potential outcome variables

Y
a → Y.

The outcome variable that would have been observed under the
treatment value a (the superscript denotes the counterfactual).

Often we will specifically instantiate a, i.e. set a to a value:

Y
a=0 → Y.

The outcome variable that would have been observed under the
treatment value a = 0.

Y
a=1 → Y.

The outcome variable that would have been observed under the
treatment value a = 1.
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Individual level causal e!ect

Definition (Individual level causal e!ect)

A causal e!ect for individual (unit) i is Y a=0
i

vs Y a=1
i

.

From now on, I will often omit the i subscript and assume that individuals
are iid.

Definition (Causal e!ect)

A causal e!ect is a contrast of functionals of counterfactual outcomes
under di!erent treatment interventions but in the same individuals.
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Remark on counterfactuals

The definition of counterfactuals presupposes:

Y
a = Y for every unit with A = a. In other words, Y a=A = Y .

”Consistency”.

This ”consistency” assumption requires that
The intervention on A is well-defined.
No matter how unit i received treatment a, the outcome Y

a is the
same.
The counterfactual outcome of unit i does not depend on the
treatment values of other units j , that is, ”no interference”.
Otherwise Y

a

i
is not well-defined.4

We will revisit these assumptions.

4This use of consistency is di!erent from the use in estimation.
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Remarks on Y
a=0 and Y

a=1

The fundamental problem of causal inference:

Suppose A = 1. Then Y = Y
a=1 is observed,

but Y a=0 is unobserved...

Suppose A = 0. Then Y = Y
a=0 is observed,

but Y a=1 is unobserved...

The consequence is that individual level e!ect cannot be identified.
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Why randomisation is the gold standard

In a randomised experiment, the treatment is assigned independently
of all other factors (e.g. by a coin flip or a random number generator).

In a randomised experiment one of the counterfactual outcomes Y a=0

or Y a=1 is unobserved.

However, randomisation ensures that it is random whether Y a=0 or
Y

a=1 is unobserved, that is,

P(Y a = y | A = 1) = P(Y a = y | A = 0), ↑a → {0, 1}, ↑y → Y.

because the treatment assignment is independent of all other factors,
including the counterfactual outcomes (Y a). This conditional
independence is called exchangeability.
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Independence notation

Definition (Conditional independence)

X ↓↓ Y | Z ↔↗ FX ,Y |Z=z(x , y) = FX |Z=z(x) · FY |Z=z(y) ↑ x , y , z ,
where FX ,Y |Z=z(x , y) = P(X ↘ x ,Y ↘ y | Z = z).

We say that X and Y are conditionally independent given Z .
In other words, when Z = z is known, X provides no additional
information that allows us to predict Y .
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Exchangeability (re-visited)

In particular, we can re-write the condition from Slide 41,

P(Y a = y | A = 1) = P(Y a = y | A = 0), ↑a → {0, 1}, ↑y → Y,

as
Y

a ↓↓ A, ↑a → {0, 1}.
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Example conditions that ensure identification of causal
e!ects

Suppose that the following 3 conditions hold:

1 Y
a ↓↓ A, ↑a → {0, 1} (exchangeability5).

2 P(A = a) > 0 ↑a → {0, 1} (positivity6).

3 Y
a = Y for every unit with A = a (consistency7).

that is, Y = I (A = 0)Y a=0 + I (A = 1)Y a=1.

From (1)-(3), E(Y a) = E(Y | A = a).
That is, we have identified E(Y a) as a functional of observed data.
Assumptions (1)-(3) are external to the data, but – importantly – they
hold by design in a perfectly executed experiment.
Just to be clear: The counterfactual independence Y

a ↓↓ A, ↑a → {0, 1}
does NOT imply the factual independence Y ↓↓ A.

5Also called ignorability.
6Also called overlap. Note that this is a feature of the distribution, not the sample.
7Similar to the condition SUTVA: Stable Unit Treatment Value Assumption.
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More on consistency

An example of an ill-defined intervention:
Imagine A is a person’s body mass index (BMI). Setting the BMI to a
counterfactually di!erent level can happen in many di!erent ways - losing
weight by running, loss of appetite due to chain smoking, liposuction etc.
Depending on what way the intervention is implemented each time, we will
have very di!erent health outcomes, i.e., re-running the experiment will
give inconsistent results.
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