
Exercises for Statistical analysis of network data – Sheet 8

1. The probability of edge formation in the latent class model is

Pr{Aij = 1|zi, zj , θab} = θzizj ,

with θab being the edge probability between a node with zi = a and zj = b. This can be recovered from
the general expressions (Hoff 2007)

Pr{Aij = 1|zi, zj , xij , θ} = E(Aij) = pij ,

g(pij) = ηij ,

ηij = γ + βTxij + α((zi, zj)

by choosing the identity link g(µ) = µ, γ = 0 and α(zi, zj) = θzizj .

2. Define the latent variable zi as an indicator vector of length k taking the value 1 at index a if node i is of
class a and 0 everywhere else.. Define the K ×K matrix Λ to be Λij = θab if node i belongs to block a
and node j belongs to block b. Then Pr{Aij = 1} = zTi Λzj , which is a special case of the eigenmodel.

3. Less trivial: see Hoff (2018), Modeling homophily and stochastic equivalence in symmetric relational data,
arXiv:0711.1146v1.

4. Define the latent variable zi as an indicator vector of length k taking the value 1 at index a if node i is of
class a and 0 everywhere else, and let Θ denote the block parameter matrix, with elements θab.

Pr{A = a|z,Θ} =
∏
i<j

∏
a,b

[
θ
aij

ab (1− θab)1−aij
]ziazjb

,

from which the log-likelihood is

`(Θ;a, z) =
∑
i<j

∑
a,b

ziazjb {aij log θab + (1− aij) log(1− θab)} .

Assuming the indicator variables known, equating the derivatives of the log-likelihood with respect to θab
with zero, we obtain

θ̂ab =

∑
i<j ziazjbaij

h
.

5. Letting the latent variables zi be defined on any reasonable metric space with a distance metric d(zi, zj),
and specifying a threshold r,

Pr{Aij = 1} =

{
1 if d(zi, zj) < r
0 if d(zi, zj) ≥ r.

6. Assume that the Poisson distributions of the edge weights have a different parameter according to which
blocks their endpoints belong to. Denote this by the matrix Λ whose elements are λab. The probability
of a certain configuration a of the edge weight matrix which summarises the information in an observed
graph, is now

Pr{A = a|z, θab} =
∏
i<j

∏
a,b

[
λ
aij

ab exp(−λab)
aij !

]ziazjb
,

from which the log-likelihood is now

`(Λ;a, z) =
∑
i<j

∑
a,b

ziazjb {aij log λab − λab − log aij !} .
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Introducing the notations as in the lecture

Āab(z) =
2

hab

∑
i<j

ziazjbaij ,

hab(z) =
∑
i<j

ziazjb,

we obtain the log-likelihood form

`(Λ;a, z) =
∑
a,b

{
hab(z)Āab(z) log λab − hab(z)λab − c

}
,

where c is constant with respect to the model parameters. The partial derivatives with respect to λab are

∂`(Λ;a, z)

∂λab
= hab(z)Āab(z)λ−1

ab − hab(z),

from which the estimator of λab is
λ̂ab = Āab(z).

Profiling this would consist of taking all possible configurations of z and computing the log-likelihood value
at each. The final estimator would then be the one belonging to the ẑ which maximises the log-likelihood.
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