

Exercises for Statistical analysis of network data – Sheet 6

1. Consider the network of the complete graph K_n on n vertices. Recall that the graph Laplacian is given by $L = \text{diag}(d_1, \dots, d_n) - A = D - A$ and that the normalized graph Laplacian is $\mathcal{L} = D^{-1/2}LD^{-1/2}$.

a) Calculate the degrees of this network by calculating $d = A\mathbf{1}$.
b) Calculate the graph Laplacian, and the normalized Laplacian for this network.

c) For $n = 5$, multiply the normalized Laplacian by $\mathbf{e}_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

d) The characteristic equation of a matrix $\{\mathcal{L}\}$ is given by

$$\|\mathcal{L} - \lambda \mathbf{I}\| = 0. \quad (1)$$

Solve this equation in λ for the complete graph on 3 nodes. Factorize the characteristic equation down to the level you are able to.

2. Consider a star on 4 nodes. The characteristic equation of a matrix \mathcal{L} is given by

$$\|\mathcal{L} - \lambda \mathbf{I}\| = 0. \quad (2)$$

Factorize the characteristic equation down to the level you are able to in λ .

3. Take as the adjacency matrix

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

a) Calculate the degrees of this network by calculating $d = A\mathbf{1}$.
b) Calculate the graph Laplacian, and the normalized Laplacian for this network.
c) The characteristic equation of a matrix $\{\mathcal{L}\}$ is given by

$$\|\mathcal{L} - \lambda \mathbf{I}\| = 0. \quad (3)$$

Solve this equation in λ . Factorize the characteristic equation down to the level you are able to.

d) For the values of λ determine the vectors of

$$\mathcal{L}\mathbf{e} = \lambda\mathbf{e}.$$

4. Take as the adjacency matrix

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

a) Calculate the degrees of this network by calculating $d = A\mathbf{1}$.
b) Calculate the graph Laplacian, and the normalized Laplacian for this network.

c) The characteristic equation of a matrix $\{\mathcal{L}\}$ is given by

$$\|\mathcal{L} - \lambda \mathbf{I}\| = 0. \quad (4)$$

Solve this equation in λ . Factorize the characteristic equation down to the level you are able to.

d) For the values of λ determine the vectors of

$$\mathcal{L}\mathbf{e} = \lambda\mathbf{e}.$$

e) Describe how to implement spectral clustering.