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Latent Space Ct’d

Latent Space VI

Hoff introduced the latent space models in 2002. Young and
Scheinerman in 2007 introduced the random dot product graphs
(RDPG).

Let F be a d-dimensional inner product distribution with

X1,X2, . . . ,Xn
iid∼ F , collected in the rows of the matrix

X = [X1,X2, . . . ,Xn]
T ∈ Rn×d .

In this model Xj ∈ Rd .

Conditional on X we have that

Pr{A | X} =
∏

i<j

(
ρnX

T
i Xj

)aij(
1− ρnX

T
i Xj

)1−aij
,

if we assume 0 ≤ ρnX
T
i Xj ≤ 1.ρn is not identifiable, but there to

scale the whole set of probabilities in one go.
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Latent Space Ct’d

Latent Space VII

Given a graph distributed as an RDPG, you may seek to estimate Xi .

Note that if X ∈ Rn×d and W ∈ Rd×d is a unitary matrix then

(XW)(XW)T = XWWTXT

= XXT

As this is true, latent positions X and XW give rise to the same
distribution over graphs in Equation (4).

We note that the (positive semi-definite) stochastic blockmodel can
be reformulated as a RDPG.

We say an RDPG with latent positions X is an SBM with K blocks if
the number of distinct rows in X is K , denoted X(1), . . . ,X(K ). In
this case, we define the block membership function τ : [n] 7→ [K ] to
be a function such that τ(i) = τ(j) if and only if Xi = Xj .
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Latent Space Ct’d

Latent Space VIII

In addition, we also consider the case of a stochastic block model in
which the block memberships of each vertex is randomly assigned.
More precisely, let π ∈ (0, 1)K with

∑
k πk = 1 and suppose that

τ(1), . . . , τ(n) are now i.i.d. random variables multinomial π that is,
Pr(τ(i) = k) = πk for all k.

We begin with describing the notations for the spectral decomposition
of the rank d positive semidefinite matrix P = XXT .

As P is symmetric and positive semidefinite it has a spectral
decomposition of P = UPSPU

T
P , with UP having orthogonal

columns, and SP a diagonal matrix with nonincreasing entries.
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Latent Space Ct’d

Latent Space IX

One can take the adjacency spectral embedding (ASE) of A into Rd ,

by first calculating |A| =
(
ATA

)1/2
, and then determine its spectral

embedding of UA and SA.

Our goal is to estimate the latent position matrix X. Now, if the
matrix P were actually observable, then the spectral embedding of P,

given by UPS
1/2
P , is simply some orthogonal transformation P of X.

As long as we only observe A and not P, we have to use that A can
be viewed as a small perturbation of P = XXT . More precisely

∥∥∥A− XXT
∥∥∥ = o

(∥∥∥XXT
∥∥∥
)
.

By the Davis-Kahan theorem (Davis and Kahan, 1970), the subspace
spanned by the top d eigenvectors of XXT is well-approximated by
the subspace spanned by the top d eigenvectors of A. d is assumed
known.
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Latent Space Ct’d

Latent Space X

Non-parametric summaries calculable from XXT can therefore be
calculated from A.
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β–model

β–model

We have already looked at the Chung–Lu or configuration model
which sets

EAij = pij = min(πiπj , 1),

but even if this has a closed form estimate from d it does not
naturally stay in the permitted range.

The natural way out of this problem is to find a simpler way to
parameterise pij . Instead of defining n parmeters πi ∈ [0, 1] we define
βi ∈ R and set

pij =
eβi+βj

1 + eβi+βj
.

In terms of of the log-odds ratio we then have

log
pij

1− pij
= βi + βj , 1 ≤ i < j ≤ n.

The magnitude and sign of βi quantifies the propensity of node i to
have ties.
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β–model

β–model

The degree of node i is expected to be large (small) if βi is positive
(negative).

The maximum likelihood estimate (MLE) β̂i satisfies

di =
∑

j ̸=i

e β̂i+β̂j

1 + e β̂i+β̂j

, i = 1, . . . , n.

Questions may arise about the existence, uniqueness and accuracy of
the MLE.

Let d1, . . . , dn be the degree sequence of G generated from the
β–model. Let L = max |βi |. Then there is a constant C (L) such that
with probability at least 1− C (L)n−2 there exists a unique solution of
the maximum likelihood equations , that satisfies

max
1≤i≤n

|β̂i − βi | ≤ C (L)

√
log(n)

n
.
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Variants of SBMs

Variants of Block models

We have observed the general utility of the stochastic block model.
However many human interactions are more complex than a
stochastic block model would give.

In Lecture 1, we were introduced to the mixed membership stochastic
blockmodel. Generate latent variable ξi for each node i from the
Dirichlet distribution of dimension k with parameters α. Define
Θ = (θpq) and draw

Aij | ξi ξj ,∼ Ber(ξTi Θξj). (1)

This allows individuals to not behave only like one group.

There are many other generalizations of the stochastic block model,
namely the degree-corrected stochastic block model, the overlapping
stochastic block model, the hierarchical stochastic block model and
the geometric block model (combining GRG and block model).
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Variants of SBMs

Variants of Block models

Let the expectation of the adjacency matrix be written as P.

Assume that P admits the representation of

P = ρnQΞTΛΞQ, (2)

where Ξ is a k × n matrix where each row denotes a position in a
latent space, Λ denotes a diagonal matrix, and Q is an n × n matrix.

ρn and all entries of the diagonal matrix Λ are non-negative. In this
representation, ξi denotes the community membership of node i .

If this is the case then we say that the network is generated according
to the overlapping stochastic blockmodel.
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Network Sampling

Network sampling

What ways can we sample a network?

Relational or edge sampling. Relational sampling corresponds to
sampling exactly relations or edges. This could be sampling phone
calls.

In many networks applications the relations are the primitive objects
and the vertices are derivative from these.

Hyperedge sampling. Sampling academic articles from a research
repository involves more than actor in every relationship. Then every
article represents an hyperedge.

Path sampling. In the early days of network science it was thought
that one could ascertain network topology by analyzing the paths
traversed when sending information from one part of the Internet to
another. Traceroute is an example of such a method.

The high level realization is that we rarely see the entire network.
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Network Sampling

Network sampling

Snowball sampling. Here we see a network by initialsing the sampling
mechanism at N(s, 0) = {s} by sampling the node s (could be at
random).

We then sample the set of students N(s, 1) = {s ′ : Ass′ = 1}.
Then we sample

N(s, 2) = ∪s′∈N(s,1){s ′′ : As′s′′ = 1}\(N(s, 0) ∪ N(s, 1)).

We can keep going, and then take

N(s, k) = ∪s′∈N(s,k−1){s ′′ : As′s′′ = 1}\(∪k−1
j=0N(s, j)).

Then the snowball sampling is the set of neighbourhoods
{N(s, k)}0≤k≤r .
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Network Sampling

Network sampling

It used to be standard to think if you observed one network then you
had one observation.

How can we bring the notion of large samples to this idea?

Instead we must ask if we have many observational units.

The sample size is the number of observational units. In theory we
could view a network in terms of the number of observational units
(edges)

(n
2

)
. Yet this does not reflect reality when the network is

sparse-(expected edges) ρ
(n
2

)
is then more realistic.
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Barabasi-Albert

Barabasi-Albert

Finally we shall introduce one more model into the mix, partially
because it is not statistical.

The Barabasi-Albert preferential attachment model was introduced to
explain a number of empirical characteristics observed in real
networks.

It was actually introduced by Yule in 1925 not Barabasi and Albert in
1999, which is the usual reference.

To be clear, I have modified the description to that given in chapter 8
of van der Hofstad. The description of Durrett assumed continuous
time.

A network evolves in this model by adding a vertex at a time, with
each new vertex attaching to existing vertices according to their
degree. We assume there are t vertices at time t. We fix m ∈ N.
We write the degree of vertex v

(m)
i as di (t).
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Barabasi-Albert

Barabasi-Albert

To map the network at time point t to that at time point t + 1, we
add a new vertex to the network. This has m edges.
We now need to decide how these connect to the existing vertices.
We take δ > −m and at each time step a new vertex appears and
attaches at random to m existing vertices, with a probability
proportional to the degree of that vertex shifted to be offset by δ.
When m = 1 the probability there is an edge between nodes i and
t + 1 is (self-loops admitted)

Pr{v (1)i connects to v
(1)
t+1} =

{
di (t)+δ

t(2+δ)+1+δ for i = t + 1
1+δ

t(2+δ)+1+δ for i ∈ {1, . . . , t} .

For m > 1 the network is constructed from a PA with m = 1 and
δ′ = δ/m.
You start with some existing graph G0 and keep going, getting G1,
G2 etc. Assume G0 has k0 edges.
Normally networks are sparse and having a few very large degrees.
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Barabasi-Albert

Barabasi Albert
Preferential Attachment Model

We define the collection of edge variables at time step n to be a
(n)
ij .

A network is sparse if

lim
n!1

2

n(n � 1)

X

i<j

a
(n)
ij = lim

n!1
b⇢ = 0.

By the generating dynamics of the BA model there are m new edges
at each step so kn = mn + k0.

Thus

b⇢ =
2(mn + k0)

n(n � 1)
! 0.

The degree distribution counts the relative proportion of vertices of
any integer degree

pA(n)(k) =
nX

i=1

I(d
(n)
i = k),

and pA(n)(k) ⇠ k�� . This corresponds to a power law distribution.
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Barabasi-Albert

Barabasi Albert

We define the collection of edge variables at time step t to be a
(t)
ij .

A network is sparse if

lim
t→∞

2

t(t − 1)

∑

i<j

a
(t)
ij = lim

n→∞
ρ̂ = 0.

By the generating dynamics of the BA model there are m new edges
at each step so kn = mn + k0.

Thus

ρ̂ =
2(mn + k0)

n(n − 1)
→ 0.
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Barabasi-Albert

Barabasi Albert

The degree distribution counts the relative proportion of vertices of
any integer degree

pA(n)(k) =
n∑

i=1

I
(
d
(n)
i = k

)
,

and pA(n)(k) ∼ k−γ . This corresponds to a power law distribution.
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Statistical Temporal Models

The generating mechanism of the preferential attachment model is
very mechanistic.

What if we want to generate a set of edges (or contacts) over time?

We could simply start from the graph limit model

E{Aij | ξ} = ρnf (ξi , ξj).

We shall assume we observe multiple graphs across time and so for a
given edge ij we study edge-variable Aij(t).

The simplest model takes the form:

Pr{Aij(t) = 1 |Aij(t − 1), . . . } = h(t, Aij(t − 1), Aij(t − 2), Aij(t − 3), . . . ),

for some appropriately chosen function h().
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Statistical Temporal Models

We shall now look to how the edges can be modelled across times
(see Süveges and Olhede (2023)) with label vector z :

Aij(t) |Aij(t − 1), . . . ,Aij(t − K ) ∼

Bern

(
logit−1

(
K∑

k=1

bzi zjkAij(t − k) + czi zj (t)

))
. (3)

This model defines a correlated process across time, where the
correlation is specified by b. Uses the trick of using a modelling
framework that naturally limits the success probabilities between zero
and one.

Introduces flexible forms of serial correlation.

The generating mechanism can still be estimated, and the properties
of the network determined.

Non-stationary models can we included by replacing cij ,g by a
time-varying alternatives as we have above.

Parameters naturally stay within the range of allowed values.
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Statistical Temporal Models

The simplest version of this model takes K = 1.

This introduces series correlation of length one.

It is different from just letting the parameters of the stochastic block
model change over time.

Let us discuss how we would expect the realized edges to change?
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