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Exponential Random Graphs

ERGMs

Exponential random graph models are specifying a family of
probability distributions on graphs.

Depending on the application, we may model simple, loopy,
multiple-edged, weighted or directed graphs.

Let Gn be the set of all graphs on n vertices. Consider the following
model

Pr{G = G} = exp

{
k∑

i=1

θiTi (G )− c(θ)

}
,

where θi , 1 ≤ i ≤ k are real valued parameters, and Ti are real valued
statistic defined on Gn; c(θ) is a normalizing constant.
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Exponential Random Graphs

ERGMs II

ERGMs can be used to model relationships in sociology.

Sometimes Tj is chosen to be d ,

Sometimes we look at the total number of edges,

the number of triangles, or other sub-graph counts,

the number of connected components in the graph.
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Exponential Random Graphs

ERGMs III

One possible example is

Pr{G = G} = exp
{
n2
(
β1t̂(K2,G ) + β2t̂(K3,G )

)
− c(β)

}
,

with t̂(F ,G ) = XF (G )/
(
n|v(F )|/ aut(F )

)
, and

exp(c(β)) =
∑
G∈Gn

exp
{
n2
(
β1t̂(K2,G ) + β2t̂(K3,G )

)}
.

This is a special case of a Gibbs distribution. β1 is known as the
particle parameter and β2 is known as the energy parameter.

The exponential model is said to be attractive if β2 is positive and
repulsive if β2 is negative.
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Exponential Random Graphs

ERGMs IV

When β2 is positive then Chatterjee and others have shown a typical
graph drawn from the standard edge-triangle exponential random
graph model always looks like an Erdos-Rényi random graph or a
mixture of Erdos-Rényi random graphs.

By raising the triangle density to an exponent γ > 0, Lubetzky and
Zhao proposed a natural generalization:

Pr{G = G} = exp
{
n2
(
β1t̂(K2,G ) + β2t̂

γ(K3,G )
)
− c ′(β)

}
,

which enabled the model to exhibit a nontrivial structure even when
β2 is positive.

When γ ≥ 2/3 then this generalized model still features the
Erdos-Rényi behavior; but for γ < 2/3, there exist regions of values of
(β1, β2) for which a typical graph drawn from the model has
symmetry breaking.
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Exponential Random Graphs

ERGMs V

When Chatterjee introduced the framework to study the asymptotics,
a lot was added to our understanding of ERGMs.

The degeneracy of the ERGM had already been observed by
practitioners, see for example the paper by David Hunter in JASA
(2012). Hunter studied the behavior of friendship networks in US
schools, and observed interesting features with network growth.
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Latent Space Models

Latent Space I

The latent space model (lecture 1) assumes a type of conditional
independence.
We assume (see e.g. Hoff (2002)) that conditionally on unobserved
latent variables zi (unobserved positions in a latent space) and xij we
have

P(A | z,X,θ) =
∏
i<j

Pr{aij | zi , zj , xij , θ}.

A convenient way to parameterize Pr{aij | zi , zj , xij , θ} is to use
logistic regression.

For a simple Bernoulli, this corresponds to parameterizing yi in terms
of its success probability pi in terms of covariate xi to form predictor
ηi = η(xi ) :

Pr{Yi = 1} = E(Yi ) = µi = pi , g(µi ) = ηi .

Here g(µ) = logit(pi ) = log(pi/(1− pi )), and so can take any value
in R.
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Latent Space Models

Latent Space II

We take as ηij = γ + βT xij − |zi − zj |.
For two different nodes, j and k, equidistant in the latent space, their
log-odds ratio is determined by the covariate and so the difference is
βT (xij − xik).

Hoff writes dij = |zi − zj | and considers the network to be
represented by dij if

dij > 1 ⇔ aij = 0, dij < 1 ⇔ aij = 1.

This is in some sense equivalent to the geometric random graph.
The network is representable if such distances can be formed, e.g.
the zi in some underlying space with some dimensionality can be
constructed.

We can show by removing the covariate that the model becomes
equivalent to Chung-Lu’s modelling framework.
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Latent Space Models

Latent Space III

Hoff has generalized this. He replaces logit by probit model:

Pr{Aij = 1} = E(Aij) = µij = pij , g(µij) = ηij ,

with g(µ) = Φ−1(µ) with ηij = γ + βT xij + α(zi , zj).

1. Latent class/stochastic block model:
α(zi , zj) = θzi ,zj , zi ∈ {1, . . . ,K},Θ = (θa,b). This encapsulates
stochastic equivalence, a type of pattern often seen in network data
in which the nodes can be divided into groups such that members of
the same group have similar patterns of relationships.

2. Latent distance model:
α(zi , zj) = −|zi − zj |, zi ∈ RK . This model
encapsulates homophily, so relationships between nodes with similar
characteristics are stronger than those having different characteristics.
Homophily explains transitivity (”a friend of a friend is a friend”),
balance (”the enemy of my friend is an enemy”) and cohesive
subgroups of nodes.
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Latent Space Models

Latent Space IV Latent Space Models
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Figure 1: Networks exhibiting homophily (left panel) and stochastic equivalence (right panel).

relationship between them are also similar to each other in terms of how they relate to other nodes:
A strong relationship between i and j suggests |ui � uj | is small, but this further implies that
|ui �uk| � |uj �uk|, and so nodes i and j are assumed to have similar relationships to other nodes.

The latent class model of Nowicki and Snijders [2001] and the latent distance model of Hoff et al.
[2002] are able to identify, respectively, classes of nodes with similar roles, and the locational prop-
erties of the nodes. These two items are perhaps the two primary features of interest in social network
and relational data analysis. For example, discussion of these concepts makes up more than half of
the 734 pages of main text in Wasserman and Faust [1994]. However, a model that can represent
one feature may not be able to represent the other: Consider the two graphs in Figure 1. The graph
on the left displays a large degree of transitivity, and can be well-represented by the latent distance
model with a set of vectors {u1, . . . , un} in two-dimensional space, in which the probability of an
edge between i and j is decreasing in |ui � uj |. In contrast, representation of the graph by a latent
class model would require a large number of classes, none of which would be particularly cohesive
or distinguishable from the others. The second panel of Figure 1 displays a network involving three
classes of stochastically equivalent nodes, two of which (say A and B) have only across-class ties,
and one (C) that has both within- and across-class ties. This graph is well-represented by a latent
class model in which edges occur with high probability between pairs having one member in each
of A and B or in B and C, and among pairs having both members in C (in models of stochastic
equivalence, nodes within each class are not differentiated). In contrast, representation of this type
of graph with a latent distance model would require the dimension of the latent characteristics to be
on the order of the class membership sizes.

Many real networks exhibit combinations of structural equivalence and homophily in varying de-
grees. In these situations, use of either the latent class or distance model would only be representing
part of the network structure. The goal of this paper is to show that a simple statistical model based
on the eigenvalue decomposition can generalize the latent class and distance models: Just as any
symmetric matrix can be approximated with a subset of its largest eigenvalues and corresponding
eigenvectors, the variation in a sociomatrix can be represented by modeling yi,j as a function of
��xi,j + uT

i �uj , where {u1, . . . , un} are node-specific factors and � is a diagonal matrix. In this
article, we show mathematically and by example how this eigenmodel can represent both stochastic
equivalence and homophily in symmetric relational data, and thus is more general than the other two
latent variable models.

The next section motivates the use of latent variables models for relational data, and shows mathe-
matically that the eigenmodel generalizes the latent class and distance models in the sense that it can
compactly represent the same network features as these other models but not vice-versa. Section 3
compares the out-of-sample predictive performance of these three models on three different datasets:
a social network of 12th graders; a relational dataset on word association counts from the first chap-
ter of Genesis; and a dataset on protein-protein interactions. The first two networks exhibit latent
homophily and stochastic equivalence respectively, whereas the third shows both to some degree.

2

Picture from Ho↵ 2007.
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Latent Space Models

Latent Space V

3. Latent eigenmodel:
α(zi , zj) = zTi ∧ zj , zi ∈ RK and Λ a K × K matrix. An
interpretation of the latent eigenmodel is that each node i has a
vector of unobserved characteristics as given by zi . Depending on the
eigenvalues of Λ similar values of zj will lead to contributing positively
or negatively to the relationship between i and j .

The eigenmodel with K -length vectors generalizes the latent class
model.

The eigenmodel with K + 1-length vectors almost generalizes the
latent distance model with K dimensional latents.
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