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@ Exponential Random Graphs

© Latent Space Models
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@ Exponential random graph models are specifying a family of
probability distributions on graphs.

@ Depending on the application, we may model simple, loopy,
multiple-edged, weighted or directed graphs.

o Let ¥, be the set of all graphs on n vertices. Consider the following
model

Pr{G = G}—exp{Z@ Ti( —C(H)}

i=1

where 0;, 1 < i < k are real valued parameters, and T; are real valued
statistic defined on ¥,; c(6) is a normalizing constant.
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@ ERGMs can be used to model relationships in sociology.
@ Sometimes T; is chosen to be d,

@ Sometimes we look at the total number of edges,

@ the number of triangles, or other sub-graph counts,

@ the number of connected components in the graph.
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@ One possible example is

Pr{G = G} = exp{n®(B11(K2, G) + 2t(K3, G)) — c(B)},
with %(F, G) = XF(G)/(n|v(F)\/aut(F))- and

exp(c(B)) = Z exp{n?(B1t(Ka, G) + Bot(K3, G)) }.

GeY,

@ This is a special case of a Gibbs distribution. (3; is known as the
particle parameter and 3> is known as the energy parameter.

@ The exponential model is said to be attractive if 3 is positive and
repulsive if By is negative.
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@ When (3, is positive then Chatterjee and others have shown a typical
graph drawn from the standard edge-triangle exponential random
graph model always looks like an Erdos-Rényi random graph or a
mixture of Erdos-Rényi random graphs.

@ By raising the triangle density to an exponent v > 0, Lubetzky and
Zhao proposed a natural generalization:

Pr{G=G}= exp{n2 (ﬁlf(Kg, G) + BtV (K3, G)) — c'(ﬁ)},
which enabled the model to exhibit a nontrivial structure even when
B> is positive.

@ When v > 2/3 then this generalized model still features the
Erdos-Rényi behavior; but for v < 2/3, there exist regions of values of

(1, B2) for which a typical graph drawn from the model has
symmetry breaking.
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@ When Chatterjee introduced the framework to study the asymptotics,
a lot was added to our understanding of ERGMs.

@ The degeneracy of the ERGM had already been observed by
practitioners, see for example the paper by David Hunter in JASA
(2012). Hunter studied the behavior of friendship networks in US
schools, and observed interesting features with network growth.
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@ The latent space model (lecture 1) assumes a type of conditional
independence.

@ We assume (see e.g. Hoff (2002)) that conditionally on unobserved
latent variables z; (unobserved positions in a latent space) and x;; we
have

P(A|z,X,0) =[] Priaj| zi, 2, x;, 6}.
1<J

@ A convenient way to parameterize Pr{aj; | z;, zj, x;;, 0} is to use
logistic regression.

@ For a simple Bernoulli, this corresponds to parameterizing y; in terms
of its success probability p; in terms of covariate x; to form predictor
ni = n(xi) :

Pr{Y; =1} =E(Y)) = i = pi, g(wi) = ni-

Here g(u) = logit(p;) = log(pi/(1 — pi)), and so can take any value
in R.
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o We take as n;; = v+ B x;j — |zi — z].
@ For two different nodes, j and k, equidistant in the latent space, their
log-odds ratio is determined by the covariate and so the difference is

BT(X,-J- — Xik)-
o Hoff writes djj = |z; — z;| and considers the network to be
represented by dj; if

d,'j>1 @a,-j:O, d,'j<1 <:>a,'j:l.

@ This is in some sense equivalent to the geometric random graph.
The network is representable if such distances can be formed, e.g.
the z; in some underlying space with some dimensionality can be
constructed.

@ We can show by removing the covariate that the model becomes
equivalent to Chung-Lu's modelling framework.
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@ Hoff has generalized this. He replaces logit by probit model:

Pr{Aj =1} = E(Aj) = nj = pyj,  &(1ij) = nijs

with g(p) = @~ 1(u) with n; = v + BT x; + a(zi, z).

1. Latent class/stochastic block model:
o(zj,z) =05z, z€{l,...,K},© =(0,5). This encapsulates
stochastic equivalence, a type of pattern often seen in network data
in which the nodes can be divided into groups such that members of
the same group have similar patterns of relationships.

2. Latent distance model:
a(zi,z)) = —|zi — zj|, z € RK. This model
encapsulates homophily, so relationships between nodes with similar
characteristics are stronger than those having different characteristics.
Homophily explains transitivity ("a friend of a friend is a friend"),
balance ("the enemy of my friend is an enemy”) and cohesive
subgroups of nodes.
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Picture from Hoff 2007.
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3. Latent eigenmodel:
a(zi,z)) =z Nz, z €RK and A a K x K matrix. An
interpretation of the latent eigenmodel is that each node i has a
vector of unobserved characteristics as given by z;. Depending on the
eigenvalues of A similar values of z; will lead to contributing positively
or negatively to the relationship between / and j.

@ The eigenmodel with K-length vectors generalizes the latent class
model.

@ The eigenmodel with K + 1-length vectors almost generalizes the
latent distance model with K dimensional latents.
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