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@ We define the collection of edge variables at time step t to be a,-jt

@ A network is sparse if

@ By the generating dynamics of the BA model there are m new edges
at each step so k, = mn + ko.

@ Thus

~ 2(mn+ ko)
=———3"—0.
P n(n—1) -
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@ The degree distribution counts the relative proportion of vertices of
any integer degree

Pan (k) = znjl(d,-(") = k>,

i=1

and pum (k) ~ k=7. This corresponds to a power law distribution.
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Statistical Temporal Models

@ The generating mechanism of the preferential attachment model is
very mechanistic.

e What if we want to generate a set of edges (or contacts) over time?

@ We could simply start from the graph limit model

E{Aj | &} = pnf (& &)

@ We shall assume we observe multiple graphs across time and so for a
given edge ij we study edge-variable Aj(t).
@ The simplest model takes the form:

Pr{A;(t) =1]A;(t —1),...} = h(t, Aj(t — 1), Aj(t —2), Aj(t —3),...),

for some appropriately chosen function h().
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Statistical Temporal Models

@ We shall now look to how the edges can be modelled across times
(see Siiveges and Olhede (2023)) with label vector z:

Aj(t) [Ay(t = 1), ..., Aj(t — K) ~
K

Bern (logit—l (Z bk Aij(t — k) + Cz,-zj(t)> ) . (1)
k=1

@ This model defines a correlated process across time, where the
correlation is specified by b. Uses the trick of using a modelling
framework that naturally limits the success probabilities between zero
and one.

@ Introduces flexible forms of serial correlation.

@ The generating mechanism can still be estimated, and the properties
of the network determined.

@ Non-stationary models can we included by replacing cj ; by a
time-varying alternatives as we have above.

@ Parameters naturally stay within the range of allowed values.
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Statistical Temporal Models

@ The simplest version of this model takes K = 1.
@ This introduces series correlation of length one.

o It is different from just letting the parameters of the stochastic block
model change over time.

@ Let us discuss how we would expect the realized edges to change?
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Multilayer networks
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e A multilayer network is a pair M = (G, C) where
G ={Gp;pe{l,...,P}is a family of simple graphs G, = (V,, Ep)}.
called the layers of M and C is

C={EpCV,xV,abel .. Pa#b}

is the set of interconnection between nodes of different layers G,
and Gp with a # b. The items in C are crossed layers and the
elements of E, are intralayer connections. Note that the elements
of E,p are interlayer connections.

@ This model is useful to capture phenomena in social systems. The
Axelrod model is an example thereof.

@ A general multilayer network has potentially different vertices on
different layers.

@ We can have edges between nodes in different layers.
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@ We can collect all edges in a supra-adjacency matrix, which captures
all edges present in the network.

@ Obviously too complex.
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@ A special case of the multilayer network is the multiplex network. In
this Vi, = ... = Vp. Thus a multiplex network has a fixed set of
nodes that are connected with different edges.

@ Simple graphs can be defined from the multiplex network. The
projection network proj(M) has an adjacency matrix

Aij = I(Aff) = 1), some p.

@ Multilayer networks occur from several different causes: Multiplex
networks, Temporal networks, Interacting or interconnected networks,
Multidimensional networks or Interdependent (or layered) networks.

@ Multiplex networks are several networks with the same nodes, with
layers of edges.

@ A temporal network is several graphs G; where it is recorded at time t.

o If we consider a family of networks {Gj, ..., G;} that interact, they
can be modeled as a multilayer network of layers.
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@ Thus we can write the adjacency matrix as Ajj(t), say but where the t
index does not have to be time.

@ Then the observations is the tensor {A;i(t)}.

@ We can define the time-varying degree vector d(t), and any other
time-varying statistics that we may chose.

@ We can also estimate time-varying groups.
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@ Social networks are often not symmetric, examples include such as an
acquaintance network of university members (Kossinets & Watts
(2006)), a large-scale instant-messaging network containing
individuals (Leskovec & Horvitz (2008)), friendship networks of a set
of American high schools (add-health, Currarini, Jackson & Pin), a
social network of a cohort of college students in Facebook (Lewis,
Gonzalez & Kaufman).

@ We often have directed relationships on email and other modes of
communication. Powerline and airline networks are directed, Citation
networks likewise, Food webs (foxes eat hares, but hares do not eat
foxes), Economic networks etc.
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@ To replicate the patterns we see in practice we need to generalize
edges to directed edges.

N

@ A directed edge ij is sometimes called an arc. An arc (i,j) is
considered to be directed from 7 to j; j is called the head and i is
called the tail of the arc.

@ The adjacency matrix is then defined to be
-
Aj=1I{ 1 is present.

o It follows that A # AT,

@ We now need two summaries for the popularity or sociability of a
node, an in

° d,-(i") (pointing to /) and an out-degree d(eut

, (pointing away from 7).
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@ The in-degrees are defined as the sum of the edges pointing to i:
4 =3 A
JF#i

@ The out-degrees are defined as the sum of the edges pointing away

from i:
out) ZAU
JF#i
@ Furthermore versions of configuration model can be defined for
directed graphs with parameters (" and 7(°“Y). Thus the degree
based model becomes

EA; = Wfln)ﬂ'}our).
@ Unlike standard configuration model, we now have 2n parameters.
We could for example postulate 7w(i?) = p(in)zr and s(out) = plout)
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@ We can also do a permutation invariant version of this degree-based
model.

@ We now need to 1 -d functions f(") (x) and f{out)(x).

o We define two latent independent vectors £ and 1 with uniform
entries, and so take

EAj | &1 = pa- (&) (),

@ We are therefore no longer in the land of symmetric adjacency
matrices.
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@ There is a directed version of the graphon model. Specify a graph
limit function f(x,y) which is no longer symmetric.

@ Specify « as a latent variable, as well as two latent independent
vectors £ and 7 with uniform entries, and so take

EA;; | &,n = pn - fal&iym)),

and conditional on the latent variables generate (A) as independent
Bernoulli random variables.
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@ Some graphs display clear group structure. For each node i we define
a random variable z,.(i”) that takes the value {1,..., k() }, where this
variable is indicating the in-group membership of node i. For each
node / we define a random variable z(°“t) that takes the value
{1 K(out )} where this variable is indicating the out-group
membershlp of node /. We additionally define a connection
probability matrix © which has entries 6, for
1<a< k(in ),1 <b< k(out)- Then

n out . . .
Aj | z( ) 721( ) _ Bernoulh(@zi(,-,,)zj(out)>, 1<j#i<n

where each realization is independent. Furthermore A;; = 0 for
1 <i < n, and we complete the matrix by. This is known as the
directed stochastic block model (Wang & Wong, JASA 1987).
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@ Wang and Wong proposed maximum likelihood estimation of this set
of parameters, but they looked at very small examples.

@ We can use the same type of algorithms as for regularly stochastic
blockmodels.

1-a;
E(G,z(i") ’Z(Out )) = log Hgam ) out) <1 — 9 (out)> K

A 0 E

= Z{au |Og9 (|n out)

i#j

+ (]. — aU) IOg(l — 021'(in )zj(out)) }

@ We can yet again use profile likelihood to estimate the parameters of
the model.

sofia.olhede@epfl.ch (EPFL) Statistical analysis of network data November 20, 2024 23 /24



Directed networks cont'd

Directed Networks VIII
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@ Having removed the assumption of symmetry, we could also start to
look at relationships between different types of objects.

@ We could therefore look at generalizations of A;; that are not square,
and have relationships between predators and prey for instance.

@ We could also use the directed block model to estimate the graph
limit without symmetry.
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