Assessed Coursework - Statistical analysis of network data — MATH-448

November 2024

Solutions to the assessed coursework should be handed in at the lecture 22nd of November at 10am in Ma
B1 427. You should not ask for help during the tutorial from the TA and should only hand in your own workings.
Group work is not allowed, and please sign a statement saying “This is all my own work” on the first page of the
assessed coursework. Using BTEX is highly advised for the clarity of your answers. The mark allocation
to each question will depend on how difficult it is, and you should give solutions to all questions. Please note that
there are 5 questions. The assessed coursework is worth 15% of the course mark.

Instructions to hand back your coursework:
e Number all your pages in the following format: page number/total number of pages.
e Put your name and SCIPER number on all pages.

e Staple together all answer sheets you want to hand back.

Exercise 1
Assume you observe a network G corresponding to Figure 1.

(i) Write down the adjacency matrix of the network represented in Figure 1. Calculate the degrees of this network.

(ii) Write down all cycles present in the network with four nodes or less represented in Figure 1, and write down
how many copies of these cycles are found in the network.

(iii) Decide which node in the network is most “important”; justify your choice of “important”.

(iv) Assume you add and delete two edges. The new edges you add are 15 and 57, and the ones you delete are
23 and 34. Compute the new degrees in the new network. Does this network correspond to one connected
component? Explain the rationale to your answer.

Solution 1
(i) The adjacency matrix of the network is:
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The degrees of each node are:
deg(l) =4, deg(2) =4, deg(3)=2, deg(4) =4, deg(b)=2, deg(6)=3, deg(7)=3

(ii) Triangles (3-cycles):

e Cyclel: 1 52—-7—1
e Cycle2: 1 54—6—1
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Figure 1: A planar representation of a seven node network.

e Cycle3: 1 -4—-7—1
Quadrilaterals (4-cycles):

e Cyclel: 1 56—-5—>2—1
e Cycle2: 1 56—-4—->7—1
e Cycle3: 1 52—-7—=4—1
e Cycled: 2—-3—-4—->7—2
e Cycle5:2—-3—-4—>1—2

(iii) Node 1 is the most ”important” because:

e It has the highest degree (deg(1) = 4) alongside nodes 2 and 4.
e Further compute centralities to show that It connects to other high-degree nodes (nodes 2, 4, 6, and 7)
and it participates in multiple cycles, indicating a central position in the network structure.

(iv) After adding edges 1-5 and 5-7, and deleting edges 2-3 and 3-4, the new degrees are:

deg(1) =5
deg(2) =3
deg(3) =0
deg(4) =3
deg(5) =4
deg(6) =3
deg(7) =4

Node 3 becomes isolated (deg(3) = 0), so the network consists of two connected components:

e A main component with nodes 1,2,4,5,6,7.

e An isolated node 3.

Therefore, the network does not correspond to one connected component.



Exercise 2

A directed network makes a difference between an edge between ¢ and j versus a directed edge starting at ¢ and
ending in j. Assume the directed network has an adjacency matrix A which has binary independent entries, and is
defined on n nodes. Introduce the two parameters 7w and 1 that are n x 1 vectors with entries between zero and
unity and assume that the edges are binary and independent with expectation

E{Ai} =y, 1<i#j<n (1)

(i) Calculate the expectation of the ‘in” and ‘out’ degrees of the network. These are defined as

dl('in) = Z A]u

J#i
and
dgout) — ZAij7
J#i
respectively.

(ii) What constraints need to be placed on the vectors w and 1) given the total number of edges are fixed to
E=3.457
#j U

(iii) Assume we propose the estimators 7; = dgout) /C1 and % = d§in) /C3, what values should we choose as Cy and
Cs 7 Hints: You may note that as all directed edges need to start and end somewhere

> E{d"} =) E{a},
and you may assume that as n is large

Ille >> i, bl >> i,

as well as since 0 < 7m; < 1 and 0 < ¢; < 1, it is reasonable to assume

7l >> llwlla, Mol >> ]2

Solution 2
(i) The in-degree of node i is defined as:

di™ =3" Ay

J#i

The expected value is:

E{d"} =E ZAji = ZE{AJ@‘} = Zﬂ'j'l/}i =1 ij.

J#i J# J#i J#i

The out-degree of node ¢ is defined as:

dgout) — ZAU
J#i

The expected value is:

B{d™} =B> Ay o =Y B{A} =Y m=m Yy

J#i J#i J#i J#i



(ii) The total number of edges is:

£=Y Ay

]
Taking the expected value:

B{e} =E{> Ay p =) B{dy} =) my;.

i#] i#] i#]

Z?Tiwj =¢.

i#]

Thus, the constraint is:

(i) We wish to estimate m; and ;. We wish to chose estimators that are unbiased. We shall take estimators as
suggested to be

R d?Ut
T = Cl . (2)
We shall calculate the expectation of this:
E{d¢*'}
Ex, = L. 3
7 3 (3)

We first need to calculate the rhs of that equation and find:

E{dy""} =) mib/Ch (4)

J#i
= mi{llbllr — ¥i}/Ca (5)
e
= T 4 i) 0
1
_ millell
e (7)
Thus we should take Cq = ||¢||1.
R dm
P = 8
We shall calculate the expectation of this: ‘
R E{d™
Ey; = {C; } (9)

We first need to calculate the rhs of that equation and find:

E{d"} = ij/Cz (10)

i
=il —m}/Co (11)
o (R (12)
_ Vil
~ B (13)

Thus we should take Cy = ||7]|;.

But we prefer to estimate this from the data. Note that from (ii)

€= EAij ~ ||l

Because all edges need to start and end somewhere

ZE{di”} = ZE{dé’"t} = lIllllwll = =7 = [l17,



and so we can deduce

Il = Il ] = VE.
Thus if we want an estimator use method of moments and we take
dqut
= ’7t, (14)
V2 E{d7}
and p
V= e (15)
V2 B{d"}
Exercise 3
Assume that we generate the network G with adjacency matrix A from the generating mechanism
Aij | o, E ~ Bernoulli (Oél + a2§i§j), 1 <1< ] <n. (16)

Assume that a; ~ U(0,1/2) and ay |ag ~ U(0,1 — aq), and as usual & ~ U(0,1). The variable « is independent of
the vector €.

(i) Calculate the mean degree, conditional on the latent variable &.
(ii) Calculate the degree variance given &.

Solution 3
(i) The degree of node 7 in an undirected network is:

di = Ay

J#i
The expected value of d; is:

Eldi] =) E[Aij] =) Ea,a [BlAij | 01,02, ] = > Baya, (01 + 028i] = Y (Bloa] + Eloa]&;) -

J#i J#i J#i J#i
Since ay ~ U(0,1/2),
0+3 1
E = 2 —_,
lonl =5~ =1

Given a1, as | ag ~U(0,1 — ay),

Therefore,

Elas] = Ea, [Elas | a1]] = Ea, {1 _2“] - %(1 ~ Ela]) = % (1 - i) . g

Now, compute E[d;]:
1 3 1 3 n—1 3
Eld;] = Z <4 + 8§i§j) =(n-1)- il §5i25j == T g&szy
J#i i

where S; =3, ;. Thus,

n—1 3
Eldi] = ——+ gfz‘Zﬁj-
[y



(ii) We will use the law of total variance:
Varld; | ] = E[Var[d; | a1, az,&]] + Var [E[d; | o, a2, €]] -
First, compute E[d; | a1, a2, £]:
Eld; | an,a2,{] = ZE[Aij | a1, a0, €] = Z (a1 +@2&i;) = (n — D)o + 26 S

J#i J#i

Next, compute Var[d; | a1, as, &]:
Var[d; | a1, 02,8 = Var[A; | a1, 02,&] = > pi(1 = pij),
i i
where p;; = oy + @2&;¢; and as they are conditionally independent. Now, compute E [Var[d; | a1, ag,&]] and
Var [E[d; | a1, ag,&]]. First, compute E [Var[d; | a1, as,]]:
E[Varld; | a1, a2,8]] = > Elpi;(1—pij)] -
i

We expand p;;(1 — pij;):

pij(1 = pij) = (o1 + a2§i§5) (1 — a1 — 2€i&j)-

Simplify the expression:
Pij (1 — pij) = (1 + a26:&5) (1 — an — a26&y)
= (1 — 1) — 1€ + ap&i&;(1 — ar) — a367E7 .

Take expectations:

E [pi;(1 = pij)] = Bla1 (1 — on)] — 2E[ona2]&&; + Elas]&&; — Ela3] (&)

We have Ela1(1 — )] = E[a1] — E[o}] =
E[03] = 5= (computed via integration).

Therefore,

L
12

1 -4 =% Eloag] = {5 (easy check via integration). Efas] = 3.

E[pi; (1 —pij)] =

3 T
&& + gfz‘fj - %(fifj) .

S| =
| =

Simplify:
1

5 7
E[pi;(1 —pij)] = st ﬁfifj - %(fifg‘)2~

Now, sum over j # i:
1 ) 7
E[Var[d; | a1, az,€]] = Z (6 + ﬂgigj - 36(&'5]')2> .
J#i
Define S; = 3., §; and Q; = Zj;éi(fj)Q:

-1 5
E [Varld; | a1, a2,§]] = nT + ﬂgisi

7 2
- %51 Qz~

Next, compute Var [E[d; | a1, a2, E]]:
Var [Eld; | a1, a2,€]] = Var[(n — 1)a;g + a2 Si] -
Compute the variance:
Var[(n — 1)aq + a26;8i] = (n — 1) Varfaa] + (£:9:)* Var[ao] + 2(n — 1)(&:5;) Covlar, as].
where

e Var[ay] = 4 (using variance of uniforms formula)



e Var[ay] = 2L using computations done previously for E[as] and E[a3].

e Cov|ay,as] = — g follows using Cov [, o] = E [a1a] — E [on] E [a2] and the computations we have
done previously.

Therefore, . 2
-1 31 iSi n—1 iS'L'
Var [E[d; | a1, a2, ]] = - 48 - (576 s 4)8(f !

Finally, the degree variance given ¢ is:

—L. 5 7 —1)* | 31(&8S:)? —1)(&S;

Var[di|§]:(n6 +24§"S"‘3653Qi>+((n481) .\ 1(5576> R0 4)8@ ))_
Thus, ) 2
varld 1§ = ot DT D (2 DES) T, SUGST

Exercise 4

Starting from lecture 6, slide 11, Aldous Hoover’s theorem can be stated as: An infinite symmetric array A =
(Aij),; is exchangeable if and only if there is a function f, : [0, 1] — [0,1] for uniform random variable «, with
the sequence of independent random variables (§;) and the array with independent entries (x;;) are U0, 1] random
variables and deterministic function f,, such that

Aij | O[,f NI(X'LJ < fa (6275])) :

Another representation is as follows, assuming F,, is deterministic: There is a function F, : [0,1]® — [0,1], that is
symmetric in its first two arguments, with the sequence (§;) and the array (x;;) are U0, 1] independent random
variables independent such that

Aijlon € ~ Fo (&, 65, Xi.5)
Show that the two representations are equivalent. Further show that they are equivalent to

Aij | o, & ~ Bernoulli(f, (&;,&;5))-

Solution 4

The main point is the following: For this Bernoulli representation, we need to show that there is a symmetric
function W : [0, 1]? — [0, 1] such that

F (&85 Xi7) = Iayn)z< sy G & Xig) -
To prove it, we define
f(z,y) = E[F(z,y,x)], x~U[0,1].
Then,
PIF (&, &, xi5) = U =E[f (&, & xi5)] =E[E[F (&, &5, xi5) | &is 5]
=E[f (& &) =Pxi; < [ (& &)
Thus,
A&, & ~ Bernoulli( f(&;,&5)). (17)

Exercise 5
The empirical modularity of a network G is defined for label vector z, edge variables {4;;}, and degrees {d;} to be

- did;
QG(Z) = Z {Alj - Zl (;l } 6Z1‘,Zj'

1<j

Let us study the properties of a related object by replacing A;; and d; by their expectations E{A4,;} E{d;}, defining
this theoretical modularity to be for deterministic z

SCEDY {Btas) - W} 5o (1)

Assume that for label vector z
E{A’Lj |Z} :921‘2_7'7 Za] = ]-avn (19)



(i) Assume that first 817 = 1/2 = 695 but 612 = 1/4: there are [n/2] nodes in each of the two classes of nodes, so
zi=1ifi < |n/2] and z; = 2 if i > [n/2]|. Compute the expected modularity, defined in (18), Q¢ (%) in this
instance 7

(ii) Assume that first 610 = 1/2 but 017 = 1/4 = 655: there are [n/2] nodes in each of the two classes of nodes, so
zi=11if4i < |n/2| and z; =2 if i > [n/2]. Compute the expected modularity, defined in (18), Q¢(z) in this
instance 7

(iii) As a last choice assume that z; is assigned to one or two independently at random with equal probability.
What value does the modularity Qg(z) then take on average?

(iv) Please provide interpretation of the results you have just derived.

Solution 5

1 1 n
(i) First note that, 617 = 022 = 3 010 = T we have equal-sized classes: ny = ng = 5 and z; = 1 for i <

)

|3

z; = 2 otherwise. As the two classes are of equal size and equal intra probability, their expected degree is the
same. We first begin by computing the expected degree of nodes from the first class, The expected degree
within Class 1, thus the connection with the remaining n — 1 nodes from its class, is as follows

n 1

With the other class, its degree is

=

(L), = nobz =

o3

As such, the total expected degree for nodes in Class 1:
E{d;} = dV +d), = (2—1) ! %x L_sn_ 1

This yields the following total expected degree
3n 1 3n? n
Zl E{dl}_“E{di}‘”(s‘a) ~ 3 2

E{d;})*
Now we compute the full expression 611 — @ We first have

> E{di}
Calculate (E{d;})*:

e e e

Thus,
(Bn—4)?  (Bn—4)? 3n—4
8(3n2 —4n)  8n(3n—4)  8n

And we have
(E{d})? 1 3n—4 4n—(3n—4) n+4

O — =
"OSE{d) 2 sn 8n 8n

Thus, the inside of the sum is constant. As such, we now need to compute the number of within-class pairs

to simplify the expression.
ny ng n/2 n(n —2)
Nyithin = =2 =—
w=(3)+ (3) =2() -5

The final expression is

b (E{di})2> _nn-2) ntd_ (n-2(n+4)
ST UE{d) 4 8n 32

E{@G(z)} = Nuwithin (




(ii) We perform the same computations as before and only replacing with the new parameters. First, we have

(iii)

(iv)

n 1 n 1 n 1 n 3n—2
EW*—(29X4+2X2—<4>+4— 5

which gives

n 1 3n—2
]E = —_— = =
Zl {di} ”(2 4) s
which gives

Eld]E[d] _ (352)°  3n-2
S Eld] G T gy

Combining with the number of pairs, we get

EA :Nwi in| 7 — =
(Qol)) = Nosaun (- Vi —2F <o

1 3n—2> —(n—2)?

which is always negative for n > 2.

When labels z; are assigned randomly with equal probability, the expected modularity is zero because the
labels are uncorrelated with the network structure. Thus,

E{Qc(2)} =0

(i) The positive modularity indicates strong community structure. Nodes are more likely to connect within
their own group than to nodes in the other group.

(ii) The negative modularity suggests that nodes are more connected to nodes in the other group, indicating
disassortative mixing.

(iii) A modularity of zero implies that the connections are random with respect to the assigned labels; there
is no community structure.



