
Assessed Coursework - Statistical analysis of network data – MATH-448

November 2024

Solutions to the assessed coursework should be handed in at the lecture 22nd of November at 10am in Ma
B1 427. You should not ask for help during the tutorial from the TA and should only hand in your own workings.
Group work is not allowed, and please sign a statement saying “This is all my own work” on the first page of the
assessed coursework. Using LATEX is highly advised for the clarity of your answers. The mark allocation
to each question will depend on how difficult it is, and you should give solutions to all questions. Please note that
there are 5 questions. The assessed coursework is worth 15% of the course mark.

Instructions to hand back your coursework:

• Number all your pages in the following format: page number/total number of pages.

• Put your name and SCIPER number on all pages.

• Staple together all answer sheets you want to hand back.

Exercise 1
Assume you observe a network G corresponding to Figure 1.

(i) Write down the adjacency matrix of the network represented in Figure 1. Calculate the degrees of this network.

(ii) Write down all cycles present in the network with four nodes or less represented in Figure 1, and write down
how many copies of these cycles are found in the network.

(iii) Decide which node in the network is most “important”; justify your choice of “important”.

(iv) Assume you add and delete two edges. The new edges you add are 15 and 57, and the ones you delete are
23 and 34. Compute the new degrees in the new network. Does this network correspond to one connected
component? Explain the rationale to your answer.

Solution 1
(i) The adjacency matrix of the network is: 

0 1 0 1 0 1 1
1 0 1 0 1 0 1
0 1 0 1 0 0 0
1 0 1 0 0 1 1
0 1 0 0 0 1 0
1 0 0 1 1 0 0
1 1 0 1 0 0 0


The degrees of each node are:

deg(1) = 4, deg(2) = 4, deg(3) = 2, deg(4) = 4, deg(5) = 2, deg(6) = 3, deg(7) = 3

(ii) Triangles (3-cycles):

• Cycle 1: 1 → 2 → 7 → 1

• Cycle 2: 1 → 4 → 6 → 1
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Figure 1: A planar representation of a seven node network.

• Cycle 3: 1 → 4 → 7 → 1

Quadrilaterals (4-cycles):

• Cycle 1: 1 → 6 → 5 → 2 → 1

• Cycle 2: 1 → 6 → 4 → 7 → 1

• Cycle 3: 1 → 2 → 7 → 4 → 1

• Cycle 4: 2 → 3 → 4 → 7 → 2

• Cycle 5: 2 → 3 → 4 → 1 → 2

(iii) Node 1 is the most ”important” because:

• It has the highest degree (deg(1) = 4) alongside nodes 2 and 4.

• Further compute centralities to show that It connects to other high-degree nodes (nodes 2, 4, 6, and 7)
and it participates in multiple cycles, indicating a central position in the network structure.

(iv) After adding edges 1-5 and 5-7, and deleting edges 2-3 and 3-4, the new degrees are:

deg(1) = 5

deg(2) = 3

deg(3) = 0

deg(4) = 3

deg(5) = 4

deg(6) = 3

deg(7) = 4

Node 3 becomes isolated (deg(3) = 0), so the network consists of two connected components:

• A main component with nodes 1, 2, 4, 5, 6, 7.

• An isolated node 3.

Therefore, the network does not correspond to one connected component.
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Exercise 2
A directed network makes a difference between an edge between i and j versus a directed edge starting at i and
ending in j. Assume the directed network has an adjacency matrix A which has binary independent entries, and is
defined on n nodes. Introduce the two parameters π and ψ that are n × 1 vectors with entries between zero and
unity and assume that the edges are binary and independent with expectation

E{Aij} = πiψj , 1 ≤ i ̸= j ≤ n. (1)

(i) Calculate the expectation of the ‘in’ and ‘out’ degrees of the network. These are defined as

d
(in)
i =

∑
j ̸=i

Aji,

and
d
(out)
i =

∑
j ̸=i

Aij ,

respectively.

(ii) What constraints need to be placed on the vectors π and ψ given the total number of edges are fixed to
E =

∑
i ̸=j Aij ?

(iii) Assume we propose the estimators π̂i = d
(out)
i /C1 and ψ̂j = d

(in)
j /C2, what values should we choose as C1 and

C2 ? Hints: You may note that as all directed edges need to start and end somewhere∑
i

E{dini } =
∑
i

E{douti },

and you may assume that as n is large

∥π∥1 >> πi, ∥ψ∥1 >> ψi,

as well as since 0 < πi < 1 and 0 < ψi < 1, it is reasonable to assume

∥π∥1 >> ∥π∥2, ∥ψ∥1 >> ∥ψ∥2.

Solution 2
(i) The in-degree of node i is defined as:

d
(in)
i =

∑
j ̸=i

Aji.

The expected value is:

E{d(in)i } = E

∑
j ̸=i

Aji

 =
∑
j ̸=i

E{Aji} =
∑
j ̸=i

πjψi = ψi

∑
j ̸=i

πj .

The out-degree of node i is defined as:

d
(out)
i =

∑
j ̸=i

Aij .

The expected value is:

E{d(out)i } = E

∑
j ̸=i

Aij

 =
∑
j ̸=i

E{Aij} =
∑
j ̸=i

πiψj = πi
∑
j ̸=i

ψj .
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(ii) The total number of edges is:

E =
∑
i ̸=j

Aij .

Taking the expected value:

E{E} = E

∑
i ̸=j

Aij

 =
∑
i ̸=j

E{Aij} =
∑
i̸=j

πiψj .

Thus, the constraint is: ∑
i̸=j

πiψj = E .

(iii) We wish to estimate πi and ψj . We wish to chose estimators that are unbiased. We shall take estimators as
suggested to be

π̂i =
douti

C1
. (2)

We shall calculate the expectation of this:

Eπ̂i =
E{douti }
C1

. (3)

We first need to calculate the rhs of that equation and find:

E{douti } =
∑
j ̸=i

πiψj/C1 (4)

= πi{∥ψ∥1 − ψi}/C1 (5)

=
πi∥ψ∥1
C1

(1− ψi/∥ψ∥1) (6)

≈ πi∥ψ∥1
C1

. (7)

Thus we should take C1 = ∥ψ∥1.

ψ̂i =
dini
C2

. (8)

We shall calculate the expectation of this:

Eψ̂i =
E{dini }
C2

. (9)

We first need to calculate the rhs of that equation and find:

E{dini } =
∑
j ̸=i

ψiπj/C2 (10)

= ψi{∥π∥1 − πi}/C2 (11)

=
ψi∥π∥1
C2

(1− πi/∥π∥1) (12)

≈ ψi∥π∥1
C2

. (13)

Thus we should take C2 = ∥π∥1.
But we prefer to estimate this from the data. Note that from (ii)

E =
∑

EAij ≈ ∥π∥1∥ψ∥1.

Because all edges need to start and end somewhere∑
i

E{dini } =
∑
i

E{douti } = ∥π∥1∥ψ∥1 = ∥π∥21 = ∥ψ∥21,
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and so we can deduce
∥π∥1 = ∥ψ∥1 =

√
E .

Thus if we want an estimator use method of moments and we take

π̂i =
douti√∑
i E{douti }

, (14)

and

ψ̂i =
dini√∑
i E{dini }

. (15)

Exercise 3
Assume that we generate the network G with adjacency matrix A from the generating mechanism

Aij |α, ξ ∼ Bernoulli (α1 + α2ξiξj) , 1 ≤ i < j ≤ n. (16)

Assume that α1 ∼ U(0, 1/2) and α2 |α1 ∼ U(0, 1−α1), and as usual ξi ∼ U(0, 1). The variable α is independent of
the vector ξ.

(i) Calculate the mean degree, conditional on the latent variable ξ.

(ii) Calculate the degree variance given ξ.

Solution 3
(i) The degree of node i in an undirected network is:

di =
∑
j ̸=i

Aij .

The expected value of di is:

E[di] =
∑
j ̸=i

E[Aij ] =
∑
j ̸=i

Eα1,α2 [E[Aij | α1, α2, ξ]] =
∑
j ̸=i

Eα1,α2 [α1 + α2ξiξj ] =
∑
j ̸=i

(E[α1] + E[α2]ξiξj) .

Since α1 ∼ U(0, 1/2),

E[α1] =
0 + 1

2

2
=

1

4
.

Given α1, α2 | α1 ∼ U(0, 1− α1),

E[α2 | α1] =
0 + (1− α1)

2
=

1− α1

2
.

Therefore,

E[α2] = Eα1
[E[α2 | α1]] = Eα1

[
1− α1

2

]
=

1

2
(1− E[α1]) =

1

2

(
1− 1

4

)
=

3

8
.

Now, compute E[di]:

E[di] =
∑
j ̸=i

(
1

4
+

3

8
ξiξj

)
= (n− 1) · 1

4
+

3

8
ξi
∑
j ̸=i

ξj =
n− 1

4
+

3

8
ξiSi,

where Si =
∑

j ̸=i ξj . Thus,

E[di] =
n− 1

4
+

3

8
ξi
∑
j ̸=i

ξj .

5



(ii) We will use the law of total variance:

Var[di | ξ] = E [Var[di | α1, α2, ξ]] + Var [E[di | α1, α2, ξ]] .

First, compute E[di | α1, α2, ξ]:

E[di | α1, α2, ξ] =
∑
j ̸=i

E[Aij | α1, α2, ξ] =
∑
j ̸=i

(α1 + α2ξiξj) = (n− 1)α1 + α2ξiSi.

Next, compute Var[di | α1, α2, ξ]:

Var[di | α1, α2, ξ] =
∑
j ̸=i

Var[Aij | α1, α2, ξ] =
∑
j ̸=i

pij(1− pij),

where pij = α1 + α2ξiξj and as they are conditionally independent. Now, compute E [Var[di | α1, α2, ξ]] and
Var [E[di | α1, α2, ξ]]. First, compute E [Var[di | α1, α2, ξ]]:

E [Var[di | α1, α2, ξ]] =
∑
j ̸=i

E [pij(1− pij)] .

We expand pij(1− pij):
pij(1− pij) = (α1 + α2ξiξj)(1− α1 − α2ξiξj).

Simplify the expression:

pij(1− pij) = (α1 + α2ξiξj) (1− α1 − α2ξiξj)

= α1(1− α1)− α1α2ξiξj + α2ξiξj(1− α1)− α2
2ξ

2
i ξ

2
j .

Take expectations:

E [pij(1− pij)] = E[α1(1− α1)]− 2E[α1α2]ξiξj + E[α2]ξiξj − E[α2
2](ξiξj)

2.

We have E[α1(1− α1)] = E[α1]− E[α2
1] =

1
4 − 1

12 = 1
6 . E[α1α2] =

1
12 (easy check via integration). E[α2] =

3
8 .

E[α2
2] =

7
36 (computed via integration).

Therefore,

E [pij(1− pij)] =
1

6
− 1

6
ξiξj +

3

8
ξiξj −

7

36
(ξiξj)

2.

Simplify:

E [pij(1− pij)] =
1

6
+

5

24
ξiξj −

7

36
(ξiξj)

2.

Now, sum over j ̸= i:

E [Var[di | α1, α2, ξ]] =
∑
j ̸=i

(
1

6
+

5

24
ξiξj −

7

36
(ξiξj)

2

)
.

Define Si =
∑

j ̸=i ξj and Qi =
∑

j ̸=i(ξj)
2:

E [Var[di | α1, α2, ξ]] =
n− 1

6
+

5

24
ξiSi −

7

36
ξ2iQi.

Next, compute Var [E[di | α1, α2, ξ]]:

Var [E[di | α1, α2, ξ]] = Var [(n− 1)α1 + α2ξiSi] .

Compute the variance:

Var [(n− 1)α1 + α2ξiSi] = (n− 1)2 Var[α1] + (ξiSi)
2 Var[α2] + 2(n− 1)(ξiSi) Cov[α1, α2].

where

• Var[α1] =
1
48 (using variance of uniforms formula)
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• Var[α2] =
31
576 , using computations done previously for E[α2] and E[α2

2].

• Cov[α1, α2] = − 1
96 follows using Cov [α1, α2] = E [α1α2] − E [α1]E [α2] and the computations we have

done previously.

Therefore,

Var [E[di | α1, α2, ξ]] =
(n− 1)2

48
+

31(ξiSi)
2

576
− (n− 1)(ξiSi)

48
.

Finally, the degree variance given ξ is:

Var[di | ξ] =
(
n− 1

6
+

5

24
ξiSi −

7

36
ξ2iQi

)
+

(
(n− 1)2

48
+

31(ξiSi)
2

576
− (n− 1)(ξiSi)

48

)
.

Thus,

Var[di | ξ] =
n− 1

6
+

(n− 1)2

48
+

5

24
ξiSi −

(n− 1)(ξiSi)

48
− 7

36
ξ2iQi +

31(ξiSi)
2

576
.

Exercise 4
Starting from lecture 6, slide 11, Aldous Hoover’s theorem can be stated as: An infinite symmetric array A =
(Aij)i<j is exchangeable if and only if there is a function fα : [0, 1]2 → [0, 1] for uniform random variable α, with

the sequence of independent random variables (ξi) and the array with independent entries (χij) are U [0, 1] random
variables and deterministic function fα, such that

Aij | α, ξ ∼ I (χij ≤ fα (ξi, ξj)) .

Another representation is as follows, assuming Fα is deterministic: There is a function Fα : [0, 1]3 → [0, 1], that is
symmetric in its first two arguments, with the sequence (ξi) and the array (χij) are U [0, 1] independent random
variables independent such that

Aij |α, ξ ∼ Fα (ξi, ξj , χi,j)

Show that the two representations are equivalent. Further show that they are equivalent to

Aij | α, ξ ∼ Bernoulli(fα (ξi, ξj)).

Solution 4
The main point is the following: For this Bernoulli representation, we need to show that there is a symmetric
function W : [0, 1]2 → [0, 1] such that

F (ξi, ξj , χij)
d
= I{(x,y,z)|z≤f(x,y)} (ξi, ξj , χij) .

To prove it, we define
f(x, y) := E[F (x, y, χ)], χ ∼ U [0, 1].

Then,
P [F (ξi, ξj , χij) = 1] = E [f (ξi, ξj , χij)] =E [E [F (ξi, ξj , χij) | ξi, ξj ]]

= E [f (ξi, ξj)] = P [χi,j ≤ f (ξi, ξj)] .

Thus,
Aij |ξi, ξj ∼ Bernoulli(f(ξi, ξj)). (17)

Exercise 5
The empirical modularity of a network G is defined for label vector z, edge variables {Aij}, and degrees {di} to be

Q̂G(z) =
∑
i<j

{
Aij −

didj∑
l dl

}
δzizj .

Let us study the properties of a related object by replacing Aij and di by their expectations E{Aij} E{di}, defining
this theoretical modularity to be for deterministic z

QG(z) =
∑
i<j

{
E{Aij} −

E{di}E{dj}∑
l E{dl}

}
δzizj . (18)

Assume that for label vector z
E{Aij | z} = θzizj , i, j = 1, . . . , n. (19)
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(i) Assume that first θ11 = 1/2 = θ22 but θ12 = 1/4: there are ⌊n/2⌋ nodes in each of the two classes of nodes, so
zi = 1 if i ≤ ⌊n/2⌋ and zi = 2 if i > ⌊n/2⌋. Compute the expected modularity, defined in (18), QG(z) in this
instance ?

(ii) Assume that first θ12 = 1/2 but θ11 = 1/4 = θ22: there are ⌊n/2⌋ nodes in each of the two classes of nodes, so
zi = 1 if i ≤ ⌊n/2⌋ and zi = 2 if i > ⌊n/2⌋. Compute the expected modularity, defined in (18), QG(z) in this
instance ?

(iii) As a last choice assume that zi is assigned to one or two independently at random with equal probability.
What value does the modularity QG(z) then take on average?

(iv) Please provide interpretation of the results you have just derived.

Solution 5

(i) First note that, θ11 = θ22 =
1

2
, θ12 =

1

4
, we have equal-sized classes: n1 = n2 =

n

2
and zi = 1 for i ≤ n

2
,

zi = 2 otherwise. As the two classes are of equal size and equal intra probability, their expected degree is the
same. We first begin by computing the expected degree of nodes from the first class, The expected degree
within Class 1, thus the connection with the remaining n− 1 nodes from its class, is as follows

d
(1)
in = (n1 − 1) θ11 =

(n
2
− 1
)
× 1

2

With the other class, its degree is

d
(1)
out = n2θ12 =

n

2
× 1

4

As such, the total expected degree for nodes in Class 1:

E{di} = d
(1)
in + d

(1)
out =

(n
2
− 1
)
× 1

2
+
n

2
× 1

4
=

3n

8
− 1

2
.

This yields the following total expected degree∑
l

E{dl} = n× E{di} = n

(
3n

8
− 1

2

)
=

3n2

8
− n

2

Now we compute the full expression θ11 −
(E{di})2∑

l E{dl}
. We first have

Calculate (E{di})2:

(E{di})2 =

(
3n

8
− 1

2

)2

=

(
3n− 4

8

)2

=
(3n− 4)2

64
,
∑
l

E{dl} =
3n2

8
− n

2
=

3n2 − 4n

8

Thus,
(3n− 4)2

8(3n2 − 4n)
=

(3n− 4)2

8n(3n− 4)
=

3n− 4

8n

And we have

θ11 −
(E{di})2∑

l E{dl}
=

1

2
− 3n− 4

8n
=

4n− (3n− 4)

8n
=
n+ 4

8n

Thus, the inside of the sum is constant. As such, we now need to compute the number of within-class pairs
to simplify the expression.

Nwithin =

(
n1
2

)
+

(
n2
2

)
= 2

(
n/2

2

)
=
n(n− 2)

4

The final expression is

E{Q̂G(z)} = Nwithin

(
θ11 −

(E{di})2∑
l E{dl}

)
=
n(n− 2)

4
× n+ 4

8n
=

(n− 2)(n+ 4)

32
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(ii) We perform the same computations as before and only replacing with the new parameters. First, we have

E{di} =
(n
2
− 1
)
× 1

4
+
n

2
× 1

2
=

(
n

8
− 1

4

)
+
n

4
=

3n− 2

8

which gives ∑
l

E{dl} = n

(
n

2
− 1

4

)
= n

3n− 2

8
,

which gives

E [di]E [dj ]∑
lE [dl]

=

(
3n−2

8

)2
(3n−2)n

8

=
3n− 2

8n

Combining with the number of pairs, we get

E{Q̂G(z)} = Nwithin

(
1

4
− 3n− 2

8n

)
=

−(n− 2)2

32
< 0

which is always negative for n > 2.

(iii) When labels zi are assigned randomly with equal probability, the expected modularity is zero because the
labels are uncorrelated with the network structure. Thus,

E{Q̂G(z)} = 0

(iv) (i) The positive modularity indicates strong community structure. Nodes are more likely to connect within
their own group than to nodes in the other group.

(ii) The negative modularity suggests that nodes are more connected to nodes in the other group, indicating
disassortative mixing.

(iii) A modularity of zero implies that the connections are random with respect to the assigned labels; there
is no community structure.
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