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Solutions

Prof. Victor Panaretos
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Solution 1. 1. Any eigenvector v must satisfy λv = Qv for some λ ∈ R. Since any projection is
idempotent, we apply Q on both sides and obtain:

λ2v = Qv = λv.

which can only be true if λ is 0 or 1.

2. Note that u = Qv is the projection of v onto the subspace defined by the range of Q, while w =
(I− Q)v is the projection of v onto the orthogonal complement of the range of Q, corresponding
to its null space. Suppose there exists another pair of vectors u′ and w′ such that v = u′ + w′

and u′ = Qv and w′ = (I − Q)v. Note however Q(u′ − u) = 0, so that u′ − u ∈ ker(Q) while
u, u′ ∈ range(Q), so that it need be u = u′, and similarly for w,w′.

3. By the above, any vector u may be (uniquely) decomposed as v + w with v ∈ V and w ∈ V ⊥.
Since P,Q are projections onto V , Qv = Pv = v, while Qw = Pw = 0, yielding the claim.

4. Note that Qv is idempotent. Indeed:

Q2
vw = Qv

(
(v⊤w)v/(v⊤v)

)
= (v⊤w) · (v⊤v)/(v⊤v)v = (v⊤w)v = Qvw.

Furthermore, it is symmetric:

(Qvw)
⊤u =

1

v⊤v
(v⊤w)v⊤u = w⊤Qvu.

This proves that Qv is indeed a projection. To conclude that it corresponds to the projection
onto the span of v we may use the part 3.

Solution 2. 1. Denote the SVD of A as A = UΣV⊤, where U is an orthogonal matrix, Σ is a
diagonal matrix containing the singular values of A, and V is an orthogonal matrix.

Since A is assumed to be invertible, it means that all the singular values in Σ are non-zero.
Therefore, Σ can be inverted by taking the reciprocal of each non-zero singular value:

Σ−1 = diag

(
1

σ1
,
1

σ2
, . . . ,

1

σr

)
.

Now, the inverse of A can be expressed using the SVD as:

A−1 = VΣ−1U⊤

.
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2. The determinant of A can be expressed in terms of its SVD as:

det(A) = det(UΣV⊤) = det(U) det(Σ) det(V)⊤)

Since U and V are orthogonal matrices, their determinants are either 1 or −1. Hence, we have:

| det(A)| = | det(Σ)|

Now, the determinant of a diagonal matrix is the product of its diagonal elements. Therefore,
we have:

| det(Σ)| =
n∏

i=1

σi

where σi are the singular values of A.

3. Let us consider the SVD decomposition A = UΣV⊤, where:

• the singular values are equal to the square roots of the eigenvalues of AA⊤ (or, equivalently,
A⊤A).

• the right singular vectors (columns of V ) are eigenvectors of A⊤A.

• the left singular vectors (columns of U) are eigenvectors of AA⊤.

If A is real symmetric then (spectral theorem) it has at least one eigendecomposition A = QΛQ⊤,
and its singular values are the absolute values of its eigenvalues. Furthermore, in such case, both
the right and left singular vectors (columns of V and U ) are eigenvectors of A2 = QΛ2Q⊤, so
they are both eigenvectors of A, and thus equal to vectors in Q up to sign. Therefore, if A is real
symmetric and positive definite, Σ is a diagonal matrix containing the eigenvalues, and U = V.

Note that this argument fails if A is only semi-positive definite! Indeed, in this case,the part of U
and V corresponding to the zero eigenvalues can be any orthonormal decomposition of the null
space of A, with sign flips allowed independently on U and V.

Solution 3. Let us consider the eigenvalue decomposition of P− Q:

P− Q = V ΛV ⊤

where V is the matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues of P−Q. Since P−Q
is positive definite, all eigenvalues of P−Q are positive. Therefore, all the diagonal elements of Λ are
positive. Now let us consider the trace of P− Q:

tr(P− Q) = tr(V ΛV ⊤)

Using the cyclical property of trace, tr(ABC) = tr(CAB), we can rewrite the above expression as:

tr(P− Q) = tr(V ⊤V Λ) = tr(Λ)

Since Λ is a diagonal matrix, the trace of Λ is the sum of its diagonal elements, which are the eigenvalues
of P−Q. Therefore, tr(P−Q) =

∑
λi, where λi are the eigenvalues of P−Q. Since all eigenvalues of

P− Q are positive,
∑

λi is positive. Furthermore, by linearity of the trace:

tr(P)− tr(Q) = tr(P− Q) > 0

and hence tr(P) > tr(Q).

Solution 4. 1. A⊤ = (P⊤P)⊤ = P⊤P = A, which shows symmetry; furthermore, for any vector v,
we have v⊤Av = vtP⊤Pv = ∥Pv∥2 ≥ 0.

2. If λv = Av, then multiplying both sides by v⊤ we obtain: λ = ∥Pv∥2/∥v∥2 ≥ 0.
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3. By the spectral theorem, we may write A =
∑r

i=1 λiuiu
⊤
i .We denote B =

∑r
i=1 1/λiuiu

T
i . We

need to show that:

• BAB = B

• ABA = A

We prove the first equation – the second is shown almost identically.

BAB =

(
r∑

i=1

1

λi
uiu

⊤
i

) r∑
j=1

λjuju
⊤
j

( r∑
k=1

1

λk
uku

⊤
k

)

Since each uiu
⊤
i is the orthogonal projectors onto ui and the ui are linearly independent – because

eigenvectors corresponding to different eigenvalues – we have that uiu
⊤
i uj = δijui, so that it is

easy to see that the above product can be reduced to
∑r

i=1
1
λi
uiu

⊤
i = B.

Solution 5.

argmin
X : XX⊤=I

∥XA− B∥2F = argmin
X : XX⊤=I

⟨XA− B,XA− B⟩F

= argmin
X : XX⊤=I

∥XA∥2F + ∥B∥2F − 2⟨XA,B⟩F

= argmin
X : XX⊤=I

∥A∥2F + ∥B∥2F − 2⟨XA,B⟩F

= argmax
X : XX⊤=I

⟨XA,B⟩F

= argmax
X : XX⊤=I

〈
X,BAT

〉
F

= argmax
X : XX⊤=I

〈
X,UΣVT

〉
F

= argmax
X : XX⊤=I

〈
U⊤XV,Σ

〉
F

= argmax
X : XX⊤=I

⟨U⊤XV,Σ⟩F

The matrix U⊤XV is an orthogonal matrix, (as it is a product of orthogonal matrices). Therefore,
the expression is maximised when this product equals the identity, i.e. when X = UV⊤. Indeed, if D
is diagonal and W is orthogonal, then:

⟨W,D⟩ = tr(DW ) =
∑
i

e⊤i DWei =
∑
i

eiDfi =
∑
i

∑
j

aije
⊤
i Dej =

∑
i

aiiDii

where ei is some orthogonal basis, and fi = Wei =
∑

j aijej another orthogonal basis; observing that
|aii| ≤ 1 and is maximised (equal to 1) only when fi = ei, i.e. when W is the identity, we conclude.

Solution 6. Solution in Python and R: see this GitHub link.

Solution 7. 1. We first show linearity, wlog in the first argument. The (k, l)-th block of (A+B)⊗C
is

(A+B)klC = (Akl +Bkl)C

= AklC +BklC

We then show associativity. Let A be K × L,B be M ×N and C be O × P . Let us first study
the structure of (A⊗B)⊗ C. The product AklBmn is the

((k − 1)M +m, (l − 1)N + n)-th
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entry of A⊗B. As a consequence, the product (AklBmn)Cop is the

(((k − 1)M +m− 1)O + o, ((l − 1)N + n− 1)P + p)-th

entry of (A⊗B)⊗ C. Let us now study the structure of A⊗ (B ⊗ C). The product BmnCop is
the

((m− 1)O + o, (n− 1)P + p)-th

entry of B ⊗C. Therefore, the product Akl (BmnCop) is the entry of A⊗ (B ⊗C) that occupies
position

((k − 1)MO + (m− 1)O + o, (l − 1)NP + (n− 1)P + p)

=(((k − 1)M +m− 1)O + o, ((l − 1)N + n− 1)P + p)

Thus, the product AklBmnCop occupies the same position in (A ⊗ B) ⊗ C and in A ⊗ (B ⊗ C)
for every k, l, m,n, o and p. Therefore,

(A⊗B)⊗ C = A⊗ (B ⊗ C)

Since AklC is the (k, l)-th block of A⊗C and BklC is the (k, l)-th block of B⊗C, and the above
equality holds for every k and l, the claim is true.

To show that it is not commutative it suffices to establish a counterexample. For instance, let
us take

A =

(
1 2
3 4

)
B =

(
5 6
7 8

)

A⊗B =


5 6 10 12
7 8 14 16
15 18 20 24
21 24 28 32


while

B ⊗A =


5 10 6 12
15 20 18 24
7 14 8 16
21 28 24 32


2. Suppose A is K × L and C is L×M .

(A⊗B)(C ⊗D)

=

 A11B . . . A1LB
...

. . .
...

AK1B . . . AKLB


 C11D . . . C1MD

...
. . .

...
CL1D . . . CLMD



=


(∑L

l−1 A1lCl1

)
BD . . .

(∑L
l−1 A1lClM

)
BD

...
. . .

...(∑L
l−1 AKlCl1

)
BD . . .

(∑L
l=1 AKlClM

)
BD


=

 (AC)11BD . . . (AC)1MBD
...

. . .
...

(AC)K1BD . . . (AC)KMBD


=(AC)⊗ (BD)
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where we have used the fact that the multiplication of two block matrices can be carried out as
if their blocks were scalars, and the definition of matrix multiplication to deduce that

(AC)km =

L∑
l=1

AklClm.

3. Trivial using 2.

4. optional

5. Simply note that:

tr(A⊗B) = tr


 A11B . . . A1KB

...
. . .

...
AK1B . . . AKKB




=

K∑
k=1

tr (AkkB)

=

K∑
k=1

Akk tr(B)

=

(
K∑

k=1

Akk

)
tr(B)

= tr(A) tr(B)

Solution 8. 1. We first show that if A ⪰ 0 then u ∈ ker(A) ⇔ u⊤Au = 0. The left-to-right impli-
cation is trivial; for the other direction, let vi be a basis of eigenvectors for A with corresponding
eigenvalues λi ≥ 0. Then we may write u

∑
(u⊤vi)vi and:

u⊤Au =
∑
i

(u⊤vi)
2λi

so that if the right-hand-side is null, it need be that u ⊥ vi for all i such that λi > 0, proving
that u ∈ ker(A)

Then to show 1. we proceed as follows. Let 0 ̸= x ∈ ker(Q). Then:

0 ≤ x⊤(Q− P)x = −x⊤Px ≤ 0

so that it need be:
x⊤Px = 0

hence x ∈ ker(P) by the remark above. This shows ker(Q) ⊂ ker(P), and thus Range(P) ⊂
Range(Q).

An alternative solution is to use part 2. in this exercise, together with exercise 10. Or, to write
Q = P + (Q− P ), and use that Range(A+ B) ⊃ Range(A) when A,B are positive-semidefinite.

2. It suffices to show there exists c > 0 such that:

∀ v ∈ Range(P) : c · v⊤Qv ≥ v⊤Pv.

If finite, one obvious choice that would work is:

sup
v∈Range(P)

v⊤Pv

v⊤Qv
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which by the inclusion assumption we can upper bound by:

sup
v∈Range(Q)

v⊤Pv

v⊤Qv

which can be upper bounded by

0 < λmax(P)/λmin,+(Q) < ∞

where λmax(P) denotes the maximum eigenvalue of P and λmin,+(Q) denotes the smallest non
zero eigenvalue of Q.

Solution 9. One direction trivially follows from the spectral theorem. Let us show the other implica-
tion, and consider Q =

∑m
i=1 qiq

⊤
i for some vectors q1, . . . , qm. Since the sum of PSD matrices is PSD,

it suffices to show that the matrix q1q
⊤
1 is PSD. Clearly it is symmetric. Furthermore, for any vector

v:
v⊤(q1q

⊤
1 )v = (v⊤q1)

2 ≥ 0

proving its definiteness.

Solution 10. Let Q ∈ Rp×p be symmetric.
(1) ⇒ (2): If Qv = λv for some v ̸= 0, then

v⊤Qv = v⊤(λv) = λv⊤v ≥ 0.

Since v⊤v > 0, it follows that λ ≥ 0.
(2) ⇒ (1): Since Q is symmetric, it admits an orthonormal eigenbasis {vi} with eigenvalues λi ≥ 0.

Any x ∈ Rp can be written as x =
∑

i αivi, so

x⊤Qx =
∑
i

λiα
2
i ≥ 0.

Solution 11. The right-to-left implication is easy: indeed, if A,B are PSD, then Range(A) ⊂ Range(A+
B). So, ∀ i = 1, . . .m : vi ∈ Range(viv

⊤
i ) ⊂ Range(Q). We move to the other implication. Let x be

in the range of
(∑m

i=1 viv
⊤
i

)
, i.e.:

x =

(
m∑
i=1

viv
⊤
i

)
y

for some y. However, since each vi ∈ Range(Q), we have that vi = Qwi, so that we may write:

x =

(
m∑
i=1

Qwiw
⊤
i Q

)
y = Q

(
m∑
i=1

wiw
⊤
i Qy

)
= Qz

which shows x ∈ Range(Q).

Solution 12. Consider a bivariate Pareto density:

f(x, y) = c(x+ y − 1)−p−2, for x, y > 1, and p > 2.

1. We have that

1 =

∫ ∞

1

∫ ∞

1

c(x+ y − 1)−p−2dxdy =

∫ ∞

1

c

p+ 1
y−p−1dy =

c

p(p+ 1)
,

so c = p(p+ 1).
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2. By integration, we obtain

f(x) =

∫ ∞

1

f(x, y)dy = px−p−1,

for x > 1, and the same for f(y).

The calculation of the Ebbected values gives EX = EY =

∫ ∞

1

xpx−p−1dx =
p

p− 1
.

3. We first compute EXY :

EXY =

∫ ∞

1

∫ ∞

1

cxy(x+ y − 1)−p−2dxdy

=

∫ ∞

1

(
1

−p− 1
xy(x+ y − 1)−p−1

∣∣∣∞
1
)dy +

∫ ∞

1

∫ ∞

1

c
y

p+ 1
(x+ y − 1)−p−1dxdy

=

∫ ∞

1

(
c

p+ 1
y−pdy +

∫ ∞

1

c(
y

−p(p+ 1)
(x+ y − 1)−p

∣∣∣∞
1
)dy

=
p

p− 1
+ c

∫ ∞

1

y−p+1

p(p+ 1)
dy

=
p

p− 1
+

1

p− 2
=

p2 − p− 1

(p− 1)(p− 2)
.

We then obtain

Cov(X,Y ) = EXY − EXEY =
p2 − p− 1

(p− 1)(p− 2)
− p2

(p− 1)2
=

1

(p− 1)2(p− 2)
.

We now compute

EX2 =

∫ ∞

1

x2px−p−1dx =
p

p− 2
,

and finally

VarX = EX2 − EX2 =
p

(p− 1)2(p− 2)
.

We obtain the variance of Y by following the same steps: VarY = p
(p−1)2(p−2) . We find that

Σ =
1

(p− 1)2(p− 2)

(
p 1
1 p

)
.

4. The log-likelihood is:

L = n log p+ n log(p+ 1) +

n∑
i=1

(−p− 2) log(xi + yi − 1).

By derivation with respect to p we have

n

p
+

n

p+ 1
−

n∑
i=1

log(xi + yi − 1) = 0,

and by setting ᾱ =
1

n

n∑
i=1

log(xi + yi − 1) we have the equation

p2ᾱ+ p(ᾱ− 2)− 1 = 0.

The product of the roots of this equation −(ᾱ)−1 is negative. So we only consider the positive

root, p̂ =
1

ᾱ
− 1

2
+

√
1

ᾱ2
+

1

4
.
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Solution 13. 1. Let µ = E(X). Then:

E(Y ) = E(AX) = AE(X) = Aµ

and we get:
Cov(Y ) = E[(A(X − µ))(A(X − µ))⊤]ACov(X)A⊤ = AΣA⊤.

2. If Σ = E[XX⊤] then u⊤Σu = E[u⊤XX⊤u] = E[(X⊤u)⊤X⊤u] = E∥X⊤u∥2 ≥ 0. Fot the other
direction, it suffices to take Z to be a random vector with covariance the identity matrix, and
pick X =

√
ΣZ, where the square root exists because Σ is psd.

Solution 14.

E
[
X̄
]
= E

[
1

n

∑
i

Xi

]
=

1

n

∑
i

E [Xi] =
1

n

∑
i

µ = µ.

S =
1

n

∑
i

XiX
⊤
i − X̄X̄⊤

=
1

n

∑
i

(Xi − µ)(Xi − µ)⊤ − (X̄ − µ)(X̄ − µ)⊤

=

(
1

n
− 1

n2

)∑
i

(Xi − µ)(Xi − µ)⊤ − 1

n2

∑
i̸=j

(Xi − µ)(Xj − µ)⊤.

Since E
[
(Xi − µ)(Xj − µ)⊤

]
= 0 for i ̸= j, we have

E[S] =
n− 1

n
Σ.

Hence, S is a biased estimate of Σ. If we consider S̃ = n
n−1S then E[S̃] = Σ.

Solution 15. The density of
(
X⊤, Y ⊤)⊤ can be written in terms of µ = (µX , µY ) and the precision

matrix Σ−1 = Ψ =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
. We are interested in the density of X | Y = y which is given by

fX|Y=y(x) =
fX,Y (x, y)

fY (y)

Note that the denominator carries no information regarding the functional dependence on the variable
x. In the following we omit the terms which don’t depend on x for the sake of simplicity (the symbol
x∝ means ’proportional to’)

fX|Y=y(x) =
fX,Y (x, y)

fY (y)

x∝ exp

(
−1

2
(x− µX)

⊤
Ψ11 (x− µX)− (x− µX)

⊤
Ψ12 (y − µY )

)
x∝ exp

(
−1

2
x⊤Ψ11x+ x⊤ (Ψ11µX −Ψ12 (y − µY ))

)
,

We recognize the form of a multivariate Gaussian density. We deduce that X | Y = y is Gaussian,
so it is characterized by two parameters: a mean µ1|2 and its precision matrix Ψ1|2 which we need to
identify. In general, the density of a multivariate Gaussian with mean µ1|2 and its precision matrix
Ψ1|2 is proportional to

exp

(
−1

2

(
x− µ1|2

)⊤
Ψ1|2

(
x− µ1|2

)) x∝ exp

(
−1

2
x⊤Ψ1|2x+ x⊤Ψ1|2µ1|2

)

8



Multivariate Statistics – S25 Solutions Prof. Victor Panaretos

By identification, the precision matrix Ψ1|2 is Ψ11 and the mean is

µX −Ψ−1
11 Ψ12 (y − µY )

Solution 16. We set U = Y − α − βX. We will show that X and U are independent using the
characteristic function.

Φ(X⊤,U⊤)⊤

(
t1
t2

)
= E

[
exp

(
i
(
t1 t2

)(X
U

))]
=

∫ ∫
exp [it1x+ it2u] fX,U (x, u)dxdu

=

∫ ∫
exp [it1x+ it2u] fX,Y (x, u+ βx+ α)dxdu

=

∫ ∫
exp [it1x+ it2u])fY |X=x(u+ α+ βx)fX(x)dxdu

∝
∫ ∫

exp [it1x+ it2u]E
(
−1

2
u⊤Σ−1u

)
exp

(
−1

2
(x− µX)⊤Σ−1

X (x− µX)

)
dxdu

∝
∫

exp

[
it1x− 1

2
(x− µX)⊤Σ−1

X (x− µX)

]
dx

∫
exp

[
it2u− 1

2
u⊤Σ−1u

]
du

From line (2) to (3), we have considered the transformation(
X
U

)
=

(
Ip 0p×q

−β Iq

)(
X
Y

)
+

(
0p
−α

)
,

for which the determinant of the Jacobian is 1.
We then obtain

Φ(X⊤,U⊤)⊤

(
t1
t2

)
= ΦX(t1)ΦU (t2)

So U and X are independent and the variance of (X⊤, U⊤)⊤ is

Var

(
X
U

)
=

(
ΣX 0p×q

0q×p Σ

)
.

Now, we write (
X
Y

)
=

(
Ip 0p×q

β Iq

)(
X
U

)
+

(
0p
α

)
.

Hence

E

(
X
Y

)
=

(
µX

α+ βµX

)
and

Var

(
X
Y

)
=

(
ΣX ΣXβ⊤

βΣX Σ+ βΣXβ⊤

)

Solution 17. Solution in Python and R: see this GitHub link.

Solution 18. 1. For instance:

MZ1
(t) = E[et

⊤(X−Y )]

= E[et
⊤Xe−t⊤Y ]

= E[et
⊤X ]E[e−t⊤Y ] (since X and Y are independent)

= MX(t)MX(−t) (using the MGF of X and Y )

= exp
(
t⊤Σt

)
9
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which is a the MGF of N (m, 2Σ). Proceeding similarly for Z2 we see that its distribution is
N (0, 2Σ).

2. One possibility is to observe that:

MZ1+Z2
(t) = E[et

⊤(2X)]

= exp
(
2t⊤m+ 2t⊤Σt

)
= exp

(
t⊤Σt

)
· exp

(
2t⊤m+ t⊤Σt

)
= MZ1

(t)MZ2
(t)

yielding their independence.

An alternative solution not using the MGF is to note that(
Z1

Z2

)
=

(
1, −1
1, 1

)(
X
Y

)
is a jointly gaussian vector, and that Cov(Z1, Z2) = 0.

Solution 19. 1. Note that Z⊤Z =
∑k

i=1 Z
2
i , and the Zi are i.i.d. standard gaussians, so we may

deduce by classical univariate statistics that the sum of squares follows a chi-squared distribution
with k degrees of freedom.

2. Using independence of the components Zi and the MGF of the univariate chi-squared with 1

degree of freedom: MZ⊤Z(t) = M∑k
i=1 Z2

i
(t) =

∏k
i=1 MZ2

i
(t) =

(
(1− 2t)−1/2

)k
Solution 20. 1. Let Y = Σ−1/2X. Since Σ is invertible, Σ−1/2 exists, and Y follows a multivariate

normal distribution with mean 0 and covariance matrix Ip. Therefore, Y
2
i ∼ χ2

1 for i = 1, . . . , p, s
and the sum of independent chi-squared variables follows a chi-squared distribution with degrees
of freedom equal to the sum of the individual degrees of freedom.

2. Employing the spectral decomposition theorem, we may write H = UJU⊤ where J is a diagonal
matrix with only zeros and ones, with r non-zero entries. Then:

X⊤HX = (U⊤X)⊤J(U⊤X)

Note that Y = U⊤X follows the same law as X since U is orthogonal. Therefore:

X⊤HX = Y ⊤JY =
∑

i :Jii ̸=0

Y 2
i

and the conclusion is clear, noting that |i : Jii ̸= 0| = rank(H).

3. Denote the eigenvalue decomposition of Σ as Σ = UDU⊤, where D is a diagonal matrix with
the non-zero eigenvalues of Σ on the diagonal.

Consider the transformation Y = U⊤X. Then Y ∼ N(0, U⊤ΣU) = N(0, D). That is, Yi are
independent centered Gaussians with variance Di,i. Then:

X⊤Σ†X = Y ⊤D†Y =
∑

i : Dii ̸=0

D−1
ii Y 2

i

and the conclusion is clear,, noting that |i : Dii ̸= 0| = rank(Σ).

Solution 21. Solution in Python: see this GitHub link

Solution 22. Solution in Python: see this GitHub link
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Solution 23.(1 ⇒ 2) Let us write W = ξU where U = W/∥W∥ is a random unit vector and ξ = ∥W∥.
First note that the distribution of U need be rotationally invariant, and is thus necessarily the
uniform distribution over the unit sphere. Furthermore we may also show that ξ ⊥ U .

Heuristica idea. We present here an incomplete argument that however suffices for the porpuses
of this course. Let ϵ > 0 and u1, u2,∈ Sp−1 arbitrary. Then there exists an orthogonal matrix O
such that u2 = O⊤u1. Consequently, we may improperly but heuristically write:

P(ξ = ϵ | U = u1) =
P(W = ϵu1)

P(U = u1)

(by invariance under rotations) =
P(OW = ϵu1)

P(OU = u1)

=
P(W = ϵu2)

P(U = u2)

=P(ξ = ϵ | U = u2)

Note that this intuitive argument is not rigorous (we are considering events of probability 0).
However, it is simple to see that one could consider a generating sigma-algebra of events for
which this line of reasoning could be reproduced, at the cost of a more tedious writing (for the
angular part consider fixed-length arcs and for the radial part consider intervals).

Rigorous argument.

We want to show that ξ and U are independent, i.e., for any measurable sets A ⊆ R+ and
B ⊆ Sp−1,

P(ξ ∈ E , U ∈ U) = P(ξ ∈ E)P(U ∈ U).

for suitable measurable sets E ⊂ R+,U ⊂ [0, 2π).

P(ξ ∈ E | U ∈ U) = P(∥W∥ ∈ E , W/∥W∥ ∈ U)
P(U ∈ U)

(by invariance under rotations) =
P(∥OW∥ ∈ E , OW/∥OW∥ ∈ U)

P(OU ∈ U)

=
P(∥W∥ ∈ E , W/∥W∥ ∈ OU)

P(U ∈ OU)
= P(ξ ∈ E | U ∈ OU).

which proves that the law of η is constant under conditioning on U , and hence establishes their
independence.

(2 ⇒ 3) Representing v it in polar form v = ∥v∥u, where u is a unit vector in the direction of v. Then,
vTW = (∥v∥u)T (ξU) = ξ∥v∥uTU and it is easy to see that uTU has distribution of the marginals
Ui (by invariance of the uniform distribution on the sphere wrt the coordinate system). Thus:

vTW
d
= ξ∥v∥U1 = ∥v∥W1.

(3 ⇒ 1) First, recall that the distribution of all possible 1-d marginals uniquely characterises the joint
distribution of a random vector. That is, the distribution of X is uniquely determined by the
family of distributions v⊤X for all vectors v.

Next, for any orthogonal U and vector v, note that ∥(v⊤U)⊤∥ = ∥v∥. Then, observe that:

v⊤(UX) = (v⊤U)X
d
= ∥v∥X1

d
= v⊤X, ∀ v ∈ Rp

which directly implies that X
d
= UX.

11
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Solution 24. Let X be an elliptical random vector. That is, we may write X = µ + AU for some
spherical U.

1. Xj = e⊤j X = µj + (e⊤j A)U, concluding the proof.

2. BX+ b = (Bµ+ b) + BAU, concluding the proof.

Solution 25.

(AXB)ij = [A(XB)]ij =

n∑
l=1

Ail(XB)lj =

n∑
l=1

Ail

p∑
k=1

XlkBkj =

n∑
l=1

p∑
k=1

AilXlkBkj .

So, easy to see that each element is univariate normal. But we also require the rows of Y to be
independent and to have the same distribution. The heuristic idea is the following. Post-multiplication
of X involves adding weighted variables. Hence the rows of XB⊤ are independent. The transformed
objects are also independent unless the premultiplication by A introduces some interdependence, so
each row can be transformed only by scalar multiplication. To have that the distribution is the same
across rows, the scalar factor must be the same.

Concretely, we need each transformed row to have the same mean and covariance, and the cross-
covariance between different rows to be zero.

Let Y be the transformed data matrix. We denote its i-th row by Yi.

1. (same mean)

E[Yi] = Ai

µ⊤

...
µ⊤

B

=

Ai

µ1

...
µ1

 , · · · ,Ai

µp

...
µp


B

=
(
µ1(Ai1n), · · · , µp(Ai1n)

)
B

= (Ai1n)µ
⊤B

which shows the first part.

2. (same covariance) wlog assume X centered.

E[Y⊤
i Yi] = E[(AiXB)

⊤(AiXB)]

= B⊤E[(X⊤A⊤
i AiX)]B

Note that:

E[(X⊤A⊤
i AiX)kℓ] = E[(

∑
j

XjkAij)(
∑
j′

Aij′Xj′ℓ)]

= E[
∑
j,j′

XjkAijAij′Xj′ℓ]

= Σℓk

∑
j

A2
ij

so that:
E[Y⊤

i Yi] = (AiA
⊤
i )B

⊤ΣB

12
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which does not depend on i iff AiA
⊤
i does not depend on i, or B⊤ΣB = 0. Similarly:

E[Y⊤
i Yi] = (AiA

⊤
i′ )B

⊤ΣB

which is 0 iff distinct rows of A are orthogonal, or B⊤ΣB = 0.

Solution 26. Given that X is an n× p data matrix from a multivariate normal distribution N (µ,Σ),
and we define Y = AXB and Z = CXD, where A, B, C, and D are matrices of appropriate dimensions.

Using vectorization, vec(Y ) and vec(Z) can be written as (B⊤ ⊗ A)vec(X) and (D⊤ ⊗ C)vec(X),
respectively. Hence, the covariance between vec(Z) and vec(Y) is given by:

Cov(vec(Y), vec(Z)) = (B⊤ ⊗ A)Cov(vec(X))(D⊤ ⊗ C)⊤.

Given that Cov(vec(X)) = Σ⊗ I (where I is the identity matrix), the above expression becomes:

Cov(vec(Z), vec(Y)) = (B⊤ ⊗ A)(Σ⊗ I)(D⊤ ⊗ C)⊤

= ((B⊤Σ)⊗ A)(D⊗ C⊤)

= B⊤ΣD⊗ AC⊤.

Thus, the elements of vec(Y) and vec(Z) are uncorrelated if and only if the above matrix is the
zero matrix, i.e., if and only if we have B⊤ΣD = 0 or AC⊤ = 0.

Solution 27. 1.

X⊤X =
[
X⊤

1 . . . X⊤
n

] X1

...
Xn

 =

n∑
i=1

X⊤
i Xi

Defining Wi = X⊤
i Xi ∼ Wp(Σ, 1) and since the rows are independent, the matrices Wi are

independent this completes the claim.

2. E[W] = E[X⊤X]. =
∑n

i=1 E[X⊤
i Xi]. = nΣ.

3. When n < p, the Wishart matrix W =
∑n

i=1 XiX
⊤
i is the sum of at most n rank-one matrices.

Since the rank of each XiX
⊤
i is at most 1, the total rank of W is at most n. Therefore, W is

almost surely singular because its rank never reaches the full dimension p. If it is almost surely
singular, then it is constrained to a lower-dimensional subset of the space of symmetric p × p
matrices. This means it cannot have a density, since it is supported on a Lebesgue-zero measure
set.

4. Write W = X⊤X where X is an n × p matrix with i.i.d. rows Xi ∼ N (0,Σ), and for any
θ /∈ ker(Σ), define Y = Xθ., which satisfies Yi ∼ N (0, θ⊤Σθ).. Then,

θ⊤Wθ = θ⊤X⊤Xθ = Y ⊤Y =

n∑
i=1

Y 2
i .

Since Yi ∼ N (0, θ⊤Σθ), normalizing by θ⊤Σθ gives:

θ⊤Wθ

θ⊤Σθ
=

n∑
i=1

(
Yi√
θ⊤Σθ

)2

.

Since each term follows N (0, 1), we conclude:

θ⊤Wθ

θ⊤Σθ
∼ χ2

n.
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Solution 28. 1. Note that if W ∼ Wp(Σ, n) then

Σ−1/2⊤WΣ−1/2 ∼ Wp (I, n) and Σ−1/2(X − µ) ∼ N(I, 0).

By definition of the Hotelling distribution we have that:

n(Σ−1/2(X − µ))⊤((Σ−1/2WΣ−1/2)−1(Σ−1/2(X − µ)) ∼ T 2(p, n)

but the above expression is simply

n(X − µ)⊤W−1(X − µ).

2. Similar, using the Gaussian Sampling Theorem on slide 111.

Solution 29. Consider the random Gaussian vectors X,Y with same marginals, but different covari-
ance structure. Then the sequence Z2n := X and Z2n+1 = Y establishes a counterexample.

Solution 30. 1. Since Σ is diagonal, σik = 0 when i ̸= k, thus:

cov{wij , wkl} = σiiσjj(δikδjl + δilδjk)

hence: cov{wij , wij} = cov{wij , wji} = σiiσjj and otherwise 0 (recall W is symmetric!).

2. Let us first consider the diagonal case. Then, the covariance of the vectorisation of the lower-
diagonal part of W has diagonal covariance, with strictly positive elements on the diagonal, which
is clearly positive definite. For the general case, it suffices to observe that the reduction can be
obtained by the svd Σ = UTΛU and observing that UWU⊤ is Wishart with diagonal scale Λ.

Solution 31. Solution in Python: see this GitHub link

Solution 32. Let X be the MLE of µ. Note it is clearly unbiased for µ. Let T be any other unbiased
estimator of µ. We want to show that:

v⊤Cov(X)v ≤ v⊤Cov(T )v ∀ v ∈ Rp.

The key is to observe that v⊤X is the UMVUE for v⊤µ, by known 1-d results. Therefore, observing
that v⊤T is unbiased for v⊤µ by linearity, we have that:

Cov(v⊤X) ≤ Cov(v⊤T )

or equivalently
v⊤E[(X − µ)(X − µ)⊤]v ≤ v⊤E[(T − µ)(T − µ)⊤]v ∀ v ∈ Rp.

which is precisely the claim.

Solution 33. Consider statistical model parameterized by θ, and let θ̂ be the MLE of θ:

θ̂ = argmax
θ

L(θ|x)

Define for g(θ) the induced likelihood function L∗, given by

L∗(η | x) = sup
{θ:g(θ)=η}

L(θ | x).

Let η̂ denote the value that maximizes L∗(η | x), which is the MLE of η = g(θ). We must show that

L∗(η̂ | x) = L∗[g(θ̂) | x]. Note that:

L∗(η̂ | x) = sup
η

sup
{θ:g(θ)=η}

L(θ | x) = sup
θ

L(θ | x) = L(θ̂ | x),
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where the second equality follows because the iterated maximization is equal to the unconditional
maximization over θ, which is attained at θ̂. Furthermore

L(θ̂ | x) = sup
{θ:g(θ)=g(θ̂)}

L(θ | x) = L∗[g(θ̂) | x].

Hence, the string of equalities shows that L∗(η̂ | x) = L∗(g(θ̂) | x) and that g(θ̂) is the MLE of g(θ).

Concerning uniqueness, note that if η̂, η̂′ both maximise the transformed likelihood, then necessarily
g−1(η̂) = g−1(η̂′) = θ̂ so that, by injectivity of the inverse η̂ = η̂′.

Solution 34. Solution in Python: see this GitHub link

Solution 35. Solution in Python: see this GitHub link

Solution 36. 1. Let us first consider the case Σ = I. Recall that the determinant corresponds
to product of the eigenvalues. Then, note that the matrix I + vv⊤ has v as eigenvector, with
corresponding eigenvalue 1+ v⊤v. Being a positive matrix, we may complete to find a basis
of orthogonal eigenvectors, all of which will be orthogonal to v, and thus with eigenvalue 1.
Therefore:

|I + vv⊤| = 1 + v⊤v

The general case then follows by using the multiplicativity of the determinant, and taking u =
Σ1/2v:

|Σ+ uu⊤| = |Σ1/2(I + vv⊤)Σ1/2| = |Σ||I + vv⊤| = |Σ||1 + v⊤v| = |Σ||1 + u⊤Σ−1u|

2. First note that when Σ = I we may expand by power series:

(I + vv⊤)−1 = I +
∑
j≥1

(−vv⊤)j = I − v
∑
j≥0

(−v⊤v)jv⊤ = I − 1

1 + v⊤v
vv⊤

so that the general case is follows by taking u = Σ1/2v:

(Σ + uu⊤)−1 =Σ−1/2(I + vv⊤)−1Σ−1/2

=Σ−1/2(I − 1

1 + v⊤v
vv⊤)Σ−1/2

=Σ−1 − 1

1 + u⊤Σ−1u
Σ−1uu⊤Σ−1.

Solution 37. Let Pn denote the projection onto span (1n, (Z1, . . . , Zn)), and write Hn = I − Pn.
Consider its SVD decomposition Hn = UΩU⊤. Note that ϵ̂X = Hn(X1, . . . , Xn) and similarly for Y .
Note that (W,V ) = ΩU⊤X,ΩU⊤Y ) satisfy W,V ∼ N (0, In−2,n−2) and are independent under H0 and
thus the claim follows as in the proof in slide 160-161.

Solution 38. Let X1, . . . , Xn be a random sample from N (µ,Σp×p) with Σ ≻ 0. The restricted and

unrestricted MLEs are, respectively, (X̄, λ̂I) and (X̄, Σ̂), where:

λ̂ = tr(Σ̂)/p.

This is easy to see, using equivariance of the MLE. Thus:

ℓ∗0 =ℓ
(
X̄, λ̂I

)
= −n

2
log
∣∣∣2πλ̂I∣∣∣− n

2
tr
(
λ̂−1Σ̂

)
and:

ℓ∗ = ℓ(X̄, Σ̂) =− n

2
log |2πΣ̂| − np

2

15

https://github.com/leonardoVsantoro/Multivariate-Statistics-2024/tree/main/week8
https://github.com/leonardoVsantoro/Multivariate-Statistics-2024/tree/main/week8


Multivariate Statistics – S25 Solutions Prof. Victor Panaretos

which yields:

2 log Λ̂ =n
(
log
∣∣∣2πλ̂I∣∣∣+ tr(λ̂−1Σ̂)− log |2πΣ̂| − p

)
=n
(
− log |λ̂−1Σ̂|+ tr(λ̂−1Σ̂)− p

)
= log

 (tr(Σ̂))
p

|Σ̂|1/p

pn

Solution 39. Solution in Python: see this GitHub link

Solution 40. We decompose X using SVD, i.e.

X = UΓVT

and find that we can write the covariance matrix as

C =
1

n
XXT =

1

n
UΓ2UT .

In this case U is a n×m matrix. Assuming that the singular values are ordered descending order
we know that, if n < m, the first n columns in U correspond to the sorted eigenvalues of C and if
m ≥ n, the first m corresponds to the sorted non-zero eigenvalues of C. The transformed data can
thus be written as

Y = ŨTX = ŨTUΓVT ,

where ŨTU is a simple n × m matrix which is one on the diagonal and zero everywhere else. To
conclude, we can write the transformed data in terms of the SVD decomposition of X.

Solution 41. Solution in Python: see this GitHub link

Solution 42.

∥Σ̂− Σ∥2 = ∥Σ∥2 + ∥Σ̂∥2 − 2tr(Σ̂Σ)

(by the trace inquality) ≥
∑

λ2
i +

∑
λ̂2
i − 2

∑
λiλ̂i

=
∑

(λi − λ̂i)
2

and since:

∑
(λi − λi)

2 = (λj − λ̂j)
2

1 +
∑
i̸=j

(λi − λ̂i)
2

(λj − λ̂j)2

 ≥ (λj − λ̂j)
2, ∀ j = 1, . . . , p

we find that:
|λj − λ̂j | ≤ ∥Σ̂− Σ∥, ∀ j = 1, . . . , p.

Solution 43. An equivalent formulation of the statement in the exercise is that:

p∑
j=1

∥Xj −HkXj∥2 ≤
p∑

j=1

∥Xj −QXj∥2

for any n×n projection operator Q or rank at most k, where Hk =
∑k

i=1 ûiû
⊤
i . However, this is a direct

consequence of the Optimal Linear Dimension Reduction Theorem (slide 174), taking expectations with
respect to the empirical (discrete) measure Pn =

∑p
i=1 δXi

.
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Solution 44. Note that nΣ̂ ∼ Wishart(Σ, n− 1), and so we have the following identity in law:

nΣ̂
d
=

n−1∑
i=1

Wi, for Wi
IID∼ Wishart(Σ, 1)

By the content in slide 129, we thus know that Therefore:

Cov(
√
n(Σ̂− Σ))(ij)(kl) =

n− 1

n
(ΣikΣjl +ΣilΣjk).

In particular, this gives us the covariance – taking the limit – of Z:

Cov(Z)(ij)(kl) = (ΣikΣjl +ΣilΣjk).

which may be succintly written as:

Cov(vec(Z)) = (Σ⊗ Σ)(I +K)

where I is the identity and K the commutator, i.e. K vec(A) = vec(A⊤).
Now note that:

E [⟨Zui, ui⟩ ⟨Zuj , uj⟩] = E
[〈
Z, uiu

⊤
i

〉 〈
Z, uju

⊤
j

〉]
= ⟨Cov(Z)uiu

⊤
i , uju

⊤
j ⟩

= ⟨Cov(vec(Z))vec(uiu
⊤
i ), vec(uju

⊤
j )⟩

= ⟨(Σ⊗ Σ)(I +K)vec(uiu
⊤
i ), vec(uju

⊤
j )⟩

= 2⟨(Σ⊗ Σ)vec(uiu
⊤
i ), vec(uju

⊤
j )⟩

(A⊗B) vec (V ) = vec(BV A⊤) = 2⟨vec(Σuiu
⊤
i Σ), vec(uju

⊤
j )⟩

= 2λi⟨vec(uiu
⊤
i Σ), vec(uju

⊤
j )⟩

= 2λitr(uiu
⊤
i Σuju

⊤
j )

= 2λiλjtr(uiu
⊤
i uju

⊤
j )

= 2λiλjδijtr(uiu
⊤
j )

= 2λiλjδij

Be mindful that the inner product in the first two equations is not the same (we go from vectors
to matrices!)

Solution 45. Solution in Python: see this GitHub link

Solution 46. Recall that Cov(Qn)(ij)(kℓ) = Cov(
√
n(U⊤Σ̂U− Λ))(ij)(kℓ) =

n
n−1λiλjδ(ij)(kℓ) thus:

Cov(Q)(ij)(kℓ) = λiλj(δ(ij)(kℓ) + δ(ij)(ℓk)).

Furthermore, note that we established in the proof that

Wij(λj − λi)
d
= Qij when i ̸= j, and 0 otherwise.

Hence:

Cov(WiWi)kℓ = E[WkiWℓi] = E[QkiQℓi]
1

(λi − λk)(λi − λℓ)
=

Cov(Q)(ki)(ℓi)
(λi − λk)(λi − λℓ)

or equivalently:

Cov(WiWi) =
∑
k ̸=i

λkλi

(λi − λk)2
eke

⊤
k
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Proceeding similarly:

Cov(WiWj)kℓ = E[WkiWℓj ] = E[QkiQℓj ]
1

(λi − λk)(λj − λℓ)

=
Cov(Q)(ki)(ℓj)

(λi − λk)(λℓ − λj)

= −λiλjδiℓδkj
(λi − λj)2

or equivalently:

Cov(WiWj) = −λiλjδiℓδkj
(λi − λj)2

eje
⊤
i

Solution 47. Let X1, . . . , Xn be IID copies of the random vector X ∈ Rp, with n ≥ p. Suppose that
Σ̂n is not full rank. Then, there exists v ∈ Rp such that :

0 = v⊤Σ̂nv =
1

n− 1

n∑
j=1

v⊤XiX
⊤
i v =

n∑
j=1

⟨v,Xi⟩2

which yields that v is orthogonal to allXi. But this occurs with probability zero, since P(span(X1, . . . , Xp) =
Rp) = 1. Indeed, the probability of the complementary is upper bounded by that of drawing a vector
in a p−1 dimensional subspace, which is 0 for all absolutely continuous measures. To conclude, observe
that finite intersection of almost sure events is almost sure.

Solution 48. Suppose that we have a statistical model Mk of some data, with k the number of

estimated parameters in the model. Let ˆL(Mk) be the maximized value of the likelihood function for
the model. Then the AIC value of the model is

AIC(Mk) = 2k − 2 ln( ˆL(Mk)

Given a set of candidate models for the data, the preferred model is the one with the minimum AIC
value. Thus, AIC rewards goodness of fit (as assessed by the likelihood function), but it also includes
a penalty that is an increasing function of the number of estimated parameter, which discourages
overfitting.

In our setting, the model Mk assumes that the covariance function corresponding to the data
generating measure has rank k. Assumning gaussianity, up to constants idependent of k we have that:

2 ln( ˆL(Mk) ≃ −n

p∑
j=k+1

log λ̂j + nk

where λ̂1, . . . , λ̂p are the eigenvalues of the empirical covariance σ̂, and n the number of observed
samples. Inclusion of an additional principal component, i.e. increasing the number of parameters
of the model, is justified if the criterion value decreases. That is the model Mk+1 is preferred to the
model Mk if AIC(Mk+1) < AIC(Mk). That is, if:

2(k + 1) + n

p∑
j=k+2

log λ̂j − n(k + 1) < 2k + n

p∑
j=k+1

log λ̂j − nk.

which, more explicitly, corresponds to:

λk+1 > e−
n−2
n .

Solution 49.
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Solution 50. To show that the matrix functions Σ 7→ Σ2, Σ 7→ Σ1/2, and Σ 7→ Σ−1 are continuously
differentiable (C1) at Σ ≻ 0 we will use the fact that these functions are smooth functions of the
eigenvalues of the matrix.

The argument is very similar for all three cases. Wlog, consider the function Σ 7→ Σ−1. For
Σ = UΛUT , the inverse is given by:

Σ−1 = UΛ−1UT ,

where Λ−1 is the diagonal matrix with entries λ−1
i . The function x 7→ x−1 is smooth and continuously

differentiable on R>0. This, with the smoothness of the ”svd mapping” Σ 7→ UΛUT with respect to Σ
ensures that Σ 7→ Σ−1 is C1.

Solution 51. Let ρ := corr(ξk, ξk+1), which is independent of k by stationarity. Assume ρ /∈ {−1, 1},
otherwise the claim is trivial. Then, by the regression representation, for all k there exists a centered
random variable ϵk, independent of ξk with variance σ2 > 0 given by:

ϵk := ξk+1 − ρξk.

Note that ϵk need be Gaussian, since Gaussians are closed under linear modifications, and that the
sequence of ϵk need be iid by stationarity. By assumption, all ξk are centered and Gaussian, say
N (0, ν2). By stationarity:

ξ1
d
= ξ2

d
= ρξ1 + ϵk

so that we must have ν2 = ρ2ν2 + σ2; solving for ν gives:

ν2 = σ2/(1− ρ2).

Solution 52.

l(ρ, σ) = log fξi +

p−1∑
j=1

log fξj+1|ξj (ξj+1; ρ, σ)

=− 1

2
log 2π

σ2

1− ρ2
− ξ1

2 σ2

1−ρ2

− (p− 1)
1

2
log 2πσ2 −

p−1∑
j=1

ξj+1 − ξj
2σ2

.

Solution 53. Solution in Python: see this GitHub link.
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https://github.com/leonardoVsantoro/Multivariate-Statistics-2024/tree/main/week12

