
Multivariate Statistics – Spring 2025

Exercises

Prof. Victor Panaretos
TA: Leonardo Santoro leonardo.santoro@epfl.ch

Exercise 1. Recall that Q ∈ Rp×p is a projection matrix if it is symmetric (Q = Q⊤) and idempotent
(Q = Q2). Show that:

1. The only possible eigenvalues of a projection are 0 and 1.

2. Every vector v may be decomposed uniquely as v = u+w where u ∈ Range(Q) and w ∈ ker(Q).

3. If P and Q are projections onto the same subspace V , then P = Q.

4. the projection operator Qv onto the span of a vector v ∈ Rp is Qv = vv⊤/∥v∥2

Exercise 2. Suppose A = UΛV⊤ is the SVD of A.

1. Assuming A is invertible, find the SVD of its inverse.

2. If A is square, show that | det(A)| is the product of the singular values.

3. (optional) If A is positive definite, show that U = V.

Exercise 3. (⋆) Recall that a matrix Ω ∈ Rp×p is said to be positive definite, in which case we write
Ω ≻ 0, if it is symmetric and v⊤Ωv > 0 for all v ∈ Rp. For matrices P,Q, we say that P ≻ Q if
P− Q ≻ 0 . Show that tr(P) > tr(Q). [Hint: use the SVD of P− Q, linearity and the cyclic property
of the trace.]

Exercise 4. Let P denote an arbitrary n× p matrix.

1. Show that A = P⊤P is symmetric and nonnegative definite.

2. Show that every eigenvalue of A must be nonnegative

Denote these eigenvalues by λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. with corresponding eigenvectors u1, u2, . . . , up.

3. Show that the matrix
∑r

i=1 (1/λi)uiu
T
i is a generalized inverse of P⊤P, where r is the number

of non-zero eigenvalues of A.

Exercise 5. The Orthogonal Procrustes problem:

min
X : XX⊤=I

∥AX− B∥F ,

can geometrically be seen as seeking a transformation of points (contained in A) to other points
(contained in B ) that involves only rotation. Show that the solution of the Procrustes problem above
can be found via the SVD of the matrix A⊤B.

Exercise 6. [Implementation] The Power Iteration method is an iterative algorithm used to find
the dominant eigenvector and eigenvalue of a square matrix A. It consists in iteratively applying the
matrix to a random vector and normalizing the result to converge towards the dominant eigenvector.
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To implement the Power Iteration algorithm, start with a random vector v0 of appropriate size and
iterate the following until convergence:

vi+1 =
Avi
∥Avi∥

At convergence, after say N iterations, estimate the dominant eigenvalue λ1 by λ̂1 =
v⊤NAvN
v⊤NvN

.

Test your implementation with a few sample matrices of different sizes. Compare the computed
dominant eigenvector and eigenvalue with the ones obtained using the built-in function for eigenvalue
decomposition. Discuss the convergence behavior and accuracy of your implementation. In particular,
verify that the speed of convergence is given by the ratio λ2/λ1.

Exercise 7. Recall the definition of the Kroneker matrix product:

P⊗ Q =

 p11Q . . . p1pQ
...

. . .
...

pn1Q . . . pnpQ

 .

Show that:

1. the Kroneker product is bilinear and associative, but not commutative

2. (P⊗ Q)(X⊗ Y) = (PX)⊗ (QY).

3. (P⊗ Q)−1 = (P−1 ⊗ Q−1).

4. (optional) vec(PXQ) = (Q⊤ ⊗ P)vec(X).

If we further assume that P,Q are square matrices, then also show that:

5. tr(P⊗ Q) = tr(P)tr(Q)

Exercise 8. (⋆) Let P,Q ∈ Rp×p be symmetric and non-negative definite matrices, i.e. P,Q ⪰ 0. Show
that:

1. Q− P ⪰ 0 ⇒ Range(P) ⊂ Range(Q)

2. Range(P) ⊂ Range(Q) ⇒ cQ− P ⪰ 0 for some c > 0.

Exercise 9. Let Q ∈ Rp×p. Show that Q ⪰ 0 if and only if there exist vectors q1, . . . , qm ∈ Rp with
m ≤ p such that Q =

∑m
i=1 qiq

⊤
i .

Exercise 10. Let Q ∈ Rp×p be symmetric. Show that the following are equivalent:

1. x⊤Qx ≥ 0, ∀ x ∈ Rp

2. if Qv = λv for some v ∈ Rp and λ ∈ R, then λ ≥ 0.

Exercise 11. (⋆) Let v1, . . . , vm ∈ Rp and Q ∈ Rp×p. Show that:

v1, ..., vm ∈ Range(Q) ⇔ Range

(
m∑
i=1

viv
⊤
i

)
⊂ Range(Q)

Exercise 12. Consider a bivariate Pareto density:

f(x, y) = c(x+ y − 1)−p−2, for x, y > 1, and p > 2.

1. Show that c is equal to p(p+ 1).

2. Determine the marginal laws of this density and compute EX.
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3. Calculate the variance-covariance matrix Σ.

4. Consider a sample (X1, Y1), . . . , (Xn, Yn) of independent and identically distributed random vec-
tors following the Pareto density with parameters p. Estimate the parameter p using the maxi-
mum likelihood method.

Exercise 13. 1. Let X be a random vector in Rp such that E∥X∥2 < ∞ and with covariance Σ.
Given A ∈ Rp×d a real matrix, show that the covariance matrix of AX is AΣA⊤ .

2. Let Σ be a real symmetric matrix. Then Σ is non-negative definite if and only if Σ is the
covariance matrix of some random variable X.

Exercise 14. Suppose that X1, . . . , Xn are independent and identically distributed p-dimensional
random vectors following a multivariate Gaussian distribution N (µ,Σ). Consider the sample mean

X̄ =
1

n

n∑
i=1

Xi

and the sample covariance matrix

S =
1

n

n∑
i=1

(
Xi − X̄

) (
Xi − X̄

)⊤
1. Show that E

[
X̄
]
= µ.

2. Show that E [S] = n−1
n Σ.

Exercise 15. Let (X⊤, Y ⊤)⊤ be a jointly Gaussian, comprised of concatenated random vectors in Rn

and Rm, respectively, with mean and covariance

µ =

(
µX

µY

)
Σ =

(
ΣX ΣXY

Σ⊤
XY ΣY

)
.

Derive the conditional density X | Y = y.
Hint : It might be easier to consider the precision matrix when writing the Gaussian densities above.

Exercise 16. We consider X ∼ Np(µX ,ΣX) and Y | X = x ∼ Nq(α + βx,Σ) where µ ∈ Rp,
ΣX ∈ Rp×p, α ∈ Rq, β ∈ Rq×p and Σ ∈ Rq×q.

1. Prove that (X⊤, Y ⊤)⊤ ∼ N , compute its mean and show that

Var
(
X⊤, Y ⊤)⊤ =

(
ΣX ΣXβ⊤

βΣX Σ+ βΣXβ⊤

)
Hint : Start by setting U = Y − α− βX and showing that X and U are independent, then find
a matrix A and a vector c such that (X⊤, Y ⊤)⊤ = A(X⊤, U⊤)⊤ + c.

2. Show that the conditional distribution of X | Y = y is Gaussian with

E[X | Y = y] = µX + βΣX(Σ + βΣXβ⊤)−1(y − α− µXβ),

Var[X | Y = y] = ΣX − ΣXβ⊤(Σ + βΣXβ⊤)−1βΣX ,

assuming that the matrices Σ,ΣX , (Σ + βΣXβ⊤) are invertible.

Exercise 17. [Implementation] Generate synthetic 2D dataset drawing 100 samples from a Gaussian
distribution with mean zero and covariance: [

1 ρ
ρ 1

]
for ρ zero, positive and negative. Visualise scatterplots of your data. Verify by means of histogram
plotting that any 1-d projection of your data follows approximately a Gaussian distribution. You may
also perform a statistical tests verifying the normality of the projected data, as the Shapiro-Wilk test.
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Exercise 18. Let X,Y be two identical, independent Gaussian random vectors in Rp with mean m
and covariance Σ.

1. Find the distribution of Z1 = X − Y and Z2 = X + Y .

2. Show that Z1 and Z2 are independent.

[Hint: use the MGF ]

Exercise 19. Let Z ∼ N (0, Ik×k).

1. Show that E
[
Z⊤Z

]
= k and var

{
Z⊤Z

}
= 2k.

2. Show that the moment generating function of Z⊤Z is given by

MZ⊤Z(t) = (1− 2t)−k/2, t <
1

2
.

Exercise 20. 1. X ∼ N (0,Σp×p) and Σ invertible, then X⊤Σ−1X ∼ χ2
p.

2. X ∼ N (0, Ip) and H a projection, then X⊤HX ∼ χ2
rank(H).

3. X ∼ N (0,Σp×p), then X⊤Σ†X ∼ χ2
rank(Σ).

Exercise 21. [Implementation] Generate N iid copies X1, . . . , Xn of Gaussian random variables in
Rp with mean µx and (invertible) covariance matrix ΣX . Let A ∈ Rp×p and b ∈ Rp. Then generate a
sequence of N random variables in Rp by: Yi = AXi + b+Zi for i = 1, . . . , N , where Zi ∼ N (0, ϵ · Id)
is i.i.d. noise for some small ϵ > 0. Find the best linear predictor of Y given each X, and validate
your results. How does the best linear predictor compare to the latent true linear model?

Exercise 22. [Implementation] The Gaussian concentration of measure phenomenon roughly states
that in “high dimensions” ( p large), the realisations of Z ∼ N (0, Ip×p) highly concentrate near the
surface of the sphere of radius

√
p. Hence, for p large, ∥(√p)−1Z∥ should concentrate on the value 1.

In this exercise we will visualise this asymptotic fact.
Generate 1000 Gaussian random variables X1, . . . , X1000 ∈ Rp for p = 5, 20, 50, 100, 500, 1000, with

mean 0 and covariance the identity matrix. In each case, find the scaled mean of their norm:

(
√
d)−1 1

1000

1000∑
i=1

∥Xi∥.

Replicate this experiment 100 times, and plot the histograms of the frequencies (or the kde) obtained
for each dimension.

Exercise 23. (⋆) Let W be a random vector. Show that the following are equivalent:

1. UW
d
= W for all orthogonal U

2. W = ξU where U ∼ Unif{x : ∥x∥ = 1}, ξ > 0 is a random scalar and U ⊥ ξ

3. v⊤W
d
= ∥v∥W1, for all v (where W = (W1, . . . ,Wp)

⊤
)

Exercise 24. Recall that a random vectorX is called elliptical with location µ and dispersion AA⊤ = Σ

if it is representable as X
d
= µ+ AW, where W is spherical. Show that elliptical distributions vectors

are closed under marginalisation and affine transformations.

Exercise 25. If X is a Gaussian n × p data matrix from N(µ,Σ), then Am×nXBp×q is an m × q
Gaussian data matrix if and only if the following two conditions hold true:

1. A1n = α1m for some α ∈ R OR B⊤µ = 0.
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2. AA⊤ = βIm×m for some β ∈ R OR B⊤ΣB = 0.

Clearly, when AXB is a Gaussian data matrix, it is from a N
(
αB⊤µ, βB⊤ΣB

)
.

Exercise 26. Let X be a Gaussian data matrix from N(µ,Σ). Then

AXB ⊥ CXD ⇐⇒ AC⊤ = 0 or B⊤ΣB = 0

Hint : Consider vec(X) the np vector obtained by stacking the columns of X on top of one another:

vec(X) ∼ N(µ,Σ⊗ I) (1)

where ⊗ denotes the Kronecker multiplication, and use the fact that

vec(AXB) = (B⊤ ⊗ A)vec(X). (2)

Exercise 27. Show the following:

1. W ∼ Wp (Σp×p, n) ⇐⇒ W
d
=
∑n

i=1 Wi, Wi
iid∼ Wp (Σp×p, 1) .

2. W ∼ Wp (Σp×p, n) =⇒ E[W] = nΣ.

3. The lower triangular part of W ∼ Wp (Σp×p, n) has density if and only if n ≥ p.

4. W ∼ Wp (Σp×p, n) =⇒ θ⊤Wθ/θ⊤Σθ ∼ χ2
n, ∀θ /∈ ker(Σ)

Exercise 28. 1. If X ∼ N (µ,Σp×p) independently of W ∼ Wp(Σ, n) with Σ non-singular and
n ≥ p, then

n(X − µ)⊤W−1(X − µ)⊤ ∼ T 2(p, n).

2. Let X̄ and Σ̂ be the sample mean and covariance of a N(µ,Σ) iid sample. If n ≥ p and Σ is
non-singular, then

(n− 1)(X̄ − µ)⊤Σ̂−1(X̄ − µ) ∼ T 2(p, n− 1)

Exercise 29. Show by counterexample that separate weak convergence of each coordinate does not
imply weak convergence of the random vector.

Exercise 30. Let W ∼ W (Σ, 1). Recall that cov {wij , wkl} = σikσjl + σilσjk. Show that:

1. Σ diagonal =⇒ Wishart entries uncorrelated w/ variances σiiσjj .

2. Σ ≻ 0 =⇒ cov
[
{wij}i≤j

]
≻ 0 (lower triangular part of W ).

Exercise 31. [Implementation] In this exercise we use hotellisation to construct confidence intervals

for a multivariate Gaussian. Let X1, . . . , Xn
IID∼ N (µ,Σ) in Rd. We know that n(X − µ)Σ̂−1(X − µ)

is distributed as Hotelling’s T 2 with parameters d, n − 1. An ellipsoidal confidence set with coverage
probability 1− α consists of:

{m : n(X −m)⊤Σ̂−1(X −m) < T 2
d,n−1(1− α)}

Generate and visualise the confidence ellipsoids for the mean on the basis of n = 100 Gaussian samples
in R2, i.e. d = 2. Note: this may require a little bit of thinking...

Exercise 32. If X1, . . . , Xn
IID∼ N(µ,Σ) with n > p and Σ ≻ 0, then the unique MLE of µ is X̄.

Prove it is also the minimum variance unbiased estimators of µ. [Hint: use projections.]

Exercise 33. Show that the MLE is parametrisation equivariant. That is, for any transformation g,
g(θ̂) is MLE of g(θ) where θ̂ is MLE of θ. Furthermore, show that if g is 1-1, then uniqueness is also
inherited when present.
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Exercise 34. [Implementation] Consider testing for the difference in the mean of two gaussian
samples with known, identical covariance matrix. Using Monte Carlo, verify the confidence level of
the hypothesis test constructed.

Exercise 35. [Implementation] Given a set of N bivariate sample pairs (Xi, Yi) , i = 1, . . . , N , the
sample correlation coefficient r is given by

r =

∑N
i=1

(
Xi − X̄

) (
Yi − Ȳ

)√∑N
i=1

(
Xi − X̄

)2√∑N
i=1

(
Yi − Ȳ

)2 .
Fisher’s z-transformation of r is defined as z = artanh(r). If (X,Y ) has a bivariate normal distribu-
tion with correlation ρ and the pairs (Xi, Yi) are independent and identically distributed, then z is

approximately normally distributed with mean 1
2 ln

(
1+ρ
1−ρ

)
, and standard deviation 1√

N−3
. Use this

transformation, and its inverse r = tanh(z) to construct a large-sample confidence interval for r.

Exercise 36. (⋆) Establish the matrix determinant and Sherman-Morrison formulas:

1. If Σ ≻ 0, then
∣∣Σ+ uu⊤

∣∣ = |Σ|
(
1 + u⊤Σ−1u

)
2. If Σ ≻ 0, then

(
Σ+ uu⊤)−1

= Σ−1 − 1
1+u⊤Σ−1u

Σ−1uu⊤Σ−1

Exercise 37. In the context of partial correlation tests (slides 162-163) verify that ρϵX ,ϵY is the sample
correlation between the residuals obtained when regressing X on Z and those when regressing Y on
Z. Use this to establish the distribution under the null.

Exercise 38. Let X1, . . . , Xn be a random sample from N (µ,Σp×p) with Σ ≻ 0 and n > p. Consider
the hypothesis pair, {

H0 : Σ = λI for some λ > 0,

H1 : Σ ̸= λI for all λ > 0.

Show that the LRT rejects H0 for large values of

(γ(Σ̂)/α(Σ̂))n

α(Σ̂) and γ(Σ̂) are the arithmetic and geometric means of the eigenvalues of Σ̂.

Exercise 39. [Implementation+ theory ]GenerateN IID gaussian vectors in Rp, i.e.X1, . . . , XN
IID∼

N (0,Σ) and express them in the coordinate system given by the (orthonormal) eigenvectors of Σ. Ver-
ify that the variance explained by each coordinate is decreasing. Explain this by the Karhunen-Loeve
theorem and by the Optimal Linear Dimension Reduction Theorem.

Exercise 40. Show how to perform PCA (i.e. compute the principal component scores) of a centered
sample (X1, . . . , Xn) in terms of the SVD of the corresponding data matrix.

Exercise 41. [Implementation] Choose one of the following two datasets and analyses.

1. We consider the Wisconsin breast cancer dataset, which consists of 596 samples and 30 fea-
tures. The features are computed from a digitized image of a fine needle aspirate (FNA) of a
breast mass. They describe characteristics of the cell nuclei present in the image and are linked
with a label, malignant or benign. To import the dataset, import the sklearn module, and
run sklearn.datasets.load breast cancer(). Reduce the dimensionality of the data, and
visualise the effect of the first two principal components. Visualise the first two principal com-
ponent scores, comparing with the labels (i.e. malignant or benign). Use your favourite classifier
(for instance nearest centroid) to assess the value of the first two principal component scores in
predicting the label of the cell nuclei, and validate your results using cross-validation.
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2. We consider the digits dataset, containing handwritten digits from 0 to 9. The dataset is com-
prised of 1797 samples of 64 features. We would like to group images such that the handwritten
digits on the image are the same. To import the dataset, import the sklearn module, and
run sklearn.datasets.load digits(). Reduce the dimensionality of the data, and visualise
the effect of the first two principal components. Visualise the first two principal component
scores, coloring the scatterplot according to the label (i.e. the digit). Use your favourite classifier
(for instance nearest centroid) to assess the value of the first two principal component scores in
predicting correct digit, and validate your results using cross-validation.

Exercise 42. Prove the eigenvalue perturbation bound:

max
j

∣∣∣λ̂i − λj

∣∣∣ ≤ ∥Σ̂− Σ∥Rp×p

Exercise 43. Let X1, . . . , Xn be iid random vectors in Rp. Show that the best approximating k-

hyperplane to the points {X1, . . . , Xn} is given by X̄ + R
(
Σ̂k

)
, where

∑
k =

∑k
i=1 λ̂iûiû

⊤
i is the

rank-k spectral truncation of Σ̂.

Exercise 44. (⋆) Let X1, . . . , Xn be iid Gaussian vectors, with covariance Σ and empirical covariance

Σ̂ Then it is known that
√
n(Σ̂− Σ)

d→ Z for some mean-zero gaussian matrix Z. Define

Wij = E [⟨Zui, ui⟩ ⟨Zuj , uj⟩]

where {(λi, ui)}pi=1 is the spectrum of Σ. Show that when X1, . . . , Xn are Gaussian, W is diagonal with
Wii = 2λ2

i . Hint: derive the covariance of vec(Z) using slide 129 and the Gaussian sampling theorem.
The use properties of coviariance matrices, inner products, vectorisation and kronecker products . . .

Exercise 45. [Implementation] Generate N samples from a lower dimensional signal + isotropic
noise model (as in slide 201). Select the number of components for performing PCA by percentage
of explained variance, by setting a bound on the conditioning number and by multiple testing of
sphericity.

Exercise 46. Verify the (two) missing steps in the proof of the theorem on Asymptotic Law of Wishart
Spectrum, in slide 193.

Exercise 47. Let X ∈ Rp and Y ∈ Rq be random vectors with strictly positive covariances ΣX

and ΣY respectively, with absolutely continuous law. Show that P(Σ̂X ≻ 0, Σ̂Y ≻ 0) = 1 for all n
sufficiently large.

Exercise 48. Show that model selection in the low rank plus noise model takes the form λ̂k >
threshold(n) which resemble a (sample-size dependent) condition number criterion.

Exercise 49. In the framework of slide 211, show that when p = 1 the only non-trivial canonical
correlation vector is the standardised least square estimator of the regression coefficient vector.

Exercise 50. Use the spectrum to show that Σ 7→ Σ2, Σ 7→ Σ1/2 and Σ 7→ Σ−1 are C1 at Σ ≻ 0.

Exercise 51. Consider a stationary Markov Chain with jointly gaussian, independent increments
ξ1, ξ2, . . . (see slide 218). Show that there exist constants σ, ρ and a sequence of random variables
ϵ1, ϵ2, . . . such that:

1. ξ1 ∼ N (0, σ2/(1− ρ2))

2. ξk+1 = ρξk + ϵk

3. ρ = corr{ξk, ξk+1} < 1

4. ξk ⊥ ϵk
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5. ϵk
iid∼ N (0, σ2)

Hint: use the regression representation of conditional independence.

Exercise 52. Compute the log-likelihood of a stationary Gaussian AR(1) based on a single realisation
via the Markov factorisation.

Exercise 53. [Implementation] Implement a gaussian AR(1) model and estimate its parameters
(σ, ξ) on the basis of a sample path of N = 100 steps. Visualise the path, and forecast by Monte Carlo
(MC) the following 5 steps.
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