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Course details

@ Lectures Thu 13.15-15.00
@ Exercices Thu 15.15-17.00

e Main reference books (but we go beyond):

Anderson, T.W. An Introduction to Multivariate Statistical Analysis, Wiley
Muirhead, Aspects of Multivariate Statistical Theory, Wiley

@ Webpage: moodle
@ Bonus (non-compulsory) midterm test on 17 April, 13.15
o Written final exam (cheat sheet allowed)

o Final grade G will be calculated

e G=0.75x FE+0.25 x max{F, T}
o F = exam, T = test
e we round F' to obtain G
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What is this course about?

In short: statistical analysis of random vectors

What does this mean in effect?

@ Understanding the probability distribution of a random vector

@ Most commonly the vector space is R?, with p > 1.

(but similar principles can apply to more general vector spaces)

@ Random vectors have internal probabilistic structure — coordinate dependence

X=(X,.., %)

@ Dependence can be unconditional or conditional

@ Need to understand how to encapsulate, model, and infer this dependence
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Our typical setting: sample X, ..., X,, of n > 1 i.i.d. realisations in R?
Xll . le

X=1| 5
Xn1 - Xnp

We will focus on coordinates that are continuous random variables

Rows are observations (a.k.a. individuals) and columns are variables (a.k.a.
features)

Central objects (but not only ones): covariance ¥ and its inverse © = ¥ 1

Methods/theory depend on whether:

e p K n, the so-called low dimensional case

e p > n, the so-called high dimensional case

Will primarily focus on p < n but will also treat selected topics when p > n
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The usual context is when we record p variables (or features) on n individuals:
The gene expression levels for p genes for n subjects.

The curvature at p sites on n DNA strands.

The grades on p courses for n students.

The portfolio returns on p assets at n times.

The blood pressure at p times for n patients.

In these cases, we may be interested in:

Which genes are co-expressed?

What are the mechanical properties of DNA?

Are there interesting subgroups based on conditions on variables?
What is the best portfolio distribution?

Can we predict the grades in a group of courses from other courses?

Are there trends? Drivers of variation? Indirect associations?

Often, there are qualitative variables, either recorded or latent:
@ Treatment or disease status, subpopulation membership
@ DNA Base-pair composition, presence/absence of gold stain
@ Gender, race, season, educational background, risk factor ...

Victor Panaretos (EPFL) Multivariate Statistics 5 /244



Course Contents

@ Linear Algebra Recap
@ Random Vectors and Matrices

@ Gaussian Vectors

Sampling

Inference

Dimension Reduction

(Gaussian) Graphical Models
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Linear Algebra Recap
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Reminder: Subspaces, Partitions, Spectra, Projections.

If Qis an n x p real matrix, we define the

@ range (or column space) of Q to be the set spanned by its columns:
R(Q) ={QB: B € R} CR".

o the null space (or kernel) of Q is the subspace defined as
N(Q) ={z € R? : Qz =0},

@ the orthogonal complement of R(Q) , is the subspace defined as

RH(Q) = {yeER":y ' Qz =0, Vz € RP}
= {yeR":y'v=0, Vv € R(Q)}.

The orthogonal complement may be defined for arbitrary subspaces by using the
second equality.
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Theorem (Singular Value Decomposition)

Any n X p real matrix Q can be factorised as

Q=U £ Vv

nxp nX7T nXp pXP

where U and VT are orthogonal with columns called left singular vectors and right
singular vectors, respectively, and ¥ is diagonal with non-negative real entries
called singular values.

Immediate consequence:
@ The left singular vectors corresponding to non-zero singular values form an
orthonormal basis for R(Q).
@ The left singular vectors corresponding to zero singular values form an
orthonormal basis for R-(Q).
@ Writing {u;}}_; for the left singular vectors and {v;}_; for the right singular
vectors, the SVD can also be expressed as

rank(Q)
_ o T
Q = E oj U v
nxp =1 S~

nx1 1xp
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Proof.

Since the statement is invariant to transposition, assume wlog that n > p. We
will prove the statement by induction on p. Assume that p = 1 so that Q is a
column vector. Then the statement holds true trivially, by taking

vi=v=1 X= (||Q||,01x(n—1))T U=(ur...u), w=Q/|Q

and (g, ..., U, ) an orthonormal basis for span®(u;). Thus the statement is true
for all n > p when p = 1. This is the base case for our induction. For the
inductive step, assume that the statement is true for some p > 1 and all n > p.
Let us prove that it is also true for p 4+ 1 and all n > p + 1.

Let SP*! = {z € RP*! : ||z|| = 1} and g(z) = ||@Qz]|. Since g(-) is continuous
and SPT! is compact, we have that g(z) is bounded over SP™1 and attains its
bounds. So there exists v; € SPt such that

g(v1) = maxgese+1 g(z) = 01 < 0.

and let v; € SP*! be maximiser of g(z), i.e. such that g(v;) = maxesr+1 g(z).
Define u; = 0; " Qu; so ||ug|| = 1. Given any orthonormal bases {w}7_, for
span®(u;) and {v;}_, for span®(v;) define U and V to be orthogonal matrices

U=(u up ... uy) = (ug Uq) & V= (v va...0,)= (v Vq).
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Using block matrix multiplication, we see that
ulTQvl ulTQV1 )

ulT Q v - (
( Uy > (= 1) = U'Qu U QVvy

o1 8T
_ 1x1 1xp
- 0 VA ’
(n—1)x1 (n—1)xp

Now we claim that 8 = 0. To see this, first observe that

o1 = max ||Qz| = max, IUTQz|| = max, luTQvz|.
LSS zeSrt zeSrt

ur %
XN g (p41) (p+1) % (p+1)

Next, let's consider the norm of UTQV ( 091 )

(5 %) (5 )=1( 57 )] = Vit weron iaar
(9l

>024+6076=(c2+6079)/2
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Dividing across by ||(c1 8) T||, we see that we must necessarily have

(0 +670)"/* < max |UTQVal| = 0 = (of + 0%

and so it must be that 8T8 = 0. We conclude that

0 thus (o} 0
uTQv = o1 1xp thug U 1 1xp VAl
Q < On-1)x1 2 < On—1)x1 2

But Z is an (n — 1) x p matrix, and since n > p + 1 it holds that n — 1 > p. So
by our inductive hypothesis

Zin—1)xp = Wn-1)x(n=1)2(n-1)xp R;,rxp-

where W, R are orthogonal and €2 is diagonal. Thus

_ o1 O1xp T _

Q’nX}? - Un><'n ( O(n—l)xl WQRT ) Vp><p -

U ( 1 O1x(n—1) ) ( g O1xp ) 1 01|_><P vT
Om—1)x1 Wm-1)x(n-1) On—1)x1  Qn-1)xp Opx1 Ry,

orthogonal diagonal orthogonal
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Theorem (Spectral Theorem)

A p X p matrix A is symmetric if and only if there exists a p X p orthogonal
matrix U and a real diagonal matrix \ such that

A=UAU'.

In particular:

@ the orthonormal columns of U = (u; --- wu,) are eigenvectors of A, i.e.
A’U,j:)\j‘u]', j:].,...,p

where diag(A1,...,Ap) = A are the corresponding (real) eigenvalues of A.
the rank of A is the number of non-zero eigenvalues.

o0

if the eigenvalues are distinct, the eigenvectors are unique (up to re-ordering
and sign flips).

@ The spectral representation can also be expressed as

rank(A)
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Proof.
If A =0, the statement holds trivially, so let A = AT #0.

First note that the SVD of A guarantees the existence of a singular vector pair
(u, v) with non-zero singular value o, so that

Av+u) =Av+Au=Av+ATu=0u+ov=o0o(u+v).

hence w = (u + v)/||u + v|| is a unit eigenvector of A with real eigenvalue o.
Now the theorem is obviously true for 1 x 1 matrices (scalars). So use induction.
Assume any non-zero p X p symmetric matrix satisfies the theorem statement.
Let A=AT #0be (p+1) x (p+1). By the displayed equation, A has at least
one unit eigenvector w € R? with real eigenvalue o # 0.

Let W = (w R) where R has p orthonormal columns spanning span®(w). Then

T T T
T [ w ([ w Aw w'AR
WAW_(RT>A(“’ R)_<RTAw RTAR>

_ o (Aw)'R '\ _ o O1xp \ _ o Oixyp
“"\RTAw  RTAR /) 7~ \ 0,51 RTAR /" \ 0,51 B

where B = RTAR is a symmetric p x p matrix.
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Since B is symmetric, we have B = VQV T for V,, orthogonal and Q,,
diagonal by our induction hypothesis. In summary

A:W( o 01Xp>wT

0px1 B
1 01« o 01« 1 01x T
=W P p p wW
( Opx1 Vpxp ) ( Opx1 Qpxp 0px1 V;—Xp pxp
orthogonal diagonal orthogonal
= UAUT

Combining the SVD and the spectral theorem, we notice that:

@ The left singular vectors of Q are eigenvectors of A = QQT.
@ The right singular vectors of Q are eigenvectors of A = QT Q.
© The squared singular values of Q are eigenvalues of both QQT and QT Q.
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A matrix Q is called idempotent if Q2 = Q.

An orthogonal projection (henceforth projection) onto a subspace V is a
symmetric idempotent matrix H such that R(H) = V.

Proposition

The only possible eigenvalues of a projection matrix are 0 and 1.

Proposition

Let V be a subspace and H be a projection onto V. Then | — H is the projection
matrix onto V*.

Proof.
(1-H)T =1—H" =1— H since H is symmetric and,
(1—H)2=12—-2H +H? =1 —H. Thus | — H is a projection matrix.

It remains to identify the column space of | — H. Let H = UAU' be the spectral
decomposition of H. Then | —H =UU" —UAUT = U(l - A)UT.

Hence the column space of | — H is spanned by the eigenvectors of H
corresponding to zero eigenvalues of H, which coincides with R-(H) = V. O

Victor Panaretos (EPFL) Multivariate Statistics 16 / 244



Proposition
Let 'V be a subspace and H be a projection onto V. ThenHy =y < y € V.

Proof.

If y € V = R(H), then y = Hu for some u, so Hy = HHu = Hu = y. Conversely,
if y = Hy then y € R(H) = V by default (being of the form Hu for u = y). O

Proposition

If P and Q are projection matrices onto a subspace V, then P = Q.

Proposition

Ifz1,...,2, are linearly independent and are such that span(zy,...,2,) =V, then
the projection onto V can be represented as

H=X(XTX)"1xT

where X is a matrix with columns zi, ..., z,.
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Let V be a subspace of R™ and H be a projection onto V. Then
|z — Hz|| < ||z — v, Vv e V.

Let H=UAUT be the spectral decomposition of H, U = (v; --- u,) and
A =diag(A1, ..., ). Letting p = dim(V),

o A1=---=)\p=13nd )‘p+l="'=)‘n=01
Q ui,...,uy, is an orthonormal basis of R™,
© uy,...,u, is an an orthonormal basis of V.

T Py (), T e e e



|z — Haz||*

IN

[orthonormal basis|

1=1

n
Z(wTuz —z Hu;) [H is symmetric]

=1

n
Z(mTuz — Nz w)? [u's are eigenvectors of H|
1=1

n
0+ Z (z " u;)? [eigenvalues 0 or 1]
i=p+1

P n
Z(w—rui —vlw)? + Z (z 7 u;)? Vv €V
=1 i=p+1

n
Z(mTui —vluy)? Yv eV

i=1

|z — v||? Vv € V.

O
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Proposition

Let Vi1 CV C R™ be two nested linear subspaces. If Hy is the projection onto V
and H is the projection onto 'V, then

HH]_ = H]_ = HlH

Proof.

First we show that HH; = Hy, and then that H{H = HH;. For all y € R™ we
have H;y € V;. But then Hiy € V, since V; C V.

Therefore HH1y = H;y. We have shown that (HH; — H;)y = 0 for all y € R™,
so that HH; — H; = 0, as its kernel is all R™. Hence HH; = H;.

(Or, take n linearly independent vectors y1,...,yn € R", and use them as columns of the n X n
matrix Y. Now Y is invertible, and (HH1 — H1)Y =0, so HH1 — H1 = 0, giving HH1 = H1.)
To prove that H;H = HHj, note that symmetry of projection matrices and the
first part of the proof give

HiH=H{H" = (HH;)" = (H1)" = Hy; = HH;.

O
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The (Moore-Penrose) Pseudoinverse

Definition (Pseudoinverse)

Let Q be an m X p real matrix with SVD

Q=U % vT:U<Q”’ Op—r )VT,

nxXp MXTM XD PXP On—r O(n—ryx(p—r)

where we assume wlog that n > p so that r := rank(Q) < p and Q is diagonal
with non-zero entries. The pseudoinverse of Q is the p x n matrix QT defined as

_ T _
Qf := (U ( Qrir 0y~ > VT> =V < Qr>:<lr Op—r ) uT.
On—r O(nfr)x(pfr) Op—r O(pfr)x(nfr)
Intuitively: QT acts as an inverse of Q on R(Q) C R™. Its action on R™ is to first
project onto R(Q) and then acts as the inverse of Q on that range.

When Q is symmetric, then so is QT and the expressions simplify considerably,
_ Qrsr 0\ 7 t_ Q% 0\ T
Q=U ( 0 0 ) U & Q'=U o U
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The pseudoinverse satisfies the following two properties (exercise):
e QfQ is the projection onto R(QT)
e QQT is the projection onto R(Q).
(so when Q is symmetric, Q'Q = QQT by uniqueness of projections)

In fact, the pseudoinverse is the unique matrix satisfying these two properties.

Immediate corrolaries:
e QQIQ=Q

o Q'QQf = Q'
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Positive-Definite Matrices

Definition (Non-Negative Matrix — Quadratic Form Definition)

A p x p real symmetric matrix Q is called non-negative definite (written Q > 0) if
and only if zTQz >0 for all z € RP. If 27 Qz > 0 for all z € R? \ {0}, then we
call Q positive definite (written Q > 0).

An equivalent definition is:

Definition (Non-Negative Matrix — Spectral Definition)

A p X p real symmetric matrix Q is called non-negative definite (written Q > 0) if
and only the eigenvalues of € are non-negative. If the eigenvalues of Q are strictly
positive, then Q is called positive definite (written Q > 0).

Exercise: prove that the two definitions are equivalent.
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Some properties (exercise):

e Qx0ifandonlyif Q=3¢ g for some vectors g;.

@ Q > 0if and only if there exists A > 0 such that Q = A?
o We call such an A the square root of Q and write it as v/Q or Q*/2
@ Any projection P satisfies P > 0.

@ When Q > 0, we have
v, v € R(Q) = R (L5, wyl ) CRQ)

o Let A,B > 0. Then we have:

e B—A>0 = R(A) CR(B)
e R(A) CR(B) = ¢B— A >0 for some ¢ > 0.

When B — A > 0, we write B > A. Non-negative definite matrices are partially
ordered with respect to “>" (this is called the Loewner order).
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Vectors as Matrices and Matrices as Vectors

@ It's clear that any p-vector can be seen as a p X 1 matrix
(why not 1 X p? just a convention)
@ Can matrices be viewed as vectors? Yes they can.

The space R™*? of n X p matrices forms a real vector space of dimension np.
@ Indeed, this space is isometrically isomorphic with R™
@ The isomorphism is given by the vec operation,
vec : R"*? — R™
whose (linear) action is to stack the matrix columns into a tall np-vector,
U1
vec{(’ul...vp)}: 5 , v €R”
Up
@ Abstractly, R™"*? is a real vector space, whose elements are p-vectors with

coordinates that are themselves elements of R™
(think of partitioned matrix notation).
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@ The canonical basis of R®*? can directly be seen to be the collection

ey U
E,‘j = vluj

for {v;} the canonical basis of R™ and {u;} the canonical basis of R?
@ Some algebra also shows that

(A, B)goxs 1= (vec(A),vec(B))gw = vec(A) ' vec(B) = trace(A' B)

@ A linear transformation on R**? — R”*? will be a matrix transformation
R™ — R™, hence an np X np matrix.

o In the vectorised perspective, a rank-1 transformation is vec(U)vec(V) ',
which maps vec(A) to

vec(U)vec(V) Tvec(A) = trace(V' A)vec(U)
which can now easily be re-expressed in matrix form as
A+ trace(V' A)U.

@ So by the SVD a linear f : R®*P — R™*? is represented as

rank(f) rank(f)
f(A) = Z o;trace(V] A)U;, vec{f(A)} = Z o;vec(U;)vec(V;) T vec(A),
i=1 i=1

for ; > 0 and {U;} and {V;} orthonormal bases of R™*?.
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Define the Kronecker matrix product as
ai1B ... a;,,B
A®B= : :
a1B ... a,B

Then vec(U)vec(V)" = vec(U) ® vec(V)"
Thus, by the SVD, any linear map on R™ can be written (non-uniquely) as
YA ® B;

npx1 1xnp
A useful identity (optional exercise) is

vec(AXB) = (B ® A)vec(X)

Let’s think of vectorization as turning R™*? into a vector space whose
elements are p-vectors with coordinates that are elements R™. Think of
np X mp matrices as p X p block matrices with n x n blocks. Using the
previous identity, we can show (exercise) that any linear map acts on RP*? as
Xl—)E:Zil Ai X Bi.
nxXnNXPpXp
for (non-unique) A; and B;.
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Random Vectors and Matrices
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Random Vectors and Joint Distributions
A random vector X = (X1,...,X,)" is a finite collection of jointly distributed
real random variables arranged as the coordinates of a vector.

The point is that we may want to make probabilistic statements on the joint
behaviour of all these random variables.

@ The joint distribution function of a random vector X = (Xy,..., X,)" is
Fx(z,...,2) =P(X5 < zy,..., X, < zp).
@ Correspondingly, one defines the
- joint frequency function, if the {X;}?_, are all discrete,
fx(z1,...,2p) =P(X1 = @1,...,Xp = zp).

- the joint density function, if there exists fx : R — [0, +00) such that:

1 Tp
Fx(ml,...,mp):/ / fx(ut, ..., up)dus ... duy

In this case, when fx is continuous at the point x,

61’
fx(z,.. 2p) = mﬁ'x(xl, ey Tp)
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Marginal Distributions

Given the joint distribution of the random vector X = (X1,...,X,)", we can
isolate the distribution of a single coordinate, say X;.
o discrete case, the marginal frequency function of X; is given by

fx.(z) = P(X Z ZZ fo(ml,...,mi,l,:ri,miJrl,...,:cp)

Ti—1 Tit1

@ In the continuous case, the marginal density function of X; is given by

x o0
fx,(2:) =/ / Fx(Yiy ooy i1, Tiy Yit1s -5 Yp)AY1 - .. dYi—1 dY; 1 dYp.
— 0 — o0

@ More generally, we can define the joint frequency/density of a random vector
formed by a subset of the coordinates of X = (Xy,..., X,) ", say the first k
o Discrete case:
fxa,ooxe (@1, ey @) = sz+1 e ZW fx(@r, - oy Thy Thg1,y -, Tp).
e Continuous case
fxa,oxe (@1, ooy @) = fj: . fj: fx (@1, oy Thy Tht1, - -y Tp) ATkt . . . dTq.
@ l.e. to marginalise we integrate/sum out the remaining random variables
from the overall joint density/frequency.
o Marginals do not uniquely determine the joint distribution.
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Conditional Distributions

We may wish to make probabilistic statements about the potential outcomes of
one random variable, if we already know the outcome of another.

For this we need the notion of a conditional density/frequency function.
If (X1, ..., Xp) is a continuous/discrete random vector, we define the conditional

probability density/frequency function of (Xi,..., Xz) given
{Xk41 = Tpq1, ..., Xp = 24} as

B Fxv,,(T0y ooy Ty Thge1y - Tp)

ka+1:-~7Xd($k+1$ vy Tg)

le,...,Xk|Xk+1,...,X,, ($1, ooy T |$k+1, ) wd)

provided that fx, . . x,(Zxy1,..., Za) > 0.
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Independent Random Variables

The random variables Xy, ..., X, are called independent, denoted if and only if,
forall z;,...,2, € R

Xy (T ) = Fixy(21) X oo X Fy ().

Equivalently, X3,..., X, are independent if and only if, for all z;,...,z, € R

Fxi,x, (@1, 2p) = fxy (21) X .00 X fi, (Tp).

Note that when random variables are independent, conditional distributions reduce
to the corresponding marginal distributions.

Knowing the value of one of the random variables gives us no information about
the distribution of the rest.
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Conditionally Independent Random Variables

The random vector X in R? is called conditionally independent of the random
vector Y given the random vector Z, written

X1LzY oo X1LVY|Z,

if and only if, for all z;,...,2, € R

Fx, .. .xv.z(2, ., 2) = Fx, _ x,z(Z1,...,2p)
Equivalently, if and only if, for all z1,...,2, €R
Iy, V2 (T, Zp) = fxyox,2(T0, -0, Tp).

Knowing Y in addition to knowing Z gives us no more information about X.
Consequence: if X is conditionally independent of Y given Z, then

Fx vz =Fx|y,zFviz = Fx|zFy|z

Consequence: X L zY <— Y 1L zX
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Expectations of Random Vectors

Let X = (Xy,...,X,)" be a random vector in R? with joint density function
fx(@1,...,xp). For any g : R? — R, we define

—+o0 —+o0
E{g(Xl,...,Xp)}:/ / g(zr, .-, zp)fx (2, .., 2p)dey ... dzp.
Similarly, in the discrete case,

E{g(X1,..., Xp)}= > .. > g(@m, ., 2)fx (@, 3p).

1 EX, EI,EX

e Consequence E[X; + aX5] = E[X1] + aE[X2].

The mean vector or a random vector X = (Xi,...,X,) is defined as
E[Xi]
Ex]=|
E[Xp]

i.e. it is the vector of means.
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Random Matrices and their Expectations
A random n X p matrix

Xll e le

Xn1 .. Xpp
is simply a matrix whose n rows are random vectors in R?. Equivalently, it is a
finite collection of np random variables arranged as the entries of an n x p matrix.
@ Notions of joint densities/frequencies follow immediately.
@ Notion of expectation follows suit, as matrix of expectations.

Consequently,

Lemma

Given a random matrix X, x, and deterministic matrices Ay xn and Bpy g,
o E[XT] = (E[X])’
e when n = p, E[tr{X}] = tr{E[X]}
e E[AXB] = AE[X]B
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Covariance Matrices

The covariance of a random variable X; with another random variable X,
expresses the degree of linear dependency between the two.

cov(Xy, Xo) = E[(X1 — E(X1))(X2 —E(X2))]  (if E[X7] < 00).
The covariance matrix or a random vector X = (Xy,...,X,)", say & = {¥;;}, is
a p X p symmetric matrix with entries

Ly = cov(Xy, X;) = E[(X; — E[X:])(X; —E[X;])], 1<21<7<p.

That is, the covariance matrix encodes the variances (on the diagonal) and the
pairwise covariances (off the diagonal) of the coordinates of X.

Ofteh the following notation is employed:
Yi=0; & Ty=oy, i#]
where o; = \/var(X;) is the standard deviation of Xj.
It can be easily checked that
¥ = E[(X — E[X])(X — E[X])T] = E[XxT] - E[XE[X] .
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Let X ~ Unif[—, 7] and define

Y = cos(X).

@ Clearly X and Y are not independent. s
@ To the contrary, they are perfectly dependent. o

@ Their covariance is, nevertheless, zero! 1

The function z cos(z)

Concretely, we calculate
P[Y >0]=1/2 but PlY >0|X € (-7, —2)] = 1.

Despite this, we have

+m 1
cov(X,Y)=E[XY]-E[X]E[Y] = / a:cos(a:)%da: —0=0.

—m

Why: Because some non-linear dependencies cannot be detected by covariance...

’
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Let X and Y have joint density

m siz?+y2 <1,
0 otherwise.

fXY(a:) y) = {

Note that E[X] = E[Y] = 0 by symmetry. Hence, cov{X, Y} = E[XY]. But
1 1 1
E[XY] = // my;d:cdy = // :z:y;da:dy + // my;dmdy
z2+y2<1 z2+y2<1,y>0 z2+y2<1,y<0

The two terms are equal, by symmetry. Moreover,

1 ot it 1 1 (1—g2)?
// :cy;dmdy:;/ :c/ ydydm:;/ m%dmzo
—1 0 —1

z2+y2<1,5>0

and so the covariance is zero. But X and Y are clearly dependent, since knowing
X restricts the possible values of Y.

y
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Covariance Matrices and Linear Transformations

Lemma

Let X be a random p x 1 vector such that E|| X||?> < co and with covariance ¥.
Given a A a q x p real matrix, the covariance of the ¢ x 1 random vector AX is
AYAT.

Corollary (Covariance of Projections)
Let Y be a random d x 1 vector such that E||Y||? < co. Let B, € R? be fixed
vectors. If Q) denotes the covariance matrix of Y,

@ the variance of BT Y is BT QB;

@ the covariance of BT Y withyTY isyTQB.
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Let Q be a real symmetric matrix. Then Q is non-negative definite if and only if Q
is the covariance matrix of some random variable Y .

Exercise. O I




Cross Covariance Matrices

Let X and Y be centred random vectors in R™ and R™, respectively. The
cross-covariance between X and Y is the n x m matrix

cov{X,Y}:=Txy =E[(X —E[X])(Y —E[Y])"]| =E[XY "] - E[X|E[Y].

Note that this is not symmetric (and so, in general, will not be non-negative
definite)
cov{X,Y}=cov{Y,X}'".

If we concatenate into an (n + m)-dimensional random vector Z = (X" YT)T,
and use block notation, we see that

Yx Ixv
ZZ = ZT Z .
XY Y
i.e. an m X m matrix is a cross covariance if and only if it can be represented as

the off-diagonal block of some (n + m) x (n + m)covariance matrix.
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Support, Covariance, and Cross-Covariance
The support of a random vector X in RP, is defined as
supp{X} :={z e R? : P[|| X — z|| < €] > 0, Ve > 0}

Intuitively, the support is the region of R? that X can reach. It can be shown
(exercise) that supp{X} is a closed set, indeed the smallest closed set F' such
that P[X € F] = 1.

The covariance provides some information on the support:

Lemma (Support and Covariance)

Let X be a random vector in R? with mean wx and covariance L x. Then,
Q supp{X} C R(Xx) + px.
(2] (ZXZE()(X —px) =X — px almost surely.

(] (ZXZE{)ZXY = Y xy for any random vector Y with finite second moment

where we recall that ZXZE( = Hx is the projection onto R(XL x).
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Proof.

We first remark that (1) <= (2). To see this, recall that Hxu = w if and only if
u € R(Hx). Thus (2) is equivalent to stating that P{X — ux € R(Hx)} = 1.
Since R(Hx) = R(Xx), and observing that R(Hx) + wx is closed, the last
statement is equivalent to (1).

To establish (2), write X — px = Hx(X — px) + (I — Hx)(X — ux) and note
that
COV{(I—Hx)(X—Nx)} = (I—Hx)ZX(I—Hx) = (Zx—ZXZE{Zx)(I—Hx) =0.

Consequently (I — Hx)(X — ux) =E[(I —Hx)(X — ux)] almost surely. But
E[(I —Hx)(X — px)]=(I —Hx)E[X — pux] =0. In summary,

X — pux = Hx(X — px) almost surely, establishing (2).

For (3), it suffices to observe that

HxExy = HXxE[(X — px)(Y —pv) "] = E[Hx(X — px)(Y — py) ']

DE[(X — px)(Y — py)T] = Txy.

D,
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Whitening

Lemma
Let Y be a random vector in R? with covariance ~y. Then,
o cov{(£1)1/2Y} = Hy, where Hy is the projection onto R(Xy).

o consequently, when X3! exists, we have cov{Z}l/2 Y3} = lpxyp

Proof.

We calculate
cov{(Z})"2 Y} = (E) gy (E})2 = (E) ey A ().
By the definition of pseudoinverse and the fact that Xy > 0,
() = (7)Y

and the RHS is the projection onto R(Z¥2). Finally, R(Xy) = fR(ZiP), again
due to the spectral theorem, and the proof is complete. ]

v
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Lemma (Matrix Correlation Inequality)

Let Z = (XT YT)T be be comprised of two centred random vectors in R™ and
R™, respectively, with covariance

s, >x Xxy
27 \Lky v )

Yx —SxyEILEky = 0.

Then

If Xz is non-singular, then ¥y is necessarily so too and

Yx —TxyXy Zyy > 0.

The matrix Yx — Yxy ¥, Yty is called the Schur complement of Yy in X5

When £z > 0, the last inequality can be re-written as
Y T xy Iy Y gy < |

which explains the term “correlation inequality”
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Proof.

Define the zero-mean random vector e = X — nyZTY Y, and notice that

0<% =Elee' | =E[XX |+ SxyELE[YY TSl 5],
—_————
=xtrysl=xl
—BXY TS5l —Sxy S E[YX T =S5 — SxyEl vl
~—— ~——
=Xxy =zl

For the second part, we will argue by contradiction. Assume that

Yx — XxvyXy iy is singular. This means that there exists an z € R™ \ {0}
such that ' xz — | Zxy X' T fyz = 0. Now define the (n + m) x 1 vector

. @
v _Z;lz}—cym '
Since ¢ # 0, it also holds that w # 0. Now observe that

pN pN T

T _ T T =l X XY

u Xzu— |z —z' TxyX ( T ) ( _1 )
( Y ) Yyy Yy -y Z)T{YQE

= mTZXm — mTZXyZ;l}:;yx =0.

Since u # 0, this contradicts the assumption that ¥z is non-singular.
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Precision Matrices

Let X be a random vector in R? with non-singular covariance ¥ x. The precision
matrix of X is defined as

Ox = Z)_(l.
For now we just need the following (a direct consequence of previous lemma)
Lemma (2 x 2 Block Precision Matrix)

Let X be an (n + m) x (n + m) non-singular covariance

}::(Zx ZXY)
z;l(—y Yy )’

Then Tx — TxyXy' Ty and Ty — T4y T3 Ty are strictly positive-definite
and we have the following expression for the precision matrix

o=y 11— (Tx - zxyz;lzgy)il —(Xx - ZXY'?:}IZ}y)*lZXYZ;,1
I Tyt (Tx — Txy Iy Egy) 7t (Zy — Ty Ty Txy)™?

@ Proof is immediate once the inverses are well defined (just multiply to verify).

@ Notice how there are Schur complements and their inverses appearing
everywhere.

Victor Panaretos (EPFL) Multivariate Statistics 47 [ 244



Correlation Matrices

The correlation between X; and X5 is defined as

cov(Xy, Xz2)
\/var(X;)var(Xz)

Conveys equivalent dependence information to covariance. Advantages: (1) it is
invariant to changes of scale, (2) can be be understood in absolute terms (ranges
in [—1,1]), as a result of the correlation inequality? (Cauchy-Schwarz):

corr( Xy, Xa) =

|corr( X7, X2)| < v/var(X;)var(Xz).

The correlation matrix R = {p;;} of a random vector X = (X1,...,X,) ", isa
p X p symmetric matrix with entries

py = corr(X;, X;), 1<i<j<p.

Note that the correlation matrix is well-defined whenever var(X;) > 0 for all
1 <2 < n, i.e. none of the coordinates are degenerate random variables.

Lcompare now to the matrix correlation inequality
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Equivalently, the correlation matrix is the covariance matrix of the standardised
vector
-
X = (X1/017~-~aXP/UP) )

where 02 = var(X;). Thus, recalling that cov(AX) = AXA", we have

_1 —
2

[N

var(Xi) 0 var(X;) 0
0 var(X,) 0 var(X,)

= diag{afl,...,ap_l} x diag{afl,...,ap_l}

Thus correlation matrices are non-negative definite.
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Cross Correlation Matrices

Let X and Y be centred random vectors in R™ and R™, respectively. The
cross-correlation matrix of X and Y is the n x m matrix Rxy with entries

cov(X;, Y;)
var (X )var(Y;)

L i=1,...

Again, if we concatenate into an (n + m)-dimensional random vector
Z=(X"YT)", and use block notation, we may write

_ ZX ZXY _ RX RXY
2= (z)T(Y Ty ) & Rs= <R;T<y Ry )
We now easily check that:

Ryy = (diag(Xx)) /2T xy (diag(Xy)) /2.
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Moment Generating Functions

The moment generating function (MGF) Mx(t) : R — R U {co} of a scalar
random variable X is defined as

My (t) = ]E[efx], teR.

It need not be finite for ¢ # 0. But when it is finite zero, magic happens:

Theorem

Let X and Y be scalar random variable, and assume that Mx (t) < co and
My (t) < oo forall t € I = (—¢,¢€) for some e > 0. Then, it holds that

@ My is infinitely differentiable on I

@ E[|X|*] < co and B[X*] = 4Mx(0), for all k > 1.

Q@ Fx=FyonR < My = Mx onI.

Q ifX LY, then Mx v is finite and equal to Mx My on I.
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The moment generating function (MGF) of a random vector W in R? is defined
as

My (6) =E[e* W],  6€eR?
and need not be finite for 8 # 0.

When the MGF exists on an open ball at the origin:
@ it characterises the distribution of the corresponding random vector, as in the
scalar case.

@ consequently, it factorizes into two marginal MGFs if and only if the
corresponding random vectors are independent:

‘anl independent of mel‘

—

E[ef X+ Y| = E[ef X x E[e” Y], VBER"&y€ER™
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Gaussian Vectors
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Gaussian Random Variables

If for some u € R and some o € (0, +00) a random variable X has density

1 1 /z—p 2
fX(:L’):EeXp —2( o ) , QER,

then X is called a Gaussian (or Normal) random variable), and we write

X ~ N(u,0%).

This is indeed a valid probability density, by a simple change-of-variables,
establishing existence:

2 T — )2 Y
|:/ fX(:z:)da::| //f(a:)f(y)da:d:c =3 ! 5 //exp {( #) 2+2(y #) } dzdy
R RJR T JrJr i
1 2T 400 7‘2
= 5ro? /0 Bde/o rexp{—w}drzl.

By convention, a constant u € R is considered to be a N(u,0) random variable
Hence Gaussian random variables need not have density unless ¢ > 0.
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A random variable Z ~ N(0,1) is called a standard Gaussian random variable.

We write ¢ for its PDF and & for its CDF.

Lemma

Given p € R and o € (0,+00), one has X ~ N(u,0?) ifandonly X =07 + u

for some Gaussian random variable Z ~ N (0, 1).

Proof.

Changing variables to z = (z — u)/o, one has

Fx(y) = /_yoo a\;ﬂexP{_; (1;,u.)2} dy

/T‘\/lgexp{zz/z}dzé(w)

and so if one defines Z = o~ 1/2(X — u) then the 'if’ part is proven. Starting with
Z ~ N(0,1), and following the same steps in reverse gives the ‘only if" part, with

X =027+ p.

O
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99.7% of probability mass is within

&«——— . —_—
3 standard deviations from the mean
95% is within
2 standard deviations ?
68% within
<— 1 standard ——>
deviation
nw—30 n—20 L—a I nto u+ 20 n+30
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Lemma (Moment Generating Function)
Given p € R and o € [0,+00), the moment generating function Mx(t) = E[e™X]
of X ~ N(u,c?) satisfies

Mx (t) = exp{tu + tc?/2}.

This being finite for all t € R implies that all moments of X exist, and its central
moments are

0 for k odd,

E[(X - E[X])*] =E[(X — p)*] =E[o*Z*] = {Uk(k — 1)1 for k even.

Consequently u = E[X] is the mean and o* = var[X] is the variance.
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Proof.
By definition, and the change of variables y = z — u — ot we find that

Mx() = E[e¥]= / exp{te — (2 — p)?/(20%)}de

1
ov2rm Jp
1 2,\2 2 4,2 2
= expy —[(z — p— oc°t)® — 2uo“t — c*t°]|/20° { dz
a\/ﬂ/R {~l(z—p )2 — 2p 1/20%}

= exp{tu+ t?c 2/2}7/exp{ y? /(202 }dy

=il

With the MGF in hand, we can now calculate the moments of a Z ~ N (0, 1),

_)o for k odd,
u=0 | (E=1)!" for k even.

With a change of variables, this yields the central moments of X ~ N(u,0?) as

dMx
du

E[Z*] =

for k odd,

E[(X - E[X])*] =E[(X — w)*] =E[¢*2*] = {Sk(k — 1)l for k even.

O

Victor Panaretos (EPFL) Multivariate Statistics 58 / 244



Gaussian Vectors and Affine Transformations

Definition (Multivariate Gaussian Distribution)

A random vector Y in R? is Gaussian if and only if BT Y is a Gaussian random
variable for all deterministic vectors 8 € R<.

Observation: From the definition if follows that Y must have some well-defined
mean vector x4 and some well defined covariance matrix X.

To see this note that since E{(8' Y)?} < oo for all B, then we can successively
pick B to be equal to each canonical basis vector and conclude that each
coordinate has finite variance and thus E|| Y||? < co.

So all the means, variances and covariances of its coordinates are well defined.

Then, the mean vector p and covariance matrix ¥ can be (uniquely) determined
entrywise by equating

ui =Ele] Y] & Ty =cov{e) Y, el Y.
where e; is the jth canonical basis vector
o T
e =(0,0,..., 1 ooy 0,0)
Jjth position
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Gaussian Factsheet

Q@ MGF of YV ~ N(/J,Z): My (u) = exp (uTqu %uTZu) .

Q@ Y ~ N(upx1,Xpxp) and given Byyp and 0,1, then
6+ BY ~N(6 + Bu,BLBT).

© Marginals are Gaussian (converse NOT true).

Q If Y ~ N(px1,Zpxp),
AY independent of BY <= AYB' =0.

© Immediate corollary of (4): if (XT Y T)T is a Gaussian vector,

YL X & Yxy=0 < cov{();)}: (ZOX ZOY>

Q N(u,X) PDF, if £ -0 | fr(y) = xp{—%(y—M)TZ’l(y—#)} :

1
I
(2?7 [/

QO Y~ N(iTpy) = Y =pu+ 32, A Zu;, for Z; % N(0,1), and

and {(A;, u;)},_, the eigenvalues/vectors of ¥
Q If Y ~N(u,X), then supp{Y} =R(X) + p
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Covariance between x1 and x2 = 0.8

Covariance between x1 and x2 = 0

Covariance between x1 and x2 = -0.8
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Covariance between x1 and x2 = 0.8 Covariance between x1 and x2 = 0 Covariance between x1 and x2 = 0.8
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-2

Covariance between x1 and x2 = -0.8

Victor Panaretos (EPFL)

Covariance between x1 and x2 = 0 Covariance between x1 and x2 = 0.8

-2

%o
-4
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Proposition (Moment Generating Function)
The moment generating function of Y ~ N'(u, %) is

My (u) =exp (u'p+ tu'Tu)

Proof.

Let v € R? be arbitrary. Then v ' Y is scalar Gaussian with mean v g and variance v ' Zv.
Hence it has moment generating function:

t2
M,7y(t)=E (et”TY> = exp {t(’UT/.L) + 2(vTZv)} .
Now take ¢t = 1 and observe that
M,7y(1) =E (e“TY) = My (v).
Combining the two, we conclude that

1
My (v) = exp (’UT/J + EvT):v> . vER?,
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Proposition (Closure Under Affine Transformation)

For Y ~ N (ppx1, Xpxp) and given By, and 8,1, we have
6+ BY ~N(0+ Bu,BYB")

Proof.

Mospy(u) = E [exp{uT(e + BY)}] = exp {uTG} E [exp{(B’Tu)T Y}]
= exp{uTG} My (BT u)

1
= exp {uTQ} exp {(BTu)T/.L + EuTB):BTu}

1
= exp {uTG +u'(Bu)+ iuTB):BTu}

1
exp {uT(G + Bu) + EuTBZBTu}

And this last expression is the MGF of a N(8 + Bu, BEBT) distribution. a
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Proposition (AY, BY indep < AYB' =0)

If Y ~N(tpx1,Xpxp), and Amxp, Baxp be real matrices. Then,
AY independent of BY <= AYB' =0.

Proof

It suffices to prove the result assuming u = 0 (and it simplifies the algebra).

First assume AYBT = 0. Let Wimia)x1 = (g%ﬁ) and O(mrayx1 = (

My (6)

1
= exp {Z(ATU +BTo) L (ATu+ BT‘U)}

1
= exp 5 u AYATu+v ' BYBTv+u ' AYB v +v BYA'u

= May(u)Mpy(v),

i.e., the joint MGF is the product of the marginal MGFs, proving independence.
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Elexp{Y ' (A'u+B'v)}] = My(A v+ B'v)
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For the converse, assume that AY and BY are independent. Then, Vu, v,

Mw(e) = MAy(U)MBy(’U), V’U.,’U,
1
= exp {2 (u'AXA"u+v ' BEB'v+u'AXB v + vTBZATu)}

1 1
= exp {2uTAZATu} exp {2’UTBZBT’U}

1
== exp{2 X 2uTAZBTv} =1
— u' AYB'v =0, YV u € R¢ v e R™,

= the orthocomplement? of the column space of AXBT is the whole of R™.

= AYB' =0.

3recall that for Qx4 we have M-(Q) = {y € R™ : y ' Qz =0, Vz € R?}
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Proposition (Density Function)
Let ¥, , be nonsingular. The density of N'(ttpx1, Zpxp) IS

fY(y):WeXP{ (y — ,U)T): (y—,u)}

Proof.

Let Z = (Zy,...,%,)" be a vector of iid N(0,1) random variables. Then,
because of independence,

(a) the density of Z is

B D N 1 I 5 _ 1 1+
fZ(Z)_E_f21(ZZ)_H EX (—2Z¢) —Wexp (—22 z).

=1 7l')

9

(b) The MGF of Z is

Mz(u) =E {exp <Z uiZi> } = H E{exp(u; Z;)} = exp(u' u/2),

which is the MGF of a p-variate N(0, I) distribution.
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proof continued
(“H(b 1 1T
the N(0, I) density is fz(z) = ()= SXP (-1z272).

By the spectral theorem, ¥ admits a square root, X/2. Furthermore, since ¥ is
non-singular, so is ¥/,
Now observe that from our Property 2, we have Y = dyi2g 4 w~N(p,X).

By the change of variables formula,

fr(y) = frvezyu(y)

= [ZV2f{ P (y — u)}
1 1 )
= Wwexp{—2(y—#ff (y—u)}-

[Recall that to obtain the density of W = g(X) at w, we need to evaluate fx at
g 1(w) but also multiply by the Jacobian determinant of g~! at w.]

O
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Karhunen-Loéve Expansion

Theorem (Karhunen-Logve)

Let u € RP and X € RP*P be covariance with spectral decomposition

T
)\1 Uy

p
T=UAU" = (u ... u) S =D N

-
Ap Up

where {w;}!_, are the eigenvectors and {\;}?_, the eigenvalues. Then,

D 14
Y~ NX) = Y =uptd N’Zw = > (W 2Z+u w)y, 2 % N(0,1).
j=1 j=1

In words: if we do a change of basis and express Y ~ N(u,Y) in the basis of
eigenvectors of X, the new coordinates become independent Gaussians with means
ujT,u (the coordinates of w in the U basis) and variances A;.
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Proof.
Recall that

Y~ NuYL) <= Y =SY2W +u=UN2U"W +pu, W ~ N(0,lyxp)

and defining Z =UT W we get Z=UT W ~ N(0,UTU) = N(0,l,x,). So,

A2 I

SV2W 4 u=UNZ 4+ p=(u ... u) S

1/2

'aN'

P .
:#+Z)‘;/2Zjuj’ ZJ%N(O,].)

=1
Finally, note that
u n
T . T
u="U U,u:(ul up) S e= E (v w)y.
u;r j=1
g
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Proposition
IfY ~N(u,X), then supp{Y} = R(X) + p

Proof.

Assume u = 0 wlog. When X is of full rank, N'(u, X) admits a density, whose
form shows that any open ball is assigned positive probability. For the possibly
reduced rank case, let » = rank(X), let y € R(X) and € > 0 and observe that

: A1/2Z1 y up

fiN
—

2
P{HyY —Hyyl| <} 2P S <e
1/2ZT v ur

P{|Y —y|| <e}

© pw -l < e} > 0.

(1) is because y € R(X) and we already know (support and covariance lemma) that
supp{Y} C R(X), so Hy Y = Y almost surely and Hyy = y.
(2) is by the Karhunen-Lo&ve expansion.

(3) uses the fact that W = (}\1/2 Zi,y .oy Ay
R” with non-singular covariance

So we have y € R(X) = y € supp(Y), so R(X) C supp(Y).
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Singular Gaussian Density

@ When X, is singular, the N(u,X) distribution does not admit a density
with respect to Lebesgue measure on R?.

@ The support of N(u,X) is R(X) + u. This is an affine set of dimension
r = rank(X). So it admits an r-dimensional Lebesgue volume measure.

o Can we define a density w.r.t. this Lebesgue measure on the support?

Proposition

Let X ~ N(ppx1,Xpxp). Then, X admits a probability density with respect to
Lebesgue measure on u + R(X'/?) given by

Fr(o) = 1_[(21”)\)/1){_;( —WTTe- W}, 2 e XD +a

J=1

where 7 = rank(X) < p and {)1,..., A} are the non-zero eigenvalues of ¥.
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Proof.

The full rank case is already established, so we take rank(¥Y) = r < p. We start
with the case u = 0 and

¥ =diag{Ay, .., A, 0,...,0}

for \j >0,7=1,..,7. Given y € R(X) let Nc(y) = [17_,(y; — €, ¥; + €) be the
open rectangle of sidelength 2e > 0 centred at y. Then P{X € N(y)} equals

yite 712/(%) 2
Pl i {X € (m—eu+e)}] = H/ ———dmx [| PV -yl<eh

yi—€ j=r41

A(e) B(e)

But for 7 > r we have y; = 0 and Y; = 0 almost surely, so B(e) = 1. This
establishes the form of the density in the mean zero and diagonal covariance case.
For the general case u # 0 and ¥ = UAUT, note that

P{Y € A} =P{UT(Y —p) € UT(A — )} and
UT(Y — u) ~ N(0,UTZU) = N(0,diag{A1,...; Ar, 0, ..., 0}).

So the density is obtained by the change of variables z — U (z — u) and
observing that the term Udiag{\; ..., A, 1,0, ...,0} UT that will appear in the

exponential’s quadratic form equals ¥ by definition of the pseudoinverse. O
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Regression Representation

Since linear dependence is the only kind of dependence between two jointly
Gaussian random vectors X and Y, we may ask the question:

If we extract from X the part that is a perfect linear function of Y, is the
“remainder” independent of Y7

Theorem (Regression Representation)
Let u € R™™ and ¥ be a covariance on R™*™  expressed in block form as
Ux Xx Xxv
# ( Ky > (z}Y zy>

If X and Y are random vectors in R™ and R™, respectively, then the following
two statements are equivalent:

o(§)~NmD

o X=ux +IxyIW(Y — py) +e, with
Y ~N(uy,Zy), e ~ N(0,Ex —SxyEL ¥y ), ande L Y
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The theorem provides intuition as to how the pair (X, Y)T arises:

o First, we affinely transform a realisation of ¥ ~ N (uy,Xv) by a
deterministic affine transformation.

@ Then, we add an independent (of Y') zero mean Gaussian random variable €.

Consider the simplest case where X and Y are scalar, and var(Y) > 0. Then the
representation in the theorem reduces to the familiar expression

X=Fo+BY +e¢, Y ~ N(uy,var(Y)) independent of e ~ N(0, var(e))
where:

o Bo=pux — %uy is called the intercept

e f=cov{X, Y}/var(Y) is called the regression coefficient

@ ¢ is called the error or innovation that is homoskedastic in that
var(e) = var(X) — cov?{X, Y'}/var(Y) does not vary with Y.

This explains why we call it the “regression representation”.
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Proof when =0 and & > 0.

Since & - 0, we have X1, = Z}l. We begin by proving the “<" direction. Note
that if X is defined as stipulated by the representation, then,

X\ _ [ ZxyX3' Y +e \ _ [luxn ZxvIy €
Y |~ Y “\o L s y )

where the conditions on € and Y imply that

€ Yx —YXxyXy Zyy O
(%)~ (o7 1))

This implies that (X7, Y T)T is jointly normally distributed with mean zero and
covariance

lnxn ZxvIy ) (Zx —ZxvIy'Zky O lcn 0
0 L scm 0 Yy ) \Z¥'Zky  lmxm

_ <|nm zxyzyl> <>:X —TxyYXy Tk, O ) Lo

0 Im><m z}y ZY
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To prove the “=" direction we show that if W = (XT,Y )T ~ N(0,X), then:
QO X —YxyI,'Y LY.
QO X —TxyYI, Y ~N(0,Xx —TxyXy Ziy)
To this aim we note that
X=Yxy3Xy'Y = (Inxn  —ZxyZy') ( ); ) =QW & Y =(0 lnxm)W=PW.
Therefore:
o X —YxyX, 'Y L Y iff PXQT = 0, which is verified because PXQT equals
(0 | ) Yx Xxvy lnxn . (0 | ) x — nyz;lz}y
mXxXm Z}—(’Y ZY _Z;lz}'{y - mxm 0
P o\

> QT =0
e QW ~ N(0,QXQT") and importing our previous calculation of *Q"

Yx —YXxvIy Tiy

QZQT = (lnxn —ZxrIy") < :

) =Y x—YxyYy Ty

O

Exercise: Use the “support and covariance” lemma to establish the general case.
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Gaussian Conditionals

Corollary (Gaussian Conditional Distributions)

Let (X" Y T)T be a jointly Gaussian, comprised of concatenated random vectors
in R™ and R™, respectively, with mean and covariance

_ [ wkx ([ Ix Xxy
w=(tr) =0 %)
Then,
XHY =y}~ N (,UX +TxyEh(y — py), Tx — ZXYZTYZEY) .
Consequently, when ¥y is non-singular,

XKY =y}~ N (ux + Zxy Ty (y —uy) , ©x'). (%)

We highlight that when Xy is non-singular, the conditional covariance of X|Y is

Tx — TxyE, Ty, = O where Oy is the top-left n x n block of the precision matrix
© = ¥~ This follows from our block inverse covariance Lemma. This observation will come in
very handy in our next two Theorems. Call it (*). In other words,

the covariance sub-block X x of X is the covariance matrix of the marginal law of X.
the precision sub-block ©x of © is the precision matrix of the conditional law of X|Y
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Gaussian Conditional Independence

Theorem (Gaussian Conditional Independence)

Let (XT,Y T ,ZT)T be an (n + m + p)-dimensional Gaussian vector with
non-singular covariance matrix ¥ > 0 and precision matrix © = ¥ !, expressed in
block format as

Yx Xxv Xxz ©x ©Oxy Oxz
Y = Z;Y Xy Xyg & Yy l=06= @};Y ©y Oyy
Yz Tyz Xz ©%; ©Oyz ©z

Then,

{X LY} Z < Oxy=0.
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Proof.

Set W= (XT,YT)T. Since (XT,YT,Z7)T is Gaussian with non-singular
covariance, we conclude that F'x y|z = Fy |z is Gaussian, with non-singular
covariance T' = @ (by ()). In turn, this equals

-1
a1 [ ©x Oxy
= @W B (e}y Oy )

i.e. the inverse of the top left (n + m) x (n + m) submatrix of ©. Observe that:

e If ©xy =0, then
o_(8x O (et o
“\0 ey (o0 ey

which implies that Fix,y |z factorizes as Fx|z F'y|z by Property (5) of
Gaussians, and the form of Gaussian conditionals.

o If Fx vz = Fx|zFy|z, then Property (5) of Gaussians implies that I' is
block-diagonal, and so its inverse is also block diagonal, implying that
eXY =0.

D,
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Regression Interpretation of Gaussian Conditional Independence

In the setting of our last theorem, using the Gaussian regression representation
twice, we have:

o X=ux +Yxz50(Z — uz) +ex,

o Y=uy +Syz¥0(Z — uz) +ev,
where
o Z NN(ﬂz,Zz)
0 ex ~N(0,Xx —Txz¥,; ' Tx,) withex L Z
@ cy NN(O,ZY — ZYZZ?ZI,Z) withey 1L Z

Notice that ex X ey in general. When are they independent?

Proposition (Regression and Gaussian Conditional Independence)

In the same context as above, we have
€ Ox Oxy\ "
X X XY
~N|[O

ex Ley & @XYZO — {XJLY}|Z

Therefore,
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Proof.

Assume wlog that the mean is zero. By the regression representation,

( ex ) ~ ( X - Sxs5;'2 ) ~ <| 0 _zxzzgl) 2
ey )\ Y —-Zy3,'Z2 )\ 0 lpxm —ZyzX,! 7
Thus (e, €4)" is jointly Gaussian. The form of cov{ex}, cov{ey}, has already
been established. The cross-covariance, is cov{ex, ey} = Elexe ] which equals
E[(X — Exz5,'Z)(Y — Zyz%,'Zz)"]

= E[XY'|-E[X(ZyzX;'2)"]| -EXxzX,'2Y |+ E[Xxz5, ' Z(ZyzX,'2)"]

= EXY']|-E[XZ"E,;'S), — x5, E[ZY "]+ Exz5; E[2Z"]Z, 21,

= Txy - EZxz¥, Ty, —TxzX; 'Yy, +ExzE, X5, T,

= Xxy-— ZXZZEIZ;;Z
In summary,

oy { (ex)} _ Yx — ZXZ)E%IZ;Z >xy — ZXZZ,Z_;X;Z ® ( @TX @xy)fl
ey Yy —ZyzY, T, 1. YTy —XyzY, 'Y, ®ry ©v

7)., .
It remains to ascertain whether “(:)” is true.
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Fortunately, we may recall (%) to notice that the RHS equals ©, i.e. the

covariance of W =
explicitly. Namely, we can write

w |{Z = Z} ~ N(ZWZZZz,G)Evl

We can now write out

Yw — Tzl iy

)

which establishes that *

T
Y

)T

if the covariance of (e, €

(xT, vt

(& %
(=
(5
< >

given Z. And can use () to calculate it

) =

" is true indeed.
The second part of the Proposition follows from the fact that ex L €y if and only

is block-diagonal (Property 5 of Gaussians).

N(ZWZZZz, ZW = ZWZZ?Z?,—VZ)

)

2xy XzT 1 T T
—E 2, E(ZX ' ZY
5)-s[ 35t
2 Yxz\
XY)‘(: )55 ks 28
Y YZ
>:Xy> B (zxzzglz}z Yxz57 Xy
Y Tvs¥p Yk Tvi¥z Ty
X —XxzXy 1ZXZ >xy — szzzllz;z>
—YvsT, %), Ty - TyrT, D,

O
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Beyond Gaussian Regression: Best Linear Prediction

Let X and Y be random vectors in R™ and R™, respectively and write

> >
cov{X,Y} = (zfy ZXYY) .

How can we best predict Y using an affine function of X7
Formally, we seek an affine map R™ 3 z — B,z + S, € R™, such that
E|lY - 8. - B.X|? <E||Y - f - BX|?

is minimal over all choices of § € R™ and B € R™*™. Such a map is called a best
linear predictor.

@ When X and Y are jointly Gaussian, we saw that the conditional expectation
of Y| X is an affine transformation of X — hence it is the de facto best linear
predictor, seeing as it is the best predictor (linear or otherwise):

B =y —TyxThux & B.=TXyxXk

@ What can we say beyond jointly Gaussian vectors?

Theorem (Best Linear Prediction)

Regardless of the joint law of X and Y, the best linear predictor of Y| X is the

same as in the jointly Gaussian case.
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Proof.
Writing E|| Y — 8 — BX||? = Z:n:l ]E[( Y, — B; — BiX)Q]for B; € R'™" the ith
row of B, we see that it suffices to consider a scalar Y and B € R*",

The key step is to show that X and € := Y — B, — B, X are uncorrelated. But we
have done this already in the proof of Gaussian regression representation?!

Now E(Y — 8 — BX)? can be written as
var{Y — f—BX} +[E(Y — B —BX)]? =var{Y — BX} + [uy — B — Bux]?
We can immediately check that (8, B) = (B, Bx) minimises the second term
(yielding zero). Let's also check that this choice also minimizes the first term.
var{Y —BX} = var{Y — B« — Bi«X + B« + BxX — BX} =var{e + B« + (B« — B)X}
= var{e + (Bx — B)X} = var{e} + var{(B« — B)X}
= var{e} + (B« —B)Ex(B« —B)T

The first term does not depend on (5, B) and the second is clearly minimised at
B = B, since (B, — B)Zx(Bx —B)T > 0 for all B. O

?because to establish independence in the Gaussian context, we established
uncorrelatedness

4
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Partial Correlation

Let X = (X1,...,X,)" be random p-vector, with covariance ¥ > 0 and precision
matrix © = {6;} = 1. The partial correlation of X; and X; given {Xx s is
defined as
Pilk#ig = — %
1| k1, 8,16,
It expresses the correlation between X; and X; when controlling for the linear
effects of the remaining variables {X} }z;; on X; and Xj.

When the partial correlation vanishes, the corresponding variables are called
partially uncorrelated?.

e when X = (X,', X, , X;" )" is a partitioned Gaussian, X; and X, are
partially uncorrelated given X3 if and only if X; 1 X5|X3

e when X = (X,|, X,”, X;7) " is possibly non-Gaussian, X; and X are
partially uncorrelated given Xz if and only if X; — X}\. and X; — X5 are
uncorrelated, where X,:lg is the best linear predictor o# Xy given X3, k=1,2.

@ The last sentence could be given the heading “regression and conditional
uncorrelatedness” (compare to the “regression and Gaussian conditional
independence” theorem)

2Notice that this is always in reference to another set of variables!
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Gaussian Quadratic Forms and
Concentration
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The x2 Distribution

If Z is standard Gaussian, what is the law of ZT Z7?

Starting with Z ~ N (0,1). Note that Fz2(y) =0 if y < 0, and for y > 0 the
CDF is

Fp2(y) = P2°<y]=PZ] <y =P-v¥ <2<V
= ®(Vy) - e(—vv) = 2(Vy) — (1 - &(V¥)) =28(vy) - L.
Differentiating yields the PDF

() = 25 2(/3) = 2§§(miﬁ: ] = ﬁ#ﬁe*my*/?

The MGF is

1 * —1/2 —y/2 1 ~ —1/2 —(1—2t)y/2
My2(t) = W ey e dy = Wor y e dy,
v 0 v 0

and, provided that 1 — 2¢ > 0, the integral is finite and we can substitute u = (1 — 2t)y to get
* 1 1
Mya(t) = (1 — 2t)~1/? —— w2 2y = (1 —26)7M2, < =
p(O=(-27" | (1—21) ;

The corresponding distribution is called the x? distribution.
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Proposition (Gaussian Sum of Squares and Chi-Square Distribution)

If Z ~ N(0, lxxz), then the moment generating function of the random variable

Z'Z is given by
1
Myrz(t) =1 —2t)7%2  t< R

The proof is an easy exercise. The corresponding distribution is called the x?Z
distribution. This law is completely specified by the parameter k, called the
degrees of freedom.

Can easily establish establish the PDF, but it's not of much use to us.

Can easily verify Z ~ N (0, lgxy) satisfies E[Z" Z] = k and var{Z " Z} = 2k.
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0.5 i Zi;
0.4+ = Zj
0.31 = Zzg
0.24

0.11

0.0
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Exercise:
e X ~ N(0,%,xp) and X invertible, then X ¥ "1X ~ x2.
e X ~ N(0,l,) and H a projection, then X THX ~ x?2
o X ~ N(0,E;p), then XTENX ~ 2y o,

rank(H)"
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The Concentration of Measure Phenomenon

Lemma (Chernoff Bound for x%)

Given @ ~ x2, one has

PHQ_p‘>“}52e””? Vue€(0,1).
p

The proof is left as an exercise.
The plat principal is the following:

Theorem (Gaussian Concentration of Measure)

Let Z ~ N(0,lpxp) and X = ¥*/2Z + u with ¥ non-singular. Then, Ve € (0, 1),

P{I=72(X - w)I* ¢ [(1 - e)p, (L +¢) 2]}

p{IZI? ¢ [0 - 9p. 1 + 21}

2e—<P/8

I
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Proof of the lemma.
A Chernoff bound combinines the MGF with Markov's inequality:

P[Q — p > pu] = P[9P > AP¥] < o TAPUR[A(R=P)] = ¢ =APU AP (1)

A p
el — Apu + 2%
e ex: U+ 2\
<\/1 —ZA) B p{ i p}

for all |A| < 1/4 (in the last step we have used the inequality \/% < e2*? which is valid for
|X| < 1/4). Now we optimise the upper bound with respect to A. It can be checked that

exp{ — Apu + 2>\2p} has a global minimum at the value A* = u/4. Since u € (0, 1), we have
[X*| < 1/4, and we can plug A* into our inequality to obtain P[Q — p > pu] < e ul/8,

Now we go in the other direction, and consider

P[Q - p < —pu] = P[~8(Q — p) > Opu] = P[e=*(@=) > ¢9ru]
< e_SP"IE[e_e(Q_p)] = e_ep”e_epMQ(fﬁ)
Provided |6| < 1/4 we may define A = —8 and repeat the exact same steps as before to obtain

PlQ —p < —pu] < e=Pv?/8 To complete the proof, we put the two inequalities together to
observe that

{152 o or (258 o) or (25 <o) o

O
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Upon closer inspection, the result is striking:

@ given € € (0,1), the bound 2e—€P/8 rapidly approaches 0 as p grows

@ morally this says that:

in “high dimensions” (p large), the realisations of Z ~ N (0, I, xp)
highly concentrate near the surface of the sphere of radius ,/p.

@ In other words, the standard normal distribution in high dimension p is close
to the uniform distribution on the sphere of radius ,/p:

large
N(0, ) i Uniform(,/pSP™1)

p large

~Y

@ This may seem surprising given that the mode of the pdf is always at zero.
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In the case X ~ N(p, Lpxp) with £ = Udiag{A ..., ,}U" invertible, we have a
similar concentration, but this time around an ellipsoid:

@ centred at p

@ with the eigenvectors u; of ¥ as principle axes

@ with principle axis lengths 2A;1/2ﬁ.
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Proof of the theorem.
Using the Chernoff bound for the x,% distribution, we get

1211” — p

2e PV/8 > p
)

>u} = P{Z1P - > pu}u{2IP - 5 < —pu}}

1-{{l12> - p <z} 0 {121° - p 2 —pu} }

1= {4121 < (@ + w0 {127 > (1 - we} }

1-p{(-wp <2 < (1 + v}

and the result follows taking e = » € (0,1). O
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Spherical and Elliptical Distributions
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From Gaussian to Elliptical vectors

A key feature of a Gaussian vector X ~ N(u,X) is that the representation
XLu+3%2,  Z~N(,I.
e What if we replace Z ~ N(0,1) by some other “spherical” random vector W
@ Spherical means that

UW £ W for all orthogonal U.

e Equivalently (exercise) that W = §U where U ~ Unif{z : ||z]| =1}, £ >0is
a random scalar (called the radial part), and U L ¢

o Equivalently (exercise) v’ W = [|v|| W1, for all v (where
W= (W,...,W,)7")

o If a spherical law has density f, then necessarily f(z) = f(Uz) for all
orthogonal U. Hence f(z) = g(||z]|?) for some g : [0, 00) — [0, 00).
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Elliptical Distributions

Definition (Elliptical Distributions)

An random vector X = (Xi,...,X,)" is called elliptical with location w and
dispersion AAT = ¥ if and only if

X§M+AW,

for W a spherical random vector, and A,y 4 with p < d.

o Elliptical distributions are affine transformations of spherical distributions,
just like Gaussians are affine transformations of standard Gaussians.

Since any spherical random vector is represented as £ U where £ 1L U,
X iselliptical < X £y +¢AU, U~ Unif{z : ||z|| = 1}.

Notice that in the elliptical case (contrary to the spherical case) the radial part £
is unique up to rescaling, since A = (€/¢)(cA) for any ¢ # 0.
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Elliptical Densities

Let X = u+ AW for a spherical random vector W in Re IfAis nonsingular,
W =A"Y(X - p)

which implies that if W has density ¥(u) = gy(||u]|?), then X has density

fr(e) = 157 $(E2(0 — ) = s 00((@ — 0T e - ),

where & = AAT. Call ¥ the generating density of fx.

Comments
@ The density depends on z only via (z — u) "X 1(z — p)
@ Hence it is constant on ellipsoids, i.e. has elliptical contours (hence the name)

o Since X =pu+ cAcT W for any c # 0, the dispersion matrix ¥ is not
unique (it is unique only up to rescaling).
@ We have not assumed existence of second (or even first) moments.

e If a first moment exists, then u is the expectation.
o If second moments exist, then some rescaled version of ¥ is the covariance.
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Examples of Elliptical Distributions

o Evidently, all spherical distributions, and all Gaussians are also elliptical.

@ Gaussian variance mixtures, Y = p + +/CAZ, where 0 < ¢ 1L Z ~ N(0,1)
(exercise: show that cov(Y') = E[(]cov(AZ) and corr(Y') = corr{AZ}.)

@ A special case of Gaussian variance mixture (with v/{ ~ x2 is the
multivariate t distribution t(v, u, X), with density

(v +p)/2) (z—p)TZ Yz —u) - z € RP
Fo e (1 ) e,

flz) =

where p € R?, ¥, > 0, and v € N are the degrees of freedom. Note that
v > 1 is required for first moments to exist, and v > 3 for second moments.
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Properties of Elliptical Distributions
Elliptical distributions are important because:

@ they retain some of the nice properties of Gaussians
while

@ they allow for greater generality, heavier tails, and extremal dependence — the
Gaussian does not:

if (X1, X2)T ~ N(0,X) with corr(Xy, X2) = p and var(X;) = var(X;) = 1,
then X;3|X; ~ N(pz,1 — p?) and so

1_P z—00
P X X = =1-% D 0.
[X2 > z| X1 = 2] (:r 1+p> ity

Which properties do they retain?

@ Closure under marginalisation (exercise)

o Ellipticity is preserved under

e affine transformations (exercise)
e conditioning (possibly with a different generating density)
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“Gaussian-Like" Properties of Elliptical Laws

Closure Under Marginalization

If W=(XT,YT)T" is jointly elliptical with location/dispersion,

Bx Yx Xxy
Hw (/‘Y) v (Z;(Y ZY)
then:

Q X (resp. Y) is also elliptical with location ux (resp. @y ) and dispersion X x
(resp. Xy). Furthermore, if W has generating density 9, so do X and Y.

@ Q =BW + 48 is also elliptical, with location By + 8 and dispersion BEBT.
When they exist, the generating densities of W and @ coincide.

@ X|{Y = y} is also elliptical, with location ux — nyfg,(y — py) and

dispersion ¥ x — ZXyZJE,Z)T(y. Should they exist, the generating densities of
W and X|Y need not coincide.
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Sampling Theory: Gaussian and
Approximate
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(Gaussian) Data Matrices

. . . . iid .
An i.i.d. Gaussian sample is a collection X, ..., X, ~ N(ppx1, Lpxp) in RP. We
can stack then row-wise to build what is known as a (Gaussian) data matrix:

X ... Xu X[
le X2 X.

X=1{ . Tl TP | =cax . X))
X1 oo Xup X7

In a data matrix:
@ The n rows represent observations/cases.
@ The p columns represent variables/features.
@ Think of an m x p design matrix in linear models.
When sampling a Gaussian data matrix X, we wish to know sampling laws of:
@ Linear transformations of X, i.e. matrices of the form

AXB, AcR™"™ BecRP*Y,
@ Quadratic forms of X, i.e. matrices of the form

XTCX, C=CT eR™"
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Linear & Quadratic Forms

Why?

@ Sample mean X is a linear form

. 1
X' ==1,X=AXB,
n

with A = %1; and B = l,»p.

@ Sample covariance is a quadratic form

= 1
¥ = =XTHX
n
where the centring matrix H,, of dimension n is defined as
1
Ho = lnxn — — 1,1, .
n

Note that 11,17 =1,(171,) 1] is the projection onto span{1,}.Hence
H, is the projection onto spant{1,}.

@ The sample mean/covariance are sufficient® for their population counterparts.
3under some conditions
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Sampling Gaussian Vectors

Theorem (Gaussian Sampling)
Let Xy, ..., X, i N(u,X) be an random sample of size n of Gaussian d-vectors.
Then,

® The sample mean is a Gaussian vector: X = 2XT1, ~ N(u,n™'¥)

o The sample covariance is a Wishart matrix: n¥ = XTHX ~ Wo(X,n —1).

@ The sample mean and sample covariance are independent X I by

The results could follow from the behaviour of Gaussians under linear/quadratic
transformaton®

But it might be cleaner/simpler to restate such theorems in terms of data
matrices:
@ Properties of linear forms involving Gaussian data matrices

@ Properties of quadratic forms involving Gaussian data matrices

4vectorising row-wise and using Kronecker products
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Linear Forms
As a first question when is a linear form AXB of a Gaussian data matrix X also a
Gaussian data matrix?

@ Clearly AXB is always a Gaussian matrix (entries jointly Gaussian)

@ But to call it a Gaussian data matrix it must have i.i.d. rows.

Theorem (Linear Forms of Gaussian Data Matrices)

If X is a Gaussian n X p data matrix from N (u,X), then ApxnXBpxq is an
m X q Gaussian data matrix if and only if the following two conditions hold true:

(1) ’Aln = al,, for some a € R‘ OR|BTu=0|
o ]AAT — Blyuxm for some B € R‘ OR|BTYB=0]|
Clearly, when AXB is a Gaussian data matrix, it is from a N(aB ' u, BBTLB).

Proof.

Exercise. Note that post-multiplication of X involves adding weighted variables. Hence the rows
of XB remain independent. Thus rows of AXB) will be independent unless premultiplication by A
introduces some interdependence (premultiplication of X adds weighted observations). O
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Then we can ask when are two different linear forms AXB and CXD of a Gaussian

data matrix independent?

Theorem (Independence Between Linear Forms of Gaussian Data Matrices)

Let X be a Gaussian data matrix from N(u,X). Then

AXB 1L CXD <= AC" =0 0orB"YID = 0.

Exercise. Prove the theorem.
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Wishart Random Matrices

Now let's consider what happens if we “square” a Gaussian data matrix X:

Definition (Wishart Matrix)

Let X, xp be a Gaussian data matrix from a N(0, X) distribution. The p x p
random matrix X X is said to follow a p-dimensional Wishart distribution with
scale ¥ and n degrees of freedom,

XTX ~ Wy(Zpxp,n).

When ¥ = |, <, we speak of the standard p-Wishart distribution with n d.f.

Let's try to get our head around this definition:

@ When n =1 and ¥ = I, then we are looking at the distribution of ZZ T for
Z ~ N(0,lpxp) — the outer product of a standard Gaussian w/ itself.

@ Compare this with the inner product of a standard Gaussian Z T Z w/ itself.
Some properties are as follows (exercise):

O Wr Wp(Spxpn) &= WEST Wi, Wi % Wp(Spxp, 1)

@ W~ Wy(Xpxp,n) = E[W]=nX.

@ The lower triangular part of W ~ Wp(X,xp, n) has density if and only if n > p.

O W~ Wyp(Zpxp,n) = 0TWE/6T56 ~ x2, V8 ¢ ker(X).
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Proposition (Closure under conjugation)
W ~ W,(X,n) = BTWB ~ W,(BTZB,n)

Proof.
Writing W = XX for an n x p data matrix from N(0,X), we have
B'TW=B'X'XB=Y'"Y

where Y = |, ,XB is also a Gaussian data matrix, from a N (0, BTXB), by the
data matrix linear form theorem (evidently, lpxply = 1p & I, lpxp = lpxp). O

Corollary (Standardisation)

The random matrix W has a W, (%, n) distribution if and only if ¥1/2W¥1/2 has
a W,(H, n) distribution, where H = XY is the projection onto the range of ¥.

@ To see why this is standardisation, just assume ¥ is non-singular.
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Wishart Matrices from Projections

Recall that when Z ~ N(0,1,), and H is a projection, then ZTHZ ~ xfank(H).

What is the analogue for Wisharts? Note that Z'HZ = ||HZ||?, so the
corresponding Wishart quantity would be

Z"HZ

where Znyp = (2, ..., 2, ) 7.

Theorem (Cochran’s Theorem)

Let X, xp be a Gaussian data matrix from a N(0,%) and H be symmetric. Then,
XTHX is a Wishart matrix of mean ¥*. <= H is a projection.

When H is indeed a projection, XTHX ~ W, (%, rank(H)).
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Proof.

Let H= UAUT be the spectral decomposition of H. Then XTHX = XTUAUT X
and Y = UTXlis a N(0,%) Gaussian data matrix, because UTU = | and 10 = 0.
Thus, XTHX = YTAY =32 A, Y, YT, where Y; % N(0,X). Now:
e if H is a projection, then ); is either 0 or 1. Hence
S AY YT = S v YT o Wy (E, rank(H).
@ Now let rank(H) = g < n. Then only its first g eigenvalues A; are non-zero.
Assume now, as in the statement, that for some (yet unspecified) d,
NI AYYT ~ W,o(X, d). Multiplying both sides from left by e (the first
canonical vector) and from right by e;, then dividing both sides by e,/ > e;
and finally using the last exercise in slide 114 we arrive at equality in
distribution of:
@ On the LHS a weighted sum of g independent x2, with X; as weights.
@ On the RHS, a single x2

Equating the corresponding MGFs, yields for all ¢ sufficiently small

1 (1—2n8)" Y2 =(1-2¢)"%2 = []L,(1-2At) = (1 —2t)¢
and the last equality can only happen over an interval of t's if both
polynomials have same degree and same roots. Hence d = ¢ and A; = 1.
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We are now ready to prove the sampling theorem.

Proof (Sampling from a Gaussian)

The distribution of the sample mean vector follows directly from the theorem on
linear forms of Gaussian data matrices, because

XT=n"11]X
——
A

with Al, =n~!'111, = 1and AAT =n=11/n"11, = n=1. The distribution of
the sample covariance follows directly from Cochran’s theorem.

Independence of the sample mean and sample covariance follow from the theorem
on independence of Gaussian data matrix linear forms, by considering CX := HX
and AX := n_llzx and noting that ACT =H1, = 0 since H projects onto
spant{1,}.
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Hotelling's T2

A small parenthesis.

When doing testing, we will be interested in constructing statistics of the form
(X =) T HX —p).

But, more often than not, X will be unknown (nuiscance parameter). So we will
replace it by the sample version,

(X - )X - p).

Obviously, this will yield a different sampling distribution for the statistic than
when using X itself.

Definition (Hotelling T distribution)

Forn > p, let 72 = nY TW=1Y where Y, 1 and W,y, are independently
distributed as N (0,1) and W,(l, n), respectively. Then 72 is said to follow the
Hotelling T2 distribution with parameters p and n, written 72 ~ T2(p, n).
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Studentising (Hotelising?) in the Multivariate Case

Lemma

If X ~ N(u,Xpxp) independently of W ~ W, (X, n) with ¥ non-singular and
n > p, then
n(X — )W HX — p) ~ T?(p, m).

Corollary

Let X and ¥ be the sample mean and covariance of a N(u, X) iid sample. If
n > p and ¥ is non-singular, then

(n—1)(X - W) EHX - p) ~ T2(p,n — 1)
Exercise: prove the lemma and the corollary.

@ Recall that the square of a Student t,, distribution yields a F4 ,, distribution
@ Hence T%(1,m) = F1,;m = (tm)?
@ More generally, we have
mp
T = ——F .
(p,m) m_pt1 P" p+1
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Asymptotic Approximations

It may happen that X is a data matrix, albeit non-Gaussian.
What can we say about X and & then?

In general answer depends on row distribution.

We are instead looking for universality.

For this we need to consider an approximate/asymptotic law.

Essentially two parameters we can play with: n and p
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Weak Convergence of Random Vectors and Matrices

Definition (Weak Convergence)

Let {X,} be a sequence of random vectors of R%, and X a random vector of R<.
Let F,,, F : R¢ — [0, 1] be the corresponding joint CDFs. We say that X,

L . d .
converges in distribution to X as n — oo (and write X, — X) if

n—oo

FX"(.'L’) — Fx(.’f)

for every continuity point z € R? of Fy.

There is a link between univariate and multivariate weak convergence:

Theorem (Cramér-Wold Device)

Let {X,} be a sequence of random vectors of R%, and X a random vector of R<.
Then,
X, 5 X o0'X,50"X, Vo R

Exercise: show by counterexample that separate weak convergence of each
coordinate does not imply weak convergence of the random vector.
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When it comes to matrices,

@ the definition is essentially the same
o the Cramér-Wold device for n X p matrices reads

M, 5 M trace{ATM} 4 trace{AT M}, VA € R™*?.

Exercise: verify that the latter is the right formulation indeed.
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Recalling two basic Theorems

Theorem (Strong Law of Large Numbers)
Let {X,} be pairwise iid random vectors with EXy, = p and E||Xy|| < oo, for all

k > 1. Then,
1 Z"
n
k=1

e “Strong” is as opposed to the “weak” law which requires EX? < co instead

of E|X;| < oo and gives “B" instead of “Z%”

Theorem (Central Limit Theorem)

Let {Xn} be an iid sequence of random vectors in R¢ with mean u and covariance
Y with trace{X} < co. Let X, := .., X;/n be their sample mean. Then,

V(X —p) 5 N(O,%).

Exercise: prove this CLT using the 1D CLT and the Cramér-Wold device
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Convergence Rates and High Dimensions

@ Law of Large Numbers: assuming finite variance, rate of n=1/2
@ What about the CLT? What is the quality of the approximation?

Theorem (Berry-Essen-Benktus)

Let X3, ..., X, be iid random p-vectors with mean 0 and covariance |,y ,. Define,

1
Sp=—=(X1+...+ Xp).
\/ﬁ( 1+ alx )

If A, denotes the class of convex subsets of R?, then for Z ~ Np(0, I)),

/4R| X (13
sup [P[S, € A] - P[Z € A]| < c x B EIXlE
ACA Jn

for some universal constant ¢ < 400

@ Notice the dependence on dimension.

@ Can we let p grow too?
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@ By Jensen's inequality, when IE[XXT] = lpxp, we have

E{IX |} > E{||X|P}*/ = p*

@ So to make the upper bound shrink to 0, it is necessary that p = o(n2/7), i.e.

pn n—oo
2T — 0.

o here's what (for example) p ~ n?/8 = n'/% looks like

3.0
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000

2.0

15

1.0

i OOM

ooooooOooooooooo

0 20 40 60 80
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High Dimensional CLT

@ What about cases when p is of same order or larger than n?
@ In the context of the last theorem, assume that

o E[X7]>bforallj=1,..,p.
o E[|X;*T* ] < Bfork=1,2andallj =1,..,p.
o Elexp{|X;|/B}] <2foralli<nandj<p.

@ Then, if we focus only on rectangles R, of R?, we have
Theorem (Chernozhukov, Chetverikov & Kato, 2017)
log” 1/6
sup |P[S, € R] - P[Z € R]| < C x (‘)g(l"”))
RER, n

where Z ~ N(0, l,%,) the constant C' depends only on b and B.

CCK simply requires 2622 "Z%° 0, j.e. logp = o(n'/7), allowing for p > n
nl/

Compare to BEB necesary condition p = o(n?/7)
Improvement comes at cost of smaller class of sets Ry C Ay

Not a CLT in a traditional sense of “-%" (given approximation of probabilities

without convergence to some fixed random vector — “moving target”)
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Weak Convergence of Empirical Covariances

And what about the empirical covariance?

Observe that the empirical covariance is a sample average of the random matrices

XX, X, X,

@ These are iid with mean X and some covariance. In the Gaussian (and
elliptical) case this depends only on second moments but in general it will
depend on 4th moments (see next two slides).

@ They are elements of a real vector space of dimension p(p + 1)/2.
@ Therefore, the usual law of large numbers holds and the usual CLT hold

@ And, provided we can standardise, the high dimensional CLT holds
unchanged (i.e. with log[p(p + 1)] &~ log p? = 2log p = o(n'/7))
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Second Moments of Wishart Matrices (= Empirical Covariances of Gaussian Vectors)

Let's specify, for the record, the covariance structure of W = XX T, X ~ N(0,%).
Covariance of Wishart matrix (a.k.a. Isserlis’ Formula)

If W~ W(X,1), its covariance is, element-wise,

COV{’w,‘j, wkl} = COV{XZ‘X]', Xle} = E[XinXle] — E[XZX]]]E[Xle]

(00 + 0a0j + 0450) — 040k = Tir 051 + Ti0jk

The blue part is obtained by taking the mixed partial derivative of order 4 the
MGF of a 4-dimensional Gaussian (a tedious but elementary calculation).

This can be arranged (exercise) in vectorised form as
cov{vec(W)} = (£ ® T)(lp2 xz2 + Kyp)
where K, =527 37 H;® H;']T is the commutation matrix, with Hy; = ¢; e]-T.
The commutation matrix “transposes vecs’, i.e. K,,vec(W) = vec(W ).
Exercise: ¥ diagonal = Wishart entries uncorrelated, #j element has variance
(1+1{z=j3})os0y (recall notation o;; = ¥ = 02)
Exercise: ¥ > 0 = cov[{ws;}i<;] > 0 (lower triangular part of W).
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Second Moments of Empirical Covariance of Elliptical Vectors

Warning: in non-Gaussian case, 2nd moments do not determine 4th moments:
E[X:X;, Xp Xo] = ma(2,7, k, 1) # oot + 0qog + 04 0u

@ So we can't use covariance structure of a Wishart matrix in the CLT limit.
o Instead, we need essentially all (mixed) 4th moments (which, are also very
difficult to estimate)
A notable exception is for centred X with elliptical law of dispersion W o ¥. The
proportionality constant can be deduced to be E[X "W~ X]/p.
Here, fourth moments enter only through a simple scalar parameter
p  E{XTv'X]’}

- _1
T pr2) EXTVOIX]

Indeed, one can calculate
cov{vec(XX 1)} = (k + 1)(Z ® I)(lp2xp2 + Kpp) + kvec(X)vec(X)T.
or elementwise,
E[X; X; Xp Xi] = (k + 1)oinoj + (& + 1)0u0j + Koy o

So if ¥ diagonal, entries of XX T are uncorrelated, as in Gaussian case.

In the Gaussian case, we can calculate kK = 0.
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New Limit Theorems from Old

@ Occasionally we need to studentise by an unknown but consistently
estimatble quantity.

@ Other times, we have a CLT for a quantity, but we are interested in some
functional thereof.

@ For such cases, statisticians rely on two essential tools:

Lemma (Slutsky)
Let X be a random vector in R?, 8 € R?, and g : R?P x R? — R be continuous on
supp{X} x {6}. If X, 5 X inR? and Y, 5 6, then g(X,, Y») > g(X,c).

Theorem (Delta Method)

Let Z, := a,(X, — 0) 4 Z where 0 < ay, Tooandd € RP. Let g(-) : R? — R?
be differentiable at 6. Then, a,(g(X,) — g(8)) = [(V9)(6)]) 2.

Victor Panaretos (EPFL) Multivariate Statistics 131 / 244



Some Comments on Low vs High Dimensions

There is a fundamental difference between the low/high dimensional cases.

To see this,

@ Consider the n iid p-vectors {X;} with mean 0 and covariance |,.
@ Whether in low/high dimension, when it holds, the CLT heuristically says

vnX L N(0,1p), for large n.
= In the low dimensional case, X collapses to the true mean as n — oo
= In the high dimensional case, X concentrates on the sphere of radius \/f
(recall the concentration of measure phenomenon)

So depending on the ratio p/n we might very well not have a LLN.

This fundamental difference has immediate consequences when doing statistics at
low vs high dimensions — they are two distinct and very different regimes.
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Inference

Victor Panaretos (EPFL) Multivariate Statistics 133 / 244



Gaussian Mean and Covariance Estimation

Proposition (Gaussian Likelihood)

Let X1, ..., X, & N(u,X) be a sample of Gaussian p-vectors. The likelihood
L(u,X) of (1, X) is given by

LR (4 (2 - 0@ - w)T) SR}
(M emy=2)

exp {—g(i —u) =z - u)}xexp {—gtrace {ZTi}

where r = rank(X) < p and {\1(X),...,A.(X)} are the positive eigenvalues of
Y. Consequently, the likelihood depends on the data only through (X,%).

Some comments
o If/when they exist, the maximum likelihood estimators of (i, X) will be
functions of (X, ¥).
@ When X > 0, we immediately conclude that ()_(,f) is sufficient for (u,X), by
the Fisher-Neyman factorisation theorem.
@ Without restrictions on the support of the Gaussian law, the model is
non-regular (no common dominating measure).
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Proof.

We will make use of the following identity (exercise)

Sr(m -z — )T EN L (m - 2)(m —2) +n(E—u)(E -

Recall that when X ~ N(gpx1, Xpxp), X admits a density on p + R(X) given by

fx(@) = : o {-36-wTZie—m)} 1o e (D) +u

[T;_.(2m(E)

where r = rank(X) < p and {A1(X),...,A.(X)} are the positive eigenvalues.
Therefore, we obtain the joint density w.r.t. Lebesgue measure on pu + R(X) as

Ty, ey Tp) = [[i 1z € R(Z) +'u’}ex 1 S T — p) (2 — }
le,.‘.,Xn( DILLD! ) (1_[;:1(27r)\j(z))1/2)n p{ 2 Z( /'L) ( /*L)

a=1l
Let's first focus on the “red” factor, and then the “green” factor. The “blue”
factor needs no more work.
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Re-writing the quadratic form as a trace, and using the identity %, get red factor=

exp {; > tr (2 e — w)e - w)T) } = exp {;tr <ZT > (@ — ) - #)T> }
i=1

d=1

exp {—gtr (ZT(:Z’ —u)(z — /.L)T)} X exp {;trace {ZT Z(:& —z)(zi — i)T} }

i=1
= exp {—g(iz —u) =iz - ,u.)} X exp {—gtrace {ZTi}}

which is exactly the form sought.

As for the green factor, we need to to show that []_; 1{z; € R(X) + u}, or
equivalently ], 1{z; — u € R(X)}, is as stipulated. To do this we will use the
identity x again, combined with the claim (old exercise, reminder after the proof)
that for any Q > 0,

k
v, v € R(Q) & R (Z kaJ) C R(Q)

=1
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Assuming the claim © to be true, we immediately have

81— fyeeey 0 — p € R(T) 2> R (Z(n — (i — #)T> C (%)
i=il
& R(nE+n(@—p)z-u)") CR(E)
Since the factor n has no bearing on the inclusion, the proof will be complete as
soon as we establish our claim. This we do separately below. O

Lemma (Ranges and Spans)

k
v, € R(Q) < R <Z vkv,j> C R(Q)

=1

(we have seen this early in the course)
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The log-likelihood (up to constants) for u and X based on a Gaussian data matrix
Xaxp, m > 1, equals —oo when R (nf +n(Z —u)(Z - ,u)T> ¢ R(X), and
otherwise equals

rank (%)
L, Z log A\j (X (' WXz - p) - gtrace {ZTi}

which is finite for all Z — u € R(X). When X > 0 the log-likelihood is positive for
all  — u and equals

n n,_ 1 n 1
l(u,Z):—§10g|Z|—§(m—u)TZ l(m—,u)—atrace{): 1):}.

@ Imposing an assumption on the range of X (equivalently the support of the
random vector) represents imposing a restriction on the model

NP = {N(/J,Z) M E RP;prp = 0}-
@ Because the model Ny, is non-regular, maximum likelihood estimation
depends heavily on such restrictions.
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Theorem (Gaussian Mean/Covariance MLE)

Let X1,..., X, & N(u,X) be a sample of Gaussian p-vectors. Then,

@ the unique MLE of p is always X = 23" | X;.
Q@ Under the restriction R(X) = R(X), the unique MLE of (u,X) is (X, ¥).
© Without any range restriction,

e if ¥ is non-singular, the unique MLE of (u,X) is (X, ¥).
o if Y is singular, the MLE of u is X but the MLE of ¥ does not exist.

Corollary (The non-singular and low-dimensional case.)

If Xi,...; Xn = N(u,X) with n > p and ¥ > 0, then the unique MLE of . and ©

are X and S, respectively. Furthermore, X and n%./(n — 1) are minimum
variance unbiased estimators of u and ¥.

Exercise: Prove the corollary (use projections for the second part).
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Proof.

Notice that, unless & > 0, we need to be careful about the support of the joint
density. The joint density vanishes unless

R(nE+nE-p)(z-p)") CRE),

or equivalently

z — p € R(X) Vi< n.
When considering the joint density this is seen as a condition on the observations.
But when considering the likelihood, this is seen as a condition on ¥ and x. When
(1, X) fail to satisfy it, the likelihood becomes zero (and the loglikelihood
negatively infinite). Call this the “support condition”.
Now consider estimation of w first. The support condition compels us to only

consider u that satisfy Z — u € R(X). Now, regardless of the choice of ¥, the
middle term in the log-likelihood (the only term depending on )
n

—5@E-wTTE - p

attains its maximum of 0 when u = Z. This choice of u trivially satisfies the
support condition Z — u € R(X), regardless of choice of . So X is an MLE of u.
For uniqueness, let y be a candidate estimator satisfying the support condition, i.e.
z—1y € R(X). Since ZT = 0 on R(X), we have (z—y) 'Sz —y) =0 — y=z.
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To prove (2), note that wlog we can take R(¥) = R? (otherwise we rotate the
space). Equivalently, we take ¥ non-singular. Therefore any candidate ¥ is also
non-singular, so our search space is that of strictly positive definite matrices.
When we plug in the MLE of w, the loglikelihood reduces to

n _n -1l _ " _n 3
- log |X| 2trace {Z Z} 5 log |©] 2trace {@Z}
where © = ¥~1. Now let V = $1/2 > 0. Define W = VOV, and note that
log |W| = log{|\7| [E] |\7|} = log{| V|| 7|} + log |©] = constant + log O

while
trace{©3 } = trace{V WV 1VV} = trace{V}.

Hence, up to constants, the loglikelihood can be expressed as

P P P

log | W] — trace{W} = ) "log Ai(W) = > Au(W) = ) _ (log Ai(W) — Ai(W))

1=1 i=1 1=1
which can be optimised for each A; separately. Noting that 1 is the unique
maximum of logz — z over > 0 (check by differentiating), we get the unique
MLE for A;(W) =1 for all 4, i.e. W =lyy,, ie at©@=32"1ie at T =13,
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To prove (3), plug in the MLE for the mean in the general form of the
loglikelihood to get (up to constants)

_ rank(X) ) _ T o
(z.5) = { S log A(X) — trace {15} when R(T) D R(%),

[eS) otherwise.

consider the sets
={Z:R(E) 2RI}, C={R(X)=R(E)} Cs={R(T)DR()}

Plugging in the MLE for the mean, we see that:

@ Over C}, the likelihood is zero.

@ Over C,, the maximal loglikelihood is finite and is attained uniquely at 3.

o Finally, over C3, we can obtain a sequence with loglikelihood diverging to oo
as follows. Take £, =¥ + ap,vv ', where v € RE(Y) is a unit vector (think
of it as the “(# + 1)th eigenvector of 3") and 0 < o < As(X) with ap, | 0.
For all a,, the trace term yields the same value —7. The “logdet” term on

the other hand, equals — (E;zl log )\j(f)> — log(ctm) which diverges. O

Exercise: If u is known, the MLE of ¥ (if it exists) becomes L 57 (X; — u)(Xi —u)T.
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Estimation of Correlation and Precision

Recall that the MLE is parametrisation equivariant: for any transformation g
g is MLE of 8 = g(f) is MLE of g(8)

If g is additionally 1-1, then uniqueness is also inherited when present.

Exercise: Show this. Note that we can find the MLE of ¢ = g(8) by maximising
¢ — supPgc,-1(g) L(0) where L(0) is the likelihood for 6.

Thus, whenever > 0 and n > p, we obtain the immediate corollaries:
@ The MLE of the precision matrix © = ¥ 1 is given by> & := ¥ 1,
@ The MLE of the correlation matrix R is given by
R =diag{6; ',...,6, '} T diag{6;",...,6,"

where G; is the jth diagonal element of 5.

Sactually, our method of proof first showed 3! to be the MLE of 1, but anyway.
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Gaussian Hypothesis Testing

@ Unless we have very special hypothesis structure (e.g. simple vs simple, or
one-sided concerning a single coordinate of the mean), there will generally be
no unequivocal choice of test (no optimal test).

@ In special cases related to the mean, e.g. when ¥ is known to be diagonal,
one can do separate univariate tests, and combine them with a careful
correction.

@ A general (and usually sensible) general method is based on the likelihood
ratio.

(not the only approach, and other approaches can occasionally have
advantages)

@ Often we have a one-sample or a two-sample (or multi-sample) setting:
iid

e One sample: Xi1,..., X, ~ N(u, %)

e Two sample: Xi,..., X, e N(ux,Xx)and Y1,..., Y, e N(uy,XZvy)
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Natural one-sample hypothesis pairs:
o {Hy:pu=uo}vs{Hs:pu+# po} (either when T known or T unknown)
o {Hy: X=X} vs {H1 : X # X}
o {Hy:X ocl}vs {Hy : X ¢t |} (sphericity test)
o {Hy:pj =0} vs {Hy:p; #0}

° {HO . pij\rest = 0} Vs {Hl : pij\rest # O}
(must be interpreted w/ care, partial corr is always wrt to a set of variables)

Natural two-sample hypothesis pairs (can be generalised to multi-sample case)
o {Hy:px =puy}yvs{Hy:ux # py} with Xx = Xy (known or unknown)
(] {HO . ZX = Zy} VS {Hl : ZX 75 Zy}

o {Hy:ux =py}rvs{Hs :ux # uy} with Xx # ¥y (Behrens-Fisher problem)

Let's work out some cases to get the hang of it.
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The Likelihood Ratio Framework — Test Statistic

All the hypotheses previously formulated fall in the following general framework:
e X=(X;",..., X,])" random vectors, w/ likelihood L(9) = fs(X1, ..., Xn)
e 9 €O CR?where ® =0uU®O; and ©NO; =0

Definition (Likelihood Ratio Test Statistic)
The likelihood ratio statistic for Hy : % € ©g vs Hy : ¥ € Oy is

A = sup L(¥)/ sup L(?9)
LEC) €6,

@ Intuition: how much better do we do if we do if we do not restrict the
maximisation of the likelihood to be over the subset ©®37?

o We reject Hy for large A or of some monotone increasing cts function of A.

@ Which precise function depends on convenience (ease of calibration)

@ Often the following increasing function is easy to calibrate (perhaps
asymptotically)

2logA =2 <sup log L(¥) — sup log L(z?)) =2(L" - &)
P€0 €0,
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The Likelihood Ratio Framework — Calibration

Implementing a likelihood ratio test requires two steps:

@ Determining the test statistic

@ Calibrating the test statistic (or a monotone transformation 7(A) theoref).

Calibration refers to finding the distribution of 7(A) under Hp, so that we can
choose an appropriate quantile to define the critical region for rejection:

T(A) Tr = reject Hy at level a whenever 7(A) > q1_o(F)

@ Often, especially in exponential families (like the Gaussian) we can find the
exact sampling law under Hp.

@ But more often it is not tractable, and we need an asymptotic approximation.

@ A general such result for 7(A) = 2log A is given by Wilks' theorem.
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Theorem (Wilk's theorem)

Let X3, ..., X, be iid random vectors with density (frequency) depending on
¥ € R? and satisfying the “usual regularity conditions” (see next slide). If the
MLE sequence ¥, is consistent for ¥, then the likelihood ratio statistic A, for

Ho :{¥; = ¥,0};_1, s < p, satisfies 21og A, 4V~ x2 when Hy is true.

Note that Wilks' theorem applies for a simple null (not composite), though this
does not need to fix all the parameters (s < p is allowed).

Hypotheses of the form Ho : {g;(#) = a;};_,, for g; differentiable real functions,
can also be handled by Wilks' theorem:

o Define (¢1,...,0p) = 9(¥) = (91(F), -.., go(¥))
® Gsi1,..., gp defined so that ¥ — g(o9) is 1-1
@ Apply theorem with parameter ¢
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The "usual regularity conditions” are as follows:

(A1) The parameter space © € R? is open.
(A2) The support of fy is invariant w.r.t. ¥

(A3) All mixed partial derivatives of £ w.r.t. ¥ up to degree 3 exist and are
continuous.

(A4) E[Vsl(X;;9)] =0 VY and cov[Vel(X;;9)] =: I(9) > 0 V¥.
(A5) —E[VZ4(X;;9)] =: J(I) = 0 VI.
(A6) 36> 0st. VO € © and forall 1 < j,k, 1< p,

0

59,56,69,° )| < Mu(2)

for |9 — u|| < 6 with Mjy such that E[M;x(X;)] < .
For a proof, see the “Statistical Inference” course, or Serfling, “Approximation Theorems of

Mathematical Statistics” (Sec. 4.4.4.)
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One sample, {Ho : p = po} vs {Hi : p # po} (X known)

Let X1, ..., Xn, be a random sample from N(u,Xpxp) with £ > 0 known. As X
is known, Hj is simple, and hence the maximal log-likelihood under Hjy is

0 = 0(uo, ¥) = _g log det(27E) — %tr (z*li) - g(x —10)TE X = o).
The unrestricted maximal loglikelihood occurs at the unrestricted MLE,
_ 1 1 .
¢ = 4(X,%) = ~3nlogdet(2rX) — Sntr ():*12) .

Hence _ _
210g A = 2(¢" — £5) = n(X — o) T (X — o),

which, under Hy, follows the Xf, distribution. Thus we reject Hy at the level « iff
2log A = n(X — po) T HX — po)>aq-a(X3):

Note that we can invert this test to get a 95% confidence region for y in the form
{uo € R? : n(X — o) "ZH(X — po)<a1-a(xp)}

i.e. all the possible ug for which Hp isn't rejected.
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One sample, {Ho : g = po} vs {Hi : g # po} (X unknown)

Let X1, ..., X, be a random sample from N(u,X,xp) with X = 0 unknown and

n > p. ¥ must be estimated under Hy and also under H;. Therefore both
hypotheses are composite. Based on our results,

e Under Hy the MLE for u and X are

po and So=n"t Z;(Xi — po)(Xi — o) T =% + 667,
where § = X — pg.
@ Under H; the MLE for y and X are
X and ¥;=%.
Plugging into the loglikelihood expression, we obtain £§ = £(uo, Y+ §67) =

—g plog(2m) +log |5 + 667 |+ 67516 +tr{(S +867) 15 .

As ¥ > 0 as. when n > p, its rank 1 perturbed determinant is (exercise)
134867 = [¥](1+6T576),
which yields (via the Sherman-Morrison formula, exercise, and some algebra)

= —% [p log(27) + log |¥| + log(1 4+ 8T 57168) + P] .
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In the unrestricted case, we calculate
- A n N
¢ =4X,%) =7 [plog(em) +log|£| +p|,

and thus

2log A = 2(¢* — £5) = nlog(l+6"¥716) = nlog (1 - C(n - 1)5Tila)

n —

So this statistic depends upon (n — 1)8T 516, which follows the T?(p,n — 1)
distribution (hence often referred to as the Hotelling one-sample 7' statistic).

As 2log A is a strictly increasing function of the Hotelling statistic, we reject Hp

at the level « iff R
(n—1)8"Y716>q_o(T?*(p,n — 1)).

Exercise: Establish the matrix determinant and Sherman-Morrison formulas:
@ If X >0, then |4+ uu'| = |X|(1+u X u)
@ IfX >0, then (X+uu") 1=%x"1- m2_1uuTZ_l
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Two sample, {Ho : ux = py} vs {H1 : pux # py} with Tx =Xy =¥ known

Suppose that for £,4, > 0 known we have independent samples,
” i
Xla"')an’Z\‘ N(/J'Xyz) & Ylv"'v YmZ’l\’ N(/J’sz)
and we wish to discern whether they share the same mean or not.
@ The two samples are not identically distributed under both hypotheses.
e Still a global likelihood w.r.t. (uk,u3)" € R?? is obtained by multiplication.

m n, _ 1, m , _ —1,-
10%\Z|*§(I*MX)TZ 1($*#x)*5(y7uy)T2 Y7 —py)

—gtrace {Zflix} — gtrace {Zfliy} R

n+
Z(MX,/.LY) = -

e The null {Hp : ux = py} corresponds to a restriction on the parameter space
@ The corresponding restricted loglikelihood is

n-+m
2

Hux)=— log |Z|—g(i —px) ' TTHE - px) - %(?7 —px) ' Z7HF - px)
—gtrace {Zflix} — %traee {Zfliy} .
@ The two loglikelihoods differ only through the quadratic forms in blue.
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@ The restricted likelihood corresponds to that of the parameter ux in a
N(ux,X) model, based on an i.i.d. sample of size n + m. This is maximised
w.r.t. ux at the pooled sample mean,

1 ~ i n - m -
M= X; Y, | = X v
el D B R e

@ The unrestricted likelihood is maximised at (fix,2y) = (X, Y), at which the
blue term vanishes.

@ Thus, the difference 2(2* £}) can be seen to be equal to
20— 85) = X -M)TT YK -M)+m(Y - M) YV - M)
n—" (X -)Trt- " (% 9)
n+m n+m
5 3 \Ty-1_ " ¥
+ n+m(Y_X) bN n+m(Y X)
"% - )T ( sl Lz*) (X - 7)
n+m n+m n+m
"% -7 HX - 7)
n+m

Under Hy, 4/ n’f‘m()_( — YY)~ N(0,X), thus we reject Hy at the level a iff

nm - — — _
2lgh=— (X -V X -7 _a(x?).
og n+m( ) ( )>q-a(Xp)
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Two sample, {Ho : ux = py} vs {H1 : pux # py} with Xx = Xy = ¥ unknown

Suppose that Xy, > 0 unknown, n +m > p, and we have independent samples,

2id 2id
-Xla )Xn ~ N(/-I’X)Z) & Yl)"') Y ~ N(/J’Yaz)

and we wish to discern whether they share the same mean or not.
@ In this setting, one has an a.s. invertible pooled empirical covariance,

n m
3 1 ezercise n - m N
3= § X x;T § ;Y;" | —MMT E N N
ntm | 4 zl+. jY; ntm X+n+m Y
=1 =1
@ So the loglikelihood of the pooled sample is
n+m n, _ 1. m, _ 1,
Lux,py,X) = 5 10€|z|*5(1»’*,ux)—rz 1($*#X)*5(y*#Y)TZ Yy —ny)
n e m _1e
—Etrace{z ZX}—?trace{): Zy}.
n+m n,_ 1, m, _ —1,-
= 5 10%\2\*5(93*#X)TZ 1(’J’J*#X)*E(y*#y)Tz Y7 - py)

—n—;mtrace ):71< n 3 + m iy)
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With this form in mind, we can now easily verify that:

@ In the unconstrained case, the MLEs are the pooled mean and pooled
covariance.

@ In the constrained case, the MLEs are the two separate sample means and
the pooled covariance.

@ Repeating similar calculations as when X was known, we arrive at:
200 — )= " (X - V)TEYX - ¥)=nm(X — 7) (nSx + mEy) 1K - 7)

n+m

=Q
Which (when suitably rescaled) is known as the Hotelling's two-sample 7.

Proposition

Form +mn > p >1, let Xpxp and Yo, be independent data matrices from
N(ux,Xx) and N(py,Xy), respectively. If ux = py and Xx = Xy, then

(1— 2 >Q~T2(p,n+m—2)

n+m

This, under Hy,we reject Hy at the level « iff

(1 - _i m) Q>q_o(T?*(p,n +m —2)).
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Proof of the proposition.
From the Gaussian Sampling theorem and independence of X and Y, we have
nm

5= (X = )~ 8y (= oy,
n+m

> > H
X ok )EON(O,Z).
n(n+m) m(n+m)
- Hy
nXx ~ Wp(Xx,n—1) = Wp(X,n —1)
o H
mEy ~ Wp(Sy,m —1) = Wp(X,m —1)

where {Hp : px = uy &Xx = £x = X}. By independence, and the additivity
property of the Wishart, we thus have under Hy that

nEx4+miy ~Wy(Z,n—1+m—1)= Wo(Z,n+m —2).

Moreover, the Gaussian sampling theorem states that SxLXandSy LY.
Moreover, as X L Yso (X — Y) L (nXx + mXy).

Thus, by the “Hotelling Lemma" (slide 120)

n+m-—2

o nm(X - V) (nEx +mEy) (X - Y)~ T p,n+m—2)

Victor Panaretos (EPFL) Multivariate Statistics 157 / 244



Correlation test {Ho : p;; = 0} vs {H; : pi;; # 0}

For n > 2 and ¥ > 0, it suffices to consider the setting
3 2
X, X Zfl\‘/i wx UX Ox0Oyp
* 60 G # (E(0y, “))
o Where var{X;} = 0%, var{ Y1} = 0%, |p| < 1
o {Hy:p=0}vs{H;:p+#0}

The unrestricted loglikelihood occurs at the unrestricted MLE,

— o~ 1 ~ - -
£ = Y(X,5) = —Snlogdet(2n) - gtr (£1%)

_r log[2mo% %] — Dir (diag{a;z, U;z}i)
2 2
n

_no% _néy
2 2
20’X 2a'y
2
2
o
ZO_

n n N n -
2 logl2r] — 2 10g[63] - Zlogl63] - n
2 2 2
brecall that 1 is the unique maximum of logz — z over z > 0
Victor Panaretos (EPFL)

Multivariate Statistics

—g log[2m] — g log(6% &% — p*
The loglikelihood is always maximised w.r.t. the mean at the sample mean. So for
the restricted log-likelihood (under Hp) it suffices to consider the function
Z()_(,crf{,az )

5%26%)—n.
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It follows that the likelihood ratio

2log A = 2(£* — £) = —g log(1 — 4?)

is a monotone function of the squared sample correlation p%. This is in turn a

monotone function of -
b

1-p2

K =

Thus we reject when & is large. In fact, (n — 2)& 3 T?(1,n — 2), so we reject
Hy at level a iff
52

(n—2) >q o(T?(1,n —2)).

1-p2

Theorem (Empirical Correlation Under Independence )

In the context of slide 158, we have

22
(n_z)lfﬁ2 Bo 121, - 2).
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Proof.

Let X = (X1,.., Xn) T ~ N(px1n,0%1n), Y = (Y1,.., Ya)T ~ N(py1ln,0%l,), and
Fp = lpasen = %1n1; the centring matrix (projecting onto spanJ-{ln}),

H, =UQU", Q=diag,.,{1,..,1,0} & U'U = l,xn.
Then QUTX ~ N(0,0%9Q), QUTY ~ N(0,0%Q) and obviousy Q2 = Q, so

XTH, Y B XTUQQUTY « WV
VXTH,XYTH, Y VXTUQQUTXYTUQQUTY [IW] IV

p=

where W, V & N(0,l(n—1)x(n—1)) (independence comes from Hp). Consequently

we have the following collection of facts:

jid o . : .
° %, ﬁ % Unif(on the surface of the unit sphere in R*1).
° ﬁ = Ve, where V = (ﬁ, Va,..., Vn,1> is a random orthogonal matrix

obtained by randomly extending ﬁ to an orthonormal basis.

_vw "

4 w
L= vTw] -

T .
e = [y e by independence

e
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2 2
o d T d z . )
Therefore p? = (TTIVWTII) = Zf+...3rz2 for Z; iid standard normal variables, so

n—1
A
1-p2 ZZ2+4...+22,

which is the ratio of two independent x? random variables. When each is
renormalised by their respective degrees of freedom, we get

,52
1-p2
(recall the definition of Fy 4 are ratio of independent x%/p by X%/q) ]

(n—2) ~ Fip_2=T*1,n—2).

Some comments:

a2
@ The ratio ﬁﬁ (and the test) can be arrived at using the regression
representation (and can thus be interpreted in the same vein).

@ Assuming X > 0 implies that |p;| < 1
@ Thus, the derived test does not apply in the “boundary case”.
@ This is not an issue: if p; = £1, we will see it immediately in the data

(the two coordinates will realise perfectly along a line)
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Partial correlation test {Ho : pijjx = 0} vs {Hi : psjx # 0}

Say we have a sample of size n > 3, (X;, Vi, Z;) " “ N(u,X3x3), with © > 0.
We wish to test whether X is partially correlated with Y given Z,
{Ho: pxviz =0} vs {Ho:pxvz # 0}

where we recall

pxv|z = —Oxv/\/0xxOvy

Luckily, we don't have to do likelihood calculations again.

@ To this aim, we will use the regression representation (slide 85):

x x  Ixy Ixz ex 0 ox oxy) !
(y>~N “, EZTCY Ly Tyz ¢=>(£y)NN < 0 ), @4y Oy 0

z L . Z bz o .
with ex = X — ZXZZ}(Z — ,uz) and ey = Y — ZyzZTZ(Z — ;,Lz)

@ In the 2 X 2 case the inverse has the explicit formula

(GX 9XY>71 — o] ( Oy —9XY)
Oxy Oy —Oxy Ox
@ So we have reduced the problem to testing whether the correlation is zero in a 2 X 2
Gaussian setting!
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Therefore, the LRT will reject for large values of é’%: for pe, e, the MLE
of the correlation of €x and ey. =

We don't actually observe the sample of (ex, ey, Z)" but the induced
likelihood is equivalent to that induced by the observable sample

(i.e. it gives the same values at the same parameter choices)

Thus, using equivariance, since

p _ —|07 " |6xy __ Oxv
€X,€Y \/|671|9XX|@71|9YY \/OXXGYY
we get that the MLE p, ¢, equals — Sy

V éXXéYY
It turns out that the distribution under the null is now T2(1,n — 3), after
re-scaling by (n — 3), so we reject Hp iff
6%y /(6x8v)
1-6%y/(0x0y)

Exercise: Verify that pey,ey is the sample correlation between the residuals obtained when

(n —3) >T?(1,n - 3).

regressing X on Z and those when regressing Y on Z. Use this to establish the null
distribution, following the same steps when proving the theorem in slide 158, but using a
projection matrix other than the centring matrix.
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One sample, {Ho : X = Yo} vs {H1 : X # Yo} (with Xo > 0)

Let X3,..., X, be a random sample from N (u,¥,x,) with X >~ 0. The restricted
(under Hp) and unrestricted MLEs are, respectively:
° ):( and ;0.
e X and .
Thus,
" 5 n n e
25 = UX,%o) = — - log|2¥o| — _tr (£5'%)
« _ o oey_ T - n 2 1ey M - np
O =4X,x)= —3 log [27%| — Etr (Z lZ) =3 log [2m%| — o
which yield
|Zol
1|
If a and =y are the arithmetic and geometric means of the eigenvalues of Zalf,
respectively, then tr(X, 1Y) = pa and |, 'S| = 77, Thus,

2log A =2(£* —£g5) = —nlog ( ) + ntr (Zgli) —np = nlog|T5 S|4 ntr (Zgli) — np.

2log A = np(a — logy — 1).

The exact distribution of this statistic is non-trivial to obtain, but Wilks' theorem
applies so we can use the asymptotic approximation x2,, where m = p(p + 1)/2.
Thus, if n is large enough, we reject Hy at level « iff

2log A> ql_a(Xf,(erl)/z)-
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Two Sample, {Ho Y x = zy} VS {H]_ Y x 75 Zy}, with zx,Zy =0

Suppose that Xx, X v > 0 unknown and that we have two independent samples,
Xl)"')Xnéi"iN(:U‘X;zX) & Yl)"') Yméi"iN(:U‘szYL n,m>p
and wish to discern whether they share the same covariance or not.
@ The loglikelihood of the pooled sample is

n m n,_ — -
l(,ttx,,uy,zx,ZY)Z—Elog\fxl—Eloglzﬂ—g(w—#X)szl(m—ux)

m. 1= n _1e m e
—E(y—,uy)TZ 1(y—,uy)—Etrace{):xlzx}—?trace{zylzy}.

@ In the unconstrained case, this seprates into the sum of the two separate
likelihoods corresponding to each sample

Lpx, py,Xx,Xy) =L(ux,Xx) + L4y, Ly)

~ ~

which is maximised at the separate MLEs (X, Y, X x, 2 y) with maximum

b

n ~ m - n+m
&=~ log|ix| - 5 log[>v|~ %
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In the constrained case, the MLEs for the means are (X, Y) regardless of the
choice of covariance.

Plugging these in, the loglikelihood for the common covariance ¥ becomes

(X, 7,%5) = Ml g|):\77trace{z 1):X}7—trace{z 1Zy}
_ (n+m) (n+m) —1g
= 77 log |X| — 7trace{z Z}
where ¥ = Zy is the weighted average of the two sample

covariances (notlce thls |s no longer equal to the pooled covariance because
the two means are possibly different).

o Therefore 3 is the restricted MLE yielding £5 = —@ log |¥| — W

@ We arrive at

2(¢" - £5) = —nlog|Sx| — mlog|Lv| + (n + m)log|2|
The exact distribution of this statistic is non-trivial to obtain, but Wilks’
theorem applies so we can use the asymptotic approximation xZ,, where

p(p+1)

m = {#parameters — #free parameters under Ho} =2p + p(p + 1) — 2p — 5

Thus, if n is large enough, we reject Hy at level « iff
2log A> Q1—a(X;27(p+1)/2)-
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One Sample, Sphericity Test

Let Xi,..., X, be a random sample from N (u,X,xp) with X > 0 and n > p.
Consider the hypothesis pair,

Hy: X =)l for some A >0,
Hy: T #M forall A >0.

Both hypotheses are now composite. The LRT rejects Hy for large values of
(®/a5))"

a(¥) and (%) are the arithmetic and geometric means of the eigenvalues of 3.

Exercise: verify this.

@ Asin the case {Hy : X =X} vs {Hy : ¥ # X}, the exact null sampling
distribution of the LRT is not available in closed form.

@ However Wilks' theorem does not apply because the null is composite.

@ The asymptotic distribution can be obtained by different means, but is too
convoluted to state.
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Some general conclusions/remarks

@ Notice that the tests related to the covariances globally generally depend only
on the eigenvalues of the empirical covariance(s) and (when applicable) the
null covariance.

@ The Wilks x? approximation will be valid only for simple null hypotheses, but
not for composite hypotheses like sphericity.

@ The LRT test statistics make sense more generally, when well defined,
regardless of Gaussianity. In these cases, we can resort to asymptotic
approximations e.g. Wilks (when applicable or by direct use of limit
theorems).

Victor Panaretos (EPFL) Multivariate Statistics 168 / 244



Dimension Reduction
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Dimension Reduction

Dimension reduction is a means to introduce parsimony by way of projections or
low-rank techniques.

The key principle of dimension reduction is, roughly speaking that

most of the “statistical action” is happening in some latent hyperplane
of dimension far lower than the dimension p of the ambient space R?.

The name of the game is looking for good linear functionals (projections) which:

@ capture most of the action, when all variables are treated equally

o distill most of the dependence, when variables are treated as input/output

To this effect, we will see two types of analysis:

@ Principal Component Analysis
@ Canonical Correlation Analysis
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Here are two caricatures to keep in mind:
@ The “thin scatterplot” (for PCA)
@ The “picket fence” (for CCA)
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Principal Component Analysis

@ Let X be a random vector in R? with covariance matrix X.
@ We seek v; € S such that X's projection onto v; has maximal variance.

e And j > 1, we seek direction v; € spant{vi,...,vj_1} such Y's projection
onto v; has maximal variance.

Solution: maximise var(v; X) = v, Tv; over ||v1]| = 1
d
v Tu; = v UNUT vy = [|[AY2UT o2 = ZAi(u;—vl)z [change of basis]
i=1

Now Z?Zl(u;vl)Q = ||v1||> = 1 so we have a convex combination of the {};}*

j=1'
d

Yopdi, Y pi=1, p;>0, i=1,..,d

=1 %

If A1 > A; > 0 so clearly this sum is maximised when p; =1 and p; =0 Vj # 1,
i.e. v = :i:ul.

Iteratively, we find v; = fu;, i.e. the eigenvectors of X.
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The eigenvectors of ¥ are called the principal components (of variation)

The ratio Aj/tr{¥} gives the % of variance explained by the jth component.

The actual projection (u;, X) = u;' X is called the score of X.

Scores along different components are uncorrelated:

When Zle Aj/tr{Z} for k < p, PCA is useful for dimension reduction’

cov{y;, X, uJ-TX} = v Tu; = \1{i = 5}

PCA is always valid from a mathematical standpoint, but is most interesting
from a statistical standpoint when

e It helps reduce dimension considerably, and/or
e When the principal components have a good interpretation as new variables.

7

see next slide
Victor Panaretos (EPFL)
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Theorem (Optimal Linear Dimension Reduction Theorem)

Let X be a mean-zero random variable in R? with p X p covariance X.. Let Hy be
the projection matrix onto the span of the first k eigenvectors of . Then

E[|X - HeX|P < E[IX - QX|P

for any p x p projection matrix Q with rank(Q) < k.

Intuitively: if you want to approximate a mean-zero random variable taking values
R? by a random variable that ranges over a subspace of dimension at most k& < p,
the optimal choice is the projection of the random variable onto the space
spanned by its first k principal components.

“Optimal” is with respect to the mean squared error.

For the proof, recall that:

Q is a rank k projection if and only if Q = Zle vj'uj—r for orthonormal {Uj}le. J
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Proof.

Write Q = ]?_ v;v,' for some orthonormal {v;}* .. Then,
g=1 "7 %] JJi=1

E|X -QX|P = E[XT(1-QT(1-QX]=E[tr{(l-QxXT(1-Q)"}]
= tr{(I-QE[XXT](1-Q"}=t{(I-Q"(1-QT}

n k
= tr{(l-QX}=tr{Z} —tr{QI}=> X —tr{ > vvX
=1 =1
n k n k
= Z)‘i — Ztr{vjvaZ} = Z)‘i — Z va):v]-
=1 =1 =1 =1
n k
= > Ai—) Varly X]
=1 j=1

If we can minimise this expression over all {v;}¥_; with v;"v;; = 1{5 = j'}, then
we're done. By PCA, this is done by choosing the top k eigenvectors of ¥. O
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More generally, we can also show that:

Theorem (Eckhard-Young-Schmidt-Mirsky, Hilbert-Schmidt case)

Let Ypup = S0 Aiww] =0 and X = S35 Niwu;| be its rank k spectral
truncation. Then,
IX = Zillgexe < (IEX = lgexe

for any [ of rank at most k (not necessarily non-negative definite). Here

[AIRoxs = tr(ATA) = ||vec(A)|[Z,-

Note that ¥ = Hy>XHy where Hy, = Zle uZuZT projects onto span{uy, ..., U }-

Shows that PCA can also be interpreted via the optimal low rank approximation
of the covariance matrix. The theorem relies on Von Neumann's trace inequality

t:{AB}| < 37, 0:(A)oi(B) J

(recall convention that singular values are always taken to be > 0)
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Proof (of the trace inequality)
By the SVD, the statement is equivalent to showing that

|trace{ AUQV T }| < trace{AQ}

for orthogonal matrices {U,V} and (say) p x p diagonal {A,Q}. We express A
and Q as weighted averages of the projectors Py = Zle €; eiT, with {e;} the
canonical basis of R?:

A= (A1 = 22)P1+ (A2 = A3)P2 + ...+ (Ap—1 — Xp)Ppe1 + ApPp = S 7_ P
Q= (w1 —w2)P1+ (w2 —w3)Pa + ...+ (wp—1 —wp)Pp_1 +wpPp = > 0 BiP;
With this representation, our sought inequality becomes
>% iy aiBjtrace{P;UP;VT}| < 3°% | a,f;trace{P;P;}.
This will follow by the triangle inequality if we can bound each term as
|ov; Bjtrace{P;UP,;VT}| < a;B,trace{P;P;},
For i > 7, P;UP; = (P;uy, ..., P;u;,0,...,0) so we must show Z{C:l(Piuk, ) <7

This follows from the Cauchy-Schwarz inequality since ||P;ug|| < [Jug]| =1. O
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Proof. (of the low rank approximation theorem).

Writing T = WQVT in SVD form, we open the square and use the trace inequality:

||Z - r”kpxp = ||z||]?§z’><z’ + ||r||]2RFXF - 2tr(zr)
p p r
> DN A W -2 N

P
= Z)\—w]

j=1

p
= infrramk<k IZ =Ml > > A
j=k+1

Setting [ = ¥ = HiXHy attains the lower bound on the RHS. ]

o Note that positive definiteness does not play a role — using a truncated SVD
gives similar result for the best low rank approximation of any matrix

@ The result (with different proof) is valid for any unitarily invariant norm
@ The “green inequality” is useful more generally.
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PCA in the Gaussian Case

If X ~ N(u,Epxp), it admits a Karhunen-Loéve expansion:
) y
2%
X—p=> tu, &~ N(O,X)
i=1

where Yu; = A\;u;, 1 <t < p, gives the spectrum of ¥, and &; = (X, w;).
Notice that:
@ wu; are precisely the principal components.
o &; are precisely the scores.
@ scores along different components are independent (not just uncorrelated).
@ scores along different components are Gaussian.

@ therefore, distinct component scores can be analysed completely separately
So, in the Gaussian case, PCA = KL, so we get independence/Gaussianity.
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From the perspective of the covariance remember that when X ~ N(u,¥Xpxp),

supp{X — u} = R(E).

Thus, by our low rank approximation theorem, PCA is equivalent to successive
(and nested) dimension reductions of the support of X.

(in non-Gaussian case, we find the best fitting hyperplane of given dimension to
the true support)
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Interpretation
Why not just use principal components, no matter what?

@ PCA basically represents a change-of-basis
@ In the new basis, everything is mathematically simpler

@ But our intuition/interest is in terms of original basis,

e Coordinates in original basis correspond to variables/features.
(age, weight, height,....)

e Coordinates in PCA basis are linear combinations of variables/features: (e.g.
—0.3x age +0.275%x weight —0.59x height +...)

o |deally, we find combintaions that are interpretable and/or sparse
@ But there is no a priori guarantee that this may be the case.

o Motivates £; penalised PCA:

ur 1= arg max {UTZU - 7-||u||1}
ul|=1
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Sample PCA

If we only have an iid sample, Xi, ..., X;,, we can define the sample principal
components and the sample scores in precisely the same way as before, but
replacing the mean /covariance (i, ¥) with their sample versions (X, ).

o Caution: the observed (realised) sample scores have zero empirical correlation
...but...

they are correlated as random variables, since they are based on empirical
principal components (which are approximations to the true ones).

@ In similar vein: in the Gaussian case, the sample scores will not be
independent

@ In the Gaussian case, MLE equivariance immediately establishes that:
Proposition

Let X1, ..., Xn ~ N(u,Xpxp), where & has spectrum {(A;, w;)}_,, and assume
that the MLE of (u,X) exists (in which case it equals (X,3)). Then, provided
A1 > ... > Ap, the MLE of {(A\;, i)} is given by the spectrum {(A;, @;,)} of X.

@ Strictly speaking, eigenvectors are unique up to sign, so we rather estimate
the “eigenprojections” u;u, by their sample version 4,4,
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In what sense does the optimal dimension reduction property of PCA hold at the
sample level?

Corollary

Let X3, ..., X, be iid random vectors in R?. The best approx1mat/ng k- hyperplane

to the pomts {X1,..., X} is given by X + fR(Zk) where 35 = Zk Nwa s

the rank-k spectral truncation of 3. Equivalently, defining Ay = Ele ﬂzu;,

ZII(Xj = X) = Fe (G = XIP < Y0 11% — v = QX — o)

j=1

for any v € R? and n X n projection operator Q of rank at most k.

Exercise: prove the corollary. Hint: notice that randomness doesn't play a role,
and do so for deterministic vectors. You can define a new random variable for
which the (rescaled sums) correspond to expectations...
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Sample vs Population PCA

Viewing the spectrum {(};, %;,)} of ¥ as an estimator of the spectrum {(A;, u;)}
of ¥, one naturally is led to the following questions:

@ (coarse) what performance guarantees (e.g. MSE) can we establish?
Q@ (refined) what is the (asymptotic) sampling distribution of {(};, @, )}?

) is easier than (2), by way of what are known as perturbation bounds. Viewing
as a perturbation of ¥, we see how the spectrum is perturbed.

(1
>
This is very easy to do at the level of eigenvalues:

Lemma (Eigenvalue Perturbation Bound)

max [ % — Aj| < [|E = Zlgexs
J

Exercise: check this (we've essentially already proven it!).
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Eigenvectors require a little more work:
Theorem (Eigenvector Perturbation Bound)

Let ¥ > 0 and ¥ > 0 have spectra (Aj,w;) and (5\]', 4;), respectively, both with
distinct eigenvalues. Define u) = sign{(u;, ;) }u;. Then,

1% — ufll < 2v205 ||Z = Ellzexs,

where a1 = (A1 — A2) 7! and aj = max{(Aj_1 — A;) "L, (A — A1)t} g > 2.

o Distinct eigenvalues allow for individual eigendirections to be identifiable.
@ But eigenvectors are unique only up to a sign change, hence the use of uf

Proof

We will prove this by “wedging” the quantity ||[X%; — A;%;|| between the two terms in the sought
inequality. Note that

T - N = (T -E 408 - (4~ 4 +3)8 = (- D)5 + (3 - 1),
Thus, the triangle inequality and the “green inequality” (slide 178) imply that
1285 = %] <IE = D)yl + 135 = Al < I1Z = Zlloo + 1T = Ellgwxs

and since || — ¥[|oo < || — ¥||gex» the RHS is majorised by 2|/~ — 3 ||gsxp.
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Now for all 1 < 5 < p we aim to lower bound ||X#; — A;%;|? below by (202)~1||u¥ — 4;||2

P
T Y 2
(|1 X% — X441 = E k:1<):u] X, ug)

p
Do () = (g, w))?
~ . ~ —2 -~
Zk: (M = %j)*(%, w)® 2 min(he —%)* Zk#(% w)?> o Zkinu]a%)Q

Recalling that w* = sign{(v;, #;)}u;, observe that [|u* — %||? can be written as

W) (G ) 0w )
£ )P+ 30w = (@, ue))® = = [ )2+ ) 0 (3, )?
Since ), (%, u)? =1,

P
Do, (w5 w)? = {sign((u,

{1 ey, w3 =D (g, w)? — 2, )| + (%, w)|?

k=1

= (@) + 205, ) = (8, w)[} < > (8, w)?

kg

= ki
because (i, u;) < 1. Thus 2Zk¢j(ﬂj,uk>2 > luf — ;|2

Combining the inequalities in blue, and re-arranging the constant factors, we arrive at

12 -2 5 2 2y—1 2112
48— 512,00, > (158 X2 > a2 Y, (5, u)? > (202)~Huf — & O
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Sampling Distribution of the Spectrum

Notice that one way to get rid of the use of u* is to always use the convention
that U (and U) are taken so that their diagonal elements are non-negative. This
eradicates the sign ambiguity from all the eigenvectors. And will be useful in what
comes next. Call this sign consistency.

Now we move on to (2) from our earlier list: distributional results on {(3;, )}
@ Exact sampling distribution is unwieldy, even in Gaussian case.
(unless we have isotropy)

e Asymptotic distribution (n — oo, p fixed) easier to access
(and arguably more useful /informative)

We will develop the asymptotic law of the empirical eigenvalues, and that of the
empirical eigenvectors, and then see how they simplify when dealing with a
Gaussian data matrix.
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Sampling Distribution of Spectrum

. . S d .
Recall that, as n — oo with p fixed, v/n(X — X) = Z, where Z is a mean zero
Gaussian random matrix. We can use this to obtain:

Theorem (CLT for Empirical Spectrum)

Let X1, ..., X, be iid p-vectors whose covariance ¥ has spectrum {i,uw)¥_,,

with Ay > ... > X, > 0. Let {(A;, &, )} be the spectrum of ¥, and assume that
{(, u,)} are chosen sign-consistently. Then,

0 {Vn(} — M) h<i<p —= N(0,®), where by = B [(Zu;, wi)(Zuj, w)].

Q /n(UTU-1) 4 W for W = {W;;} a centred Gaussian matrix, such that

0 ifz=1orj =7y,

g | {24, wr) (Zu;, w0)
N — % N —

cov{Wa;, Wy } =

otherwise.

@ We can easily deduce from (2) that UW,, = ,/n(U — U) < UW which is also
a centred Gaussian limit.

@ In fact, the proof shows that the sequences in (1) and (2) are jointly
asymptotically Gaussian, for what it's worth.
Victor Panaretos (EPFL) Multivariate Statistics 188 / 244



Proof.

We will leverage the CLT for Vn(E - X) % Z in order to obtain the sought CLT.
Assuming that U and U are defined sign-consistently, define

Q. =UTy/n(EX - )U = y/n(U"EU - UTZU) = /n(T, — A)
Tn

Dp:=vn(A=NA) & W, =/nUT0-1)

and observe that we may write

vl R ) ()

Tn uTo A 0Tu
or equivalently,
* T WD +Wo AW D, W, | WD W,
Qn =W,A+ AW, +D, + —— NG e

We also note the constraint that

~ T
U'Uis orthogonal = (I + \\//V%) is orthogonal =— W, + W, + % Z0.
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With all these definitions/relations in place, let us start to look at asymptotics:

Q Q. —dz Q = UTZU where Z is the (centred Gaussian) weak limit of
v/n(X —X) and so Q is centred Gaussian itself.

@ All terms in (%) scaled by 1/4/n or 1/n converge to zero in probability, by
submultiplicativity of the matrix norm || - ||co and our perturbation bounds:

N - ES d

Walleo < llv/2(UT0 = Dlzexs = [Iv/n(0 = U)llzexs < crlly/n(E —D)llpexs = c2é
s o ES d

IDallee < lVR(A=Mllrexz < /PsuP1¢;cyp A —A] < collv/R(X = D)l[roxr = 2§

where c1, c2 € (0,00) and £ is a scalar random variable, so dividing by a negative
power of n kills off the last two terms of (*) in the limit.

© So by (1) and (2) combined with (x), Slutsky's theorem implies that
WA+ AWT + D, % Q
Q Additionally, (2) combined with (x*) implies W,, + W, 4 0, which means

that the diagonal of W, vanishes asymptotically, and consequently so does
the diagonal of W, A + AW, seeing as A is a diagonal matrix.

n

@ On the other hand, D,, is — by definition— diagonal for all n > 1.
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Consequently, letting G : RP*P — RP*P be the projection onto diagonal matrices,

Dn - an = 9Dn - an
= 9D +SG(WpA + AW, ) — GQr—G(W, A + AW,)
= G(WoA+ AW, + D, — Qu) — S(WrA + AW,))
d
— 0.
This proves that D, = \/ﬁ(f\ —N) S 9Q = lim, o {law(5Q,)}, and so
{v/n(Aj — Aj)}1<j<p has a centred Gaussian limit in distribution.

As for the limiting covariance of {y/n(}; — Aj)}i<j<p, this is simply the
covariance of the diagonal elements of Q = UTZU (which coincide with the
diagonal elements of §Q).

Noting that the latter is
cov{e; Qe;, ejTer} = cov{e;/ UT ZUe;, ejTUTZUej} = cov{y; Zu;, ujTZuj}

and since E{Z} = 0 the latter is E [(Zu;, u;)(Zu;, u;)], as claimed.

This settles the eigenvalues, and now we turn our attention to the eigenvectors.
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Letting G be the projection onto matrices with zeros on the diagonal,

W — AW, — Y22 () W A4 AW = GH(W,A 4+ AW] +D,) % §4Q

.
is asymptotically mean zero Gaussian. But W"V:l/" 2, 0 and we notice that the
elements of W, A — AW, are simply wj;(n)X; — A wi;(n) = (A — A;)wgi(n), so

Hence W, itself has a centred Gaussian limit W, by Slutsky, with

{1 #;}

Wy = A — A

sz
And, we can get the covariance between pairs of entries W by suitably rescaling
the covariance of the corresponding pair of entries of Q = UT ZU:

0 ift=1orj=7j,
cov{Wi;r, Wy} = - [<Zu1 2 (Zw,u)

Ap—=Ai Ajr—=A;

] otherwise.

O
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Sampling Distribution of the Spectrum — Gaussian Case

Corollary (Asymptotic Law of Wishart Spectrum)
Let X1, ..., Xn ~ N(u,X) be iid p-vectors whose covariance ¥ has spectrum

{(iyu) ), with Ay > ... > A, > 0. Let {(5\2', 4;,)} be the spectrum of .

Assume that {(%;, u;)} are chosen sign-consistently. Then,
0 {Vn(}j — X)hi<i<p —%, N(0,d), where & = diag{2)2, . 2223

O W,=nUT0-1 % W for W a centred Gaussian random matrix.
@W.LD

Q@ Writing W = (W4, ..., W,) columnwise, we have:

cov{ W;, W;} = Z

k;éz

s )\kek e,;r
(A: — Xp)?

e el
Aidjeje;

& cov{W;, W;} = NGV WEE
z g

i<
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Salient features in the Gaussian case:

Eigenvalues asymptotically independent between them

Eigenvectors asymptotically independent of eigenvalues.

@ But eigenvectors not asymptotically independent between them (makes sense
as they are orthogonal).

Judging from the (Gaussian) asymptotic standard deviation of \/ﬁ)\j we see
that crossings will happen often even for well-spaced eigenvalues.

e We can easily deduce that A, = UW,, = \/n(0 — U) 4 UW = A with

T T ) .
cov{A;,A;} = Ek# % & cov{A;,A;} = —E‘;j‘f_%, 1#£7.
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Proof.
By our Gaussian assumption, we know that ny ~ W(X,n — 1) and therefore
nU"YU = nT, ~ W(A,n —1). Consequently,

Qr = /n(T, —A) 4HQn~ N(0,Q) C = covariance of W (A, 1)
and so the entries of Q are uncorrelated (see slide 129 recalling that A is
diagonal), and hence independent (as they are jointly Gaussian).

It follows that GQ is independent of G Q for any projection G : RPXP — RPXP that
“zeroes elements’ and its complementary projection G, in particular for G being
the projection onto diagonal matrices. Recalling from our previous proof that

VA=A 539Q & rUTO-1)S%gtQ

we establish (3), and the centred Gaussian limits claimed. The covariance in part
(1) now follows by directly inspecting the corresponding entries of C from slide
129. As for the covariance in Part (4), recall from our last proof that

Wy = 1,\{:21} Qi

and thus scale the corresponding entries of C from slide 129 accordingly. O
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Sampling Distribution of the Spectrum — Elliptical Case

We only used the Gaussian assumption to specify the asymptotic covariance.

In non-Gaussian settings, we can still specify the asymptotic covariance, but it
depends on comprehensive (mixed) fourth moment structure, which is unwieldy.

However, we saw (slide 130) that dependence on fourth moments is “minimal” in
ellpitical families. Indeed, we can straightforwardly deduce the extension below:

Theorem (Asymptotic Law of Elliptical Spectrum)

Let Xy, ..., Xn be centred iid elliptical p-vectors whose covariance X has spectrum
{(Aiyw) ¥, with Ay > ... > A, > 0. Let {(A;, &,)} be the spectrum of >.
Assume that {(%;, u;)} are sign-consistent. Letting x be as in slide 130,

Q D, =+/n(A-N) 4 DforD a diagonal and centred Gaussian random matrix.

O W,=nUT0-1 < W for W a centred Gaussian random matrix.
O@Wl.LD
Q@ Writing W = (W4, ..., W,) columnwise, we have:

Aidrere) Aidjeel
cov{ Wi, Wi} = (1+5) Z & conW W (G
v J

O — Ap)2 v
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Sample vs Population PCA — “Executive Summary”

High level summary: assuming Ay > Ay > ... > A, > 0 and sign-consistency.
No matter what,

@ Sample eigenvectors and eigenvalues are jointly asymptotically Gaussian
@ Sample eigenvectors of different index remain dependent, even asymptotically
In the Gaussian-case,

o Covariance structure for sample eigenvalues/vectors is tractable and depends
only on second moments. This structure shows that:
e Sample eigenvalues of different index are asymptotically mutually independent
e Sample eigenvectors are asymptotically independent of sample eigenvalues
In the elliptical case,

o Covariance structure for sample eigenvalues/vectors is tractable, depends on
second moments and the “4th-moment-parameter” k. Structure shows that:
e Sample eigenvalues of different index are asymptotically mutually independent
e Sample eigenvectors are asymptotically independent of sample eigenvalues
In the non-elliptical case,

e Covariance structure for sample eigenvalues/eigenvectors is possibly
intractable, depends on comprehensive mixed fourth moments.

@ Evan asymptotically, sample eigenvalues may be dependent for different
indices, and may be dependent with sample eigenvectors.
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Selecting the # of Components

A priori, there is no unequivocal way to choose a truncation level k.

We can interpret k in various ways:

@ As a tuning parameter in an approximation problem (% of variance explained)
@ As a tuning parameter in an inverse problem (condition numbers, CV)
@ As a model parameter to be inferred (testing/estimation)
@ As a model index to be selected over (model selection)
Conversely, approaches to choosing k implicitly or explicitly represent a choice of

interpretation. Sometimes different approaches give essentially same criterion.
But not always. They often boil down to “eigenvalue decay” criteria.

No single approach is superior in all circumstances, and the choice of method is
often guided by the specific data and problem at hand.

Combinations of methods can be employed (with careful calibration of significance
levels if the testing approach is among them, to avoid data snooping bias).
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Selecting the # of Components — The Scree Plot

No matter which

Eigenvalues

method one chooses, the scree plot often shows up:

o

Represents “derivative” of approximation error function.

Leveling off suggests diminishing returns in terms of approximation.

Often seek “elbows” if such are present.

Rationale: past elbow, scree plot is essentially constant. No point in

truncating to dimension past elbow point, you might as well not reduce at all,

since all the remaining dimensions are virtually exchangeable.
Can also add approximate error bars (Cl) in Gaussian case.
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“Scree is a collection of broken rock fragments at the base of a cliff or
other steep rocky mass that has accumulated through periodic rockfall”
(Wikipedia)

Scree slope at the bottom of Yamnuska, Alberta, Canada (Wikipedia)
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Selecting the # of Components — % of Variance Explained

% of variance explained is simple enough in principle:
E=min{1<j<p:(+...+3)/tr(X)>1-8}

@ (3 can be chosen to some standard level, e.g. 0.15 or 0.1 (no gold standard)

@ More often B is chosen to depend on the empirical eigenvalues , e.g. via
simultaneous inspection of the scree plot and cumulative variance plot:

Cumulative Variance Explained

(here line is drawn at B = 0.15, corresponding to 85% variance explained)

@ Doing so subconsciously corresponds to some form of penalized % of var
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Selecting the # of Components — Condition Numbers

Often, the sample covariance is used as a device for a downstream task, usually
through its (generalised) inverse, or that of its square root:

linear prediction, testing, classification

In this case, if the sample covariance is ill-conditioned,
CN:=X /%, > 1,

it can lead to wildly fluctuating outcomes even under small sampling variation.

Look at condition indices
CIj = 5\1/5\1', _’] = 2, ey Py

and truncate at first 7 where CI; > ¢* for some threshold c*.

@ Intuitively: you try to choose the maximal rank k truncation that still leads
to a well-conditioned (according to the threshold) matrix.

(notice that this relates bijectively to the scree plot)

In the case of prediction, one can also use Cross Validation (CV).
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Selecting the # of Components — Testing

Possible model for random vectors with “nearly rank k" covariance is

{lower dimensional signal} + {isotropic noise}

Specifically, we model X as
X =L+,

i.e. X is a noisy measurement of the latent vector of interest L, where:
@ L is a random vector in R? with rank k < p covariance ¢ = Z;-Czl ¢juiuiT.
@ ¢ is a random vector in R? with diagonal covariance 8l,,, 8 > 0.
e cov{L,e} =0 and [{qﬁi distinct } OR {¢; > 0}} (for identifiability)

a.k.a. “spiked covariance model”. The covariance of X then becomes

k )
cov{X} = +6l = Z(d)i + 0wy, + Z Ou;u,
=1 1=k-+1

In this setting:
choosing & <= inferring as of where population scree plot becomes flat
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Eigenvalues
<)
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T T T T T
2 4 6 8 10
Index

This is a population scree plot under the previous model. The sample version will

not be as clear-cut!
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Given a candidate k € {0, ..., kmae } = K, where kppr < p — 2 (think why),
@ we can test the last p — k principal components of X for sphericity,
@ equivalently, test the sphericity of A = cov{Qx UTX}, with Qg being the
(p — k) x p matrix obtained when deleting the first k rows of I, xp,
Hio: Ap =6l(p_t)x(p—r) for some § >0,
{Hk,l D Ap # el(p—k)x(p—k) for all 6 > 0.

Whenever the hypothesised value k is chosen by scree plot inspection (data
snooping) over the set K, we will need to adjust for multiple testing:

@ Let py be the p-value corresponding to Hy o
@ Let p1) < p(2) < ... be the ordered p-values, from smallest to largest.
@ Starting at 7 = 1 and going up,

o If pijy < reject the hypothesis corresponding to p(;) and go to j + 1.

(IK[—=5+1)"
o If piy > (‘Kl‘_"ﬁl) “accept” the hypothesis corresponding to p(;y , and all
hypotheses corresponding to p(j:y with j' > 7, and terminate.
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This is the Bonferroni-Holm adjustment, ensuring that the probability of falsely
rejecting Hx = Ugex Ho 1 is at most a. Note that,

Urer Hop = {Ho : rank(®) < kmax }
The least 7 (if any) for which Hj ¢ is accepted is the de facto estimate of rank(®)

Some remarks on the testing perspective:

@ Likelihood ratio test for { Hy ; vs Hy ;} similar to the “full case”. Here, too,
asymptotic distribution is convoluted to state, but available.

@ Other test statistics are also possible, leading to approximately x? sampling
laws under the null.

o Criteria related to thresholds (% of variance, condition numbers) have a
confirmatory (as opposed to exploratory) version via tests (that the
population quantity satisfies the threshold). These are of limited interest in
practice.
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Selecting the # of Components — Model Selection

If we assume a specific distribution (e.g. Gaussian) we can employ model selection
in the context of the low rank plus noise model:

@ Then, the low rank plus noise covariance testing scheme can be seen as a sort
of analysis of deviance for covariance:

e Each such model is a restricted version of the general (unrestricted model)
when k = p.

e For k1 < ky the corresponding models are nested.

e Thus the test at step k& can be seen as a likelihood ratio test for a submodel.
More generally (and for different models) small k yield parsimonious models
At the same time, smaller & will usually yield worse fit (lower max likelihood)
thus can use an information criterion (AIC/BIC)

Depending on the precise model, these will lead to threshold criteria.

Exercise: in the low rank plus noise models, they take the form
Aj > threshold(n) which resemble a (sample-size dependent) condition
number criterion.
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PCA based on Covariance vs Correlation

PCA is neither invariant nor equivariant to re-scaling variables differentially:

@ Changing scale (or units) in one variable changes the PCs.

@ This change is not commensurate to the re-scaling (no equivariance).

@ Concretely: if we have a trivariate context with heigh in m, weight in kg and
age in years, we may want to switch to gr, ¢cm, and months. But we get
different results if we

e Multiply the data by 100, 1000 and 1/10 and then perform a PCA.
e Perform a PCA and multiply the coefficients of the three variables in the
components by 100, 1000 and 1/10.

@ Ideally all the variables have similar scales. Otherwise, changing to a very

small scale in one variable will exaggerate its contribution to u;.
Two often employed (but not definitive) solutions:

o Consider “natural” units. Hopefully the domain expert knows in precisely
what scale they wish to discover dependencies. This relates to the notion of
effect size: what changes are scientifically —as opposed to statistically—
significant in the context of the problem.

e Standardize all variables (hence, the PCs are derived from the correlation
matrix rather than the covariance matrix). This might seem the best, but it
has problems of its own (scree plots, sphericity tests, testing for components

all become dubious in terms of interpretation).
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Canonical Correlation Analysis

The context:
@ Suppose that our variables can be naturally assigned into two groups:

e “Inputs”. For example, lifestyle/exercise variables.
e “Outputs’. For example, health indicators.

@ Seek to understand associations between “inputs” and “outputs”.
e We investigate the pairwise correlations between all input/output pairs.
@ But such approach is arguably inefficient and ineffective :

o If both groups have cardinality p there are p(p — 1)/2 such pairs.

o Possibly no single pair is too correlated, but the groups are as a whole
Canonical Correlation Analysis seeks to approximate/summarize the associations
with relatively few statistical summaries.

@ Each summary the correlation between some linear combination or input
variables, and some other linear combination of output variables.

@ It is in this sense that CCA can be thought of as an extension of regression
(regression can be thought of as CCA with a singleton “output” group)

@ Another way of thinking about it: CCA is to cross-covariance matrices what
PCA is to covariance matrices (“between” vs “within” dependencies).
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Canonical Correlation Analysis — Problem Statement

Let X and Y be random vectors in R? and RY, respectively and write

Xx Xxvy
ZIY Ty )’

Assume wlog that p < q. We seek o € R? and f € R? to maximise

Y =cov{X,Y}= (

cov{a' X,8T Y} =a Xxyp.
Clearly, we need a constraint, or else the objective can grow without bound:
var{a' X} =a'Yxa=1 & var{f'Y}=8"YXyB=1
Such a pair (a1, f1) is called the first pair of canonical variables, and its covariance
cov{a X,B] Y} =corr{a! X,B{ Y} =w,
is called the first canonical correlation.

The second pair of canonical variables (a2, f2) and the second canonical
correlation is defined in similar way, but with the additional constraints:

cov{a] X,a9 X} =0a; Lxa; =0 & cov{B, Y,B, Y} =p,XyB: =0.
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Canonical Correlation Analysis — Solution

Provided X x, %y > 0, we will show that k = rank(X xvy) canonical pairs exist.
Moreover, we will show that the canonical pairs are given by
—-1/2 —1/2 .
a]—z/uj &ﬁ]_z/]’ J<k,
where (u;, v;) are the singular vectors of the canonical correlation matrix®
Y i e e U [ VAN
and canonical correlations given by the corresponding singular values of ®.

Exercise: Check that the canonical pairs {(ozj,ﬁj)};-“:1 satisfy the sought
constraints. To do this, write

—1/2 —1/2
Apr = Zx U & Byyg =2,V
where U = (uy...%4,) and V = (vy ... v,) and check that

{ax)}= (6 o) e (s o) = (&7 L)

8as distinct from the cross-correlation matrix!
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Theorem (Canonical Correlation Analysis)
Let X and Y be random vectors in RP and R?, with p < q, and let
_ ([ Xx Xxy
Y =cov{X,Y}= (Z;y sy )
with £x, Xy = 0. Let k = rank(X xy) and let UQVT be the SVD of
N i e e
where U = (uy ... up) and V = (vi...vg). Then, forj =1,..,k,

sup cov{a' X,B'Y}= corr{(Z}l/zuj)TX, (Z}l/ij)T Y}=wj
(3)ec;(x,v)

where the constraint sets C;(X,Y) C RP*? are defined as

Ci(X,Y)= {(g) ERPHE i var{aT X} =var{BT Y} = 1},

Ci(x,Y)={(§) €C1(X,Y) :cov{a X,a] X} =cov{BT Y, Y} =0Vi<j},j > 2
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Proof.
That o; = Z)_{l/zuj and B = 2;1/2'0_7‘ are feasible (satisfy the constraints) has
already been established by our last exercise. To establish that the supremum is
equal to the two quantities as stated, we proceed in two steps. First we notice that
corr{(Z;{l/zu]-)TX, (Z;l/ij)T Y}= u]Tz;/szyz;l/zvj = ujTUQVTv]- = wj.
So the second equality is immediately true by the SVD. As for the first equality,
1/2 —1/2 —1/2,<1/2
cov{aT X, BTY}=a TxyB = (T 2a) 5 Sxy T2 (ZY28) = 4T 08.
So we have the equivalences (with the analogous implications for ’s and 8's)
a'Yxa=1 < y'y=1landcov{a' X,a] X} =0 <— (Z;/Qai)T'y =0.
——
=i
Hence, as (a, §) range over the constraint sets C;(X, Y'), (v, 6) range over
Ci={(aT,BT)T €RFHe: 4Ty =6T6 =1},

€= {(aT,ﬁT)T €CliqTyi=0T9, =0V1 <j}, 5 = By oo (o

The result will now follow from Cauchy-Schwarz and the SVD of ®.
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By the Cauchy-Schwarz inequality, we have
[y " 06| < [I7][[|®6]] = [|l7[|VET ST 6.
With this in mind, we now note:

@ The upper bound is attained when v is collinear with ®8. So to maximise the
expression, we seek feasible v and € such that vy is collinear with ®8.

e ®Td > 0. So, by PCA, the second term of the upper bound is maximised
over the constraint sets C; and C; at the first k& eigenvectors of oo,
respectively. Equivalently, over the first k right singular vectors {v; };< of ®.

@ Once this choice is made, we note the choice of unit vectors vy in the
constraint sets do not affect the value of the objective, so long as they are
. . SVD .
collinear to the corresponding ®v; "= w;u;. This forces us to choose the
from the constraint sets C; and C; as the left singular vectors {u;};<y of ®.

Backtransforming from «'s and 8's to a's and 's now completes the proof.

Exercise: show that when p = 1, the only non-trivial canonical correlation vector
is the (standardised) leasts squares estimator of the regression coefficient vector.
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Invariance/Equivariance of Canonical Correlations/Pairs

Contrary to PCA, the nature of CCA constraints make it equivariant under
standardisation — and invertible affine transformation more generally:

Theorem (Invariance/Equivariance of Canonical Correlations/Pairs)
In the same context as the previous theorem, let
f(z)=Fz+¢ and g(y)=Gy+ry

be invertible affine transformations on R? and R?, respectively. Then,
@ the canonical correlations of {f(X), g(Y)} are the same as those of {X, Y'}.

@ the canonical pairs of {f(X), g(Y)} are the the inversely transformed
canonical pairs of {X, Y}, via =% and g=!, respectively.

Proof.

Covariance is invariant to translations, so we may assume ¢ = v = 0. Let

kxv(a,B) =cov{a' X,8'Y} & ks4(a,B)=cov{a' FX,8 GY}

be the original and transformed objectives.
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Consider the (bijective) change of variables

§)o()-(3) e o-(7 &)

In these variables:
ki gla, B) = cov{aTFX,,BTG Y} = COV{&TX,,BT Y} = /cx,y(o"c,,é).

(a,B) € Ci(f,9) © var{fa ' FX} =var{f GY} =1 & (&, f) € C1(X, Y)

&l x BTy
And, given this equivalence, we have for 7 = 2, ..., k,

(,8) € C;(f, 9) & (e, B) € Ca(f, 9) & cov{aTFX,a FX} = cov{pTGY, BT GX} =0 Vi < j
= (&g B)cci(X,Y) & cov{a"X,&] X} =cov{BTY,BX}=0Vi<j
= (&,8) €Ci(X,Y)
Letting (&;,,5‘;) be the maximiser of kx,y over C;(X, Y), and (g*> =D1 (ai>,

kx,v(&5,87) > kx,v(&,6), V(& Bj) € Ci(X,Y)

= kpg(af,B]) > kr (e, 8;), V(ay,B5) € Ci(£,9) O
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From Population to Sample CCA: Executive Summary

@ At the level of sample, CCA can be carried out b}/ reelacing the covariance
matrix by the sample covariance matrix. Since (Xy,2y) are consistent for
(Zx,Xy), we have P{Xx,>y > 0} =1 for all n sufficiently large (exercise)

e So for n sufficiently large, when the singular values of the cross-covariance
> xy are distinct, the sample canonical pairs and canonical correlations are
the MLE of their population versions.

@ As for their asymptotic properties, notice that the sample canonical
pairs/correlations can be related to the eigenvectors/values of ®® ' and

®Td, where & := i}lﬂixyi?/g

@ So we can use our perturbation bounds once we can control the deviations
|6FT — dDT [|rexs and [|BTH — &TD||gss

e In the presence of invertibilty, ¥ — ® and ¥ — & are Lipschitz continuous,
and so we can obtain such bounds. Similar arguments involving the
differentiability of these maps can be used to obtain y/n asymptotic Gaussian
limits (allowing inference) via the delta method. Exercise: Use the spectrum
to show that ¥ — ¥2, ¥ £71, T s T2 are C at T = 0.
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(Gaussian) Graphical Models
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Warm-Up: Markov Chains

As an important special case consider a stationary Markov Chain:
@ A sequence of identically distributed random scalars &1, &2, &3, -..
@ Markov property: the past is independent of the future given the present:

{&itick L {&isrlér, Vk.

@ by stationarity, the transition density f¢, ¢, = g is time-invariant.

Assuming that X = (¢, ...,&,) T is jointly centred Gaussian, this implies that

& ~ N(0,6%/(1—-p%), Eer1 = P + €xta
p = corr{lx,&ry1), P <1, g L &, e, X N(0,0%).

This is known as the Gaussian stationary AR(1) model (autoregressive of order 1)

Exercise: Show this via the regression representation of conditional independence.
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Loglikelihood and Precision Matrix for Stationary Gaussian AR(1)

The Markov property stipulates that the density factorises:

F€1y 603 ©) = fer (€15 Hf@m& &111¢;0)

j=1

where the conditional densities f; . ¢.(-|y; ©) are N(py, o?) pdf’s. For a single
realisation of the vector X = (£1,...,&,) ", this yields a loglikelihood (up to
constants)

p—1
ti(p,0%) = —%log ( o ) _(p—1)logo® (1-p)% D (§j+12;2pfj)2
1=1

1—p? 2 202

When n independent realisations X; = (&1, ...,fi,p)T are available, we get

n p—1

=1 j=1

Notice the information gain: get order np observations for 2 parameters! (instead
of n observations to estimate order p? parameters)
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What about the precision matrix?

The only pairs (§;,&;) that are not conditionally independent given
{&x : k ¢ {¢,7}} are adjacent pairs, i.e. |2 —j| = 1. Consequently:

the precision matrix © of a stationary Gaussian AR(1) model is tridiagonal.

Now notice that ¥ is determined elementwise via

cov{€;, s} = /var{&;}var{€; 14} x corr{€;, s} = )

And so we can directly verify that © = ¥~ = L"L where

-2 0 ... 0

—p 1 0 0

L=0o"1x 0 o 1 0
. .

0 0 —p 1
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With this decomposition, we can calculate the loglikelihood of L based on a single
realisation of X using the expression of the multivariate Gaussian density:

1 1
(L) = 51og;|LTL| - 5XTLTLX
Obviously, we'll get the same expression via the Markov factorisation (exercise).

In summary, the Markov property

@ yields a factorisation of the joint density by suitable conditioning.
@ leads to a sparse precision matrix.

@ substantially increases statistical efficiency.

Is there a more general structure underlying all this?

After all, recall that for jointly Gaussian (X ', Z", Y T)T with ¥ > 0,

X1LY|Z < fxav =fxiz X friz X fz &= O©xy =0
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Stationary Gaussian AR(1) as a Graphical Model

Recall that, in the AR(1) model, the only pairs (&;,&;) that are not conditionally
independent given all else are adjacent pairs, i.e. [t —j| = 1.

Define a graph G = (V, E) with, vertex/edge set, respectively

={lL,..,p} & E={(GJ)elp:li-jl=1}CV?

V = [p]

We do not allow loops (i.e. self-edges). Then,

& LGHG ke pl\{1}} = (1.J) ¢ E

. In other words:

@ absence of edge (¢,7) indicates conditional independence given all else.
@ absence of edge (%, 7) indicates that dependence between §; and ¢; is indirect

@ presence edge (¢,7) indicates direct dependence between §; and &; —
dependence that is not undone by any conditioning.

A graphical model generalises the chain-like dependence structure to more general

combinatorial dependence structures encoded by a more general graph.
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Gaussian Graphical Models: The Three Markov Properties

A Gaussian Graphical Model encodes the conditional independencies amongst the
coordinates V' := {1, ..., p} of a Gaussian vector via the edges in a graph on V.

O.
PSS
©aO,
There are three ways a graph G = (E, V') could define a Markov property:

Pairwise, Local and Global Markov Property
@ Pairwise Markov. No edge between X; and X; implies their conditional
independence given remaining variables: (2,7) ¢ B = X; 1L X;|{ Xy }rri;
@ Local Markov. Conditional on its graph neighbours, ¢th variable is
independent of all other variables: X; I {X; : (z,7) ¢ E}|{X%: (¢,k) € E}
© Global Markov. Two subvectors are conditionally independent given a
subvector that separates? them in G:

S C V separatess AC V from BC V in G = X, 1 Xp|Xs

35S C V separates A, B C V in G if removing S from V disconnects A from B
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In full generality, regardless of Gaussianity, it's not hard to see (exercise) that:
Global Markov = Local Markov = Pairwise Markov

To go the other way around, we need to exclude “perfect dependence”:

Theorem (Equivalence of Markov Properties — Gaussian case)
The three Markov properties are equivalent for N (u,X) on RP with ¥ > 0.

Remark: In the non-Gaussian case the theorem is valid provided we replace
non-singularity of the covariance, with everywhere positivity of the joint density.

Proof.

Write V ={1,...,p} and © = =1, Given the exercise above, it suffices to prove
that when ¥ > 0, the pairwise Markov property with respect to some graph

G = (E, V) implies the global Markov property with respect to G. Assume that
G encodes the pairwise Markov property. In the Gaussian case, this happens iff

E:{’i#j:@ij#O}

by the Gaussian conditional independence theorem (slide 83).
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Now we need to show that this graph structure also yields the global Markov
property. To this aim, assume that S C V separates A, B C V in the graph G.
If (A, B, S) partition V,i.e. AUBUS = V, then we are done. To see this:

@ Since A and B are separated, there is no edge from 1 € Atoj € B. It
follows that ©;; = 0 for all (z,7) € A x B. Blockwise, this says © 45 = 0.

@ Hence, by the Gaussian conditional independence theorem (slide 83) we have
X4 1 Xp given all other variables.

@ But “all other variables” coincides with Xg, since V=AU BUS.

Now consider the general case. Let R = V \ [AU B U S] be the “remaining
vertices”. Partition R = Ry U Rg U Ry where:

@ R, contains all the vertices in R that are path-connected with A
@ Rp contains all the vertices in R that are path-connected with B
@ Ry = R\ [R4 U Rg] are the remaining vertices in R.

We highlight that this is indeed a partition of R: it must be that R4 N Rg = 0 or
else S would not separate A and B. For the same reason, S necessarily separates
R, from Rg, Ry from B, and Rg from A (possibly trivially so). Finally, any

v € Ry is disconnected from both B and Rpg, or else v would be contained in Rpg
(similarly for A and R4, but we won't need that). Now our trick will be to

angment the sets A and B use the first nart of the nroof and finallv marmnalmp
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Define A = A~U R4U Ry and B=B J RB.~Then, from our preceding discussion,
S separates (A, B), and furthermore (A, S, B) is a partition V, so by the first

part of the proof
Xy L X}~3|Xs.

But since AC A and B C B, this implies that

X4 L Xp|Xs.

This completes the proof. ]

Where did we specifically rely on Gaussianity in this proof?

@ In the first bullet of the last page, we were able to go from pairwise
conditional independence to blockwise conditional independence.

@ This is a remarkable feature of Gaussians: no interactions involve more than
pairs of variables. This can already be seen at the level of density:

1 1
log f(2) = const — > Ozl - 3 S Owzzy, z=(21,.,3) €RP.
vEV (v,v")ER
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Density Factorisation with respect to a Graph

Now that we've clarified how the Markov property with respect to a graph relates

to precision matrix sparsity, let's turn to the factorisation of the density.

Let's revisit the AR(1) example momentarily. The factorisation

p—1
Flury ooy un) = foo () [ | Foppnle (w11 ])

=1
used the fact that the graph was “well-ordered”, to arrive at a form
p—1 .
f(ul) () un) X j=1 ¢j(ujv uj+1)’ ¢i ‘R? — (Ov OO)
To see the general picture, where there is usually no ordering, we need some

definitions related to a graph:
o A clique of G = (V, E) is a fully connected subset of V.

@ A maximal clique is a clique that is not a strict subset of another clique.

,—J\—-ﬁf_M

"—V_J

‘—V_J

The AR(1) model joint density factorises over its maximal cliques.
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Let V ={1,..,p}, G=(V,E) agraph, and f(z1,...,2,) > 0 be an everywhere
positive density on R?. We say that f > 0 factorises with respect to G if

Ixy, o x, (21, 3p) = Hccv Ye(ze),

for 2% interaction functions ¥ ¢ > 0 such that 9o = 1 unless C is a clique.

We use the shorthand notation z¢ = (z;,, ..., z;,) for C = {t1,..., 4} C V.

o Said differently, f > 0 factorises as product of positive functions ¢ with C
ranging over the collection C(G) of cliques of G.

@ The reason we give the definition the way we do, is to give a
“parsimony /reductive” intuition — removing terms from a larger product
corresponding to non-cliques.

@ This factorization implies that the global distribution can be understood in
terms of local interactions.

o Conversely: provides a way to construct complex distributions from simpler
building blocks, modeling local interactions.
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In statistical physics terminology, one calls a density of the form

Frx, (31,00 3p) expd > bo(ac)

cec(a)

with real-valued and non-identically-vanishing valued potential functions
$c : RICI 5 R, a Gibbs distribution with respect to G.

(to see the relation consider potential ¢ = log o with interaction ¥ as above)

The fundamental result linking conditional independence and factorisation is:

Theorem (Hammersley-Clifford)
Let f : R? — (0, 00) be an everywhere positive probability density function. Then,

f factorises w.r.t. G <= f satisfies the local Markov property w.r.t. G

Proof.

Assume f > 0 factorises w.r.t. G. Consider the conditional of X; given all else,

Al Hccv Ye(ze) Hoyid’c(l’c)noaﬂ/’c(l’C)
Hlenn) fR Hccv Yo (zc)dz; nogﬂl’c(l’O)fR [Icsi ¥o(zc)dz;
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In summary,
f(ailev\gy) = [os ¥eo)/ [ ], woleo)da.
Therefore, given any j # ¢, the RHS depends on z; only if (z,5) € E:
e if C 3 2and C is not a clique, then ¢ = 1, so there is no dependence on z;.

e if C 51 and C is a clique, and then 5 € C if and only if (z,5) € E. So, in
turn, ¢ (and hence the RHS) depends on z; if and only if (z,5) € E.

In other words, f satisfies the local Markov property w.r.t. G.

In the other direction, assume f > 0 satisfies the local Markov property w.r.t. G.
Define g = ¥g(zp) = f () for some fixed reference point u € R?P (e.g. take

= 0). The argument zp simply corresponds to the function g being a constant
(does not depend on any coordinates). Define the remaining 9's recursively, via

1 if C'is not a clique,
Yeo(ze) =41 if z; = pj for somey € C
% otherwise.
BCcc ¥B ZB

Clearly the collection {#c} has the form we seek. It only remains to show that f
factorises as [ [~ % with these specific interaction functions.
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Given any z € R?, let A = A(z) be the set of all coordinates where z and u
disagree: A ={j € V : z; # pu;}. Decompose

z = (z4, iBV\A)T = (l’A,MV\A)T-

Suppose A = (. In this case £ = pu and we need to show that f(u) factorises as
stipulated. Checking the definition of ¥ ¢ (¢ ), we notice that there is no C C V
for which Yo () # 1 except C = 0, for which we defined ¥p(zg) = f(u).
Therefore the factorisation holds in the form

[T %elue) =vo = f(w).

ccv

Now suppose that A # 0 and is a clique. Then,
f(za, pv\a)
01:[ Yo(zc) = pa(za) H Ye(zc) H Ye(zc) HCCA Yo(zc) H Ye(zc) H Ye(zc)
cv cca cga cca cga

and the terms in the last product equal 1 because C' Z A means that z; = u; for
some j € C, in which case our construction yields ¢ = 1. Noting that
f(za, pv\a) = f(za, Tv\a), we once again get the sought factorisation.
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Finally, suppose that A # @ and is not a clique. In this case, we will establish the
factorisation by induction on the size of A. The base case is |A| = 0, where we
have already established the factorisation. For k < p, assume the factorisation
holds for |A| = k — 1, and let's show it holds for |A| = k.

Since A is not a clique, there exist ¢,7 € A with (¢,7) ¢ E. We thus have

f(za,zv\a) = f(za,uvna) = fl@|zagy pvria)f(@agy, ki a)
F(za\{iy, By as i)
Fpilzavgiy, B\ a)
F(@i|za\{igy s B a)

= F(zavgiy, Hv\a, pi)
F(pilzargs,53) Mg, Bva) ek BVA

= f(zi|za\{ey, wv\a)

using the local Markov prop to go in the last step: the green terms don't depend
on z;, because (z,7) ¢ E, so we can fix a:] to whlchever value we wish without

changing the expression. So we fixed z; = p;. Using the inductive hypothesis,
F(iiZa\fi,51 454 v\ 4)
F(za\ {15} o#i1Hv\4) HCCA\{]} Yc(zc)
- f(l-‘i:zA\{t,J}vf"i:.”'V\A)f( AV{i} VA4 )= HCCA Ye(zc) H o(ec) H bo(zg
F@argi i3 Hi B a) M3 CCA\{i} cca
= Hcgv Po(zc) by definition of ¢ and fact that (A\ {7}) \ (A\ {%,7}) = {:}. ]
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Gaussian Density Factorisation w.r.t. a Graph

Therefore, we get the immediate corollary:

Corollary (Hammersley-Clifford Theorem, Gaussian case)

Let V. ={1,..,p}, G=(V,E) a graph, and X ~ N(0,X) on R? with > 0.
Then, the following statements are equivalent:

© the density of X factorises with respect to G
@ X satisfies a Markov property? with respect to G

© given i # j, the (4,7) entry of © = =1 is zero if and only if (i,7) ¢ E.

4we say 'a’ Markov property, because all three Markov are equivalent when ¥ > 0.

@ When the graph is geometric, then one can make use of factorisation cleverly
in order to carry out likelihood estimation conforming to a graphical model.

@ The key here is that the graph is quite sparse (correspondingly, the precision
matrix is very sparse, and one can see things through that lens).

@ But, in general, the “list of cliques” is difficult to obtain — in fact NP-hard.
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Statistical Inference for Gaussian Graphical Models

There are two (in a sense dual) problems that one might consider in this context,
given X,..., X, ~ N(u, X):

e Fitting a Gaussian distribution (estimating u and X) subject to the constraint
that N(u,X) factorises with respect to a given graph G. This is also known
as covariance selection.

o Estimating the graph G with respect to which N (u, X) factorises when the
parameters are unknown. This is also known as structure estimation.

In light of the Hammersley-Clifford theorem, when ¥ > 0, these two problems
reduce to:

o Estimate the model parameters under the constraint that ©; = 0 for known
set E of pairs (z,7).

@ Estimate the location of zeroes of ©;; amongst pairs (z, 7).
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Taking a Step Back: Covariance Selection Models

Given a normal data matrix X, a (Gaussian) covariance selection model consists in
the family

{N(p,X): u e RP, X € S}
for some subset S of the cone of p X p non-negative definite matrices.
@ Depending on our choice of § an MLE may or may not exist.
@ A standard choice is S being the set of strictly positive definite matrices.
@ Even then, we saw the MLE does not exist when X is singular.

@ So we expect that existence/uniqueness of the MLE is subtle for general S

What might be reasonable choices?
@ We may choose to impose linear constraints on ¥
@ We may choose to impose linear constraints on ! (and assume it exists)

Focussing on the special case where constraints fix some elements to be zero:

@ Imposing this on X leads to straightforward estimation: when MLE exists, we
can annbhilate the corresponding entries by equivariance.

@ Imposing this on ¥~ leads to estimation under a graphical model.
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MLE under a Gaussian Graphical Model

Since the constraints apply to the covariance we can take ¢ = 0. Now consider a
graph G = (V, E) on the index set V = {1, ..., p}. The model we wish to fit is

{N(0,X): X > 0&e X e; = Owhenever(3,5) ¢ E}.
When X > 0, the loglikelihood is (up to constants)
UX) = —log|%| — trace{T !5}
which can be equivalently expressed via © = ¥~ ! as
£(©) = log |©| — trace{O%}.

The crucial observations now are that:

@ The objective £(©) is strictly concave over the set © > 0. (exercise)
@ The constraint set {© = 0: ¢;' ©e; = Owhenever (z,7) ¢ E} is convex.
In conclusion, maximising the loglikelihood under a graphical model constraint is

equivalent to a strictly convex optimisation problem — so provided a maximiser
exists, it will also be unique.
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It turns out that loglikelihood maximisation under a graphical model constraint is
equivalent to the entropy maximisation under second moment constraints:

Theorem (Graphical Modeling as Matrix Completion)
Maximising the loglikelihood £(¥) = —log || — trace{¥ 15} over the set

{Z>0:¢ (X ')e; =0 whenever (1,7) ¢ E}

is equivalent to maximising the entropy H(X) x log|X| + const over the set

{Z>0:¢'Ye =eYe; whenever (i,5) € E ori=j}.

Intuitively: delete all non-adjacent (w.r.t. G) off-diagonal entries of 3. Then
complete the missing entries to maximise the determinant.
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Proof.

The objective is negatively infinite at singular matrices, so we focus on interior
points of the of the non-negative definite cone. We then have a differentiable
strictly concave objective in © with equality constraints. We thus resort to the
method of Lagrange multipliers. Define the Lagrangian

£(0,¢) =log |O] — tr{O%} — tr{Oc} = log|O| — tr{O(X + ¢)}

for a symmetric € = {g;;} with ;; = 0 when ¢ = j or (¢,7) € E (e are Lagrange
multipliers corresponding to the equality constraints). Constrained optima must
be saddlepoints of the Lagrangian. So if ©, is a constrained maximum of £, then
O, is a critical point of £(©) = log |©] — tr{O%} = log |0| — tr{O(% +¢)}.

This is just a Gaussian  loglikelihood corresponding to an empirical covariance

Y =3 + ¢ instead of 3. When © > 0 this can only have a unique critical point

when 3 > 0, and that critical point is ©, = >~ = (¥ +¢)~ .
Now it remains to plug such a ©, back into the Lagrangian, and minimise over €
with €;; = 0 when 2 =3 or (¢,7) € E. Equivalently, it remains to choose ¢ to

minimize Z((i +e)7) =—log |3 + €| — p. Evidently, minimisation occurs at &
such that ¥ + ¢ > 0, compatibly with the requirement of the critical point ©,.
Finally, recall that entropy is minus the expected loglikelihood,

—-E [— log |Z| — tr{= 1%} + const] =log|X|+ p +const [
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Matrix Completion: fitting vs extrapolating vs local modeling

If a feasible point exists, the graphically constrainted MLE exists uniquely.
@ Existence of a feasible point = existence of a valid matrix completion

@ Any completion must agree with the diagonal constraints — so the trace (and hence
Frobenius norm) is (bounded by a) constant on the feasible set.

@ Hence completion set is convex & compact, while objective is strictly concave.
Now notice a subtle distinction:

@ At the level of (complete) data: If we start out with observation of the
complete empirical matrix ¥ > 0, then it is clear that there exists at least one
feasible point — namely the completion to ¥ itself! So we can use gradient
ascent to find the maximum.

o (Related to the last point) Small sample size or missing data if we have
limited sample size 7 < p (so 3 is singular), but n x n submatrices are
non-singular, what graphs could we impose to get a graphically constrained
MLE? (recall the Markov chain model, where the effective # of parameters is
reduced). Similarly, if we have missing data (missing entries) what
missingness patterns can he handle by graphical modeling?

@ At the level of (local) modeling: What if we model some second moments
but not the full covariance vector. If we arrange the partial moments into a

matrix, can it admit a positive-definite completion?

(and hence a maximum entropy completion?)
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Partial (Local) Covariance Modeling

Suppose we are interested in a Gaussian random vector X = (X1, Xa, X3, X4) " ...

...but we can only (or are only willing to) model the pairs (X;, Xj), for
(1,7) €4{(1,2),(2,3),(3,4),(1,4)}
E.g. we prescribe corresponding covariances as follows:

1

©
VD D
T H D v
|

-~
= o >

—p

@ Of course we must take care that all specified marginal covariances of all
orders are positive definite (otherwise, it's a no-go from the start).

@ This can be checked to be valid in our example.

@ However, there is no valid positive-definite completion in this case!

@ The missing entry pattern implicitly specifies a graph G: ¢ # j are adjacent
if and only if their covariance is specified.

@ It turns out that so long as subcovariances > 0, the problem of completion is
entirely contingent on the structure of the graph (think Hammersley-Clifford)
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Theorem (Grone, Johnson, S& & Wolkowicz)

Let ¥ partial be a partial covariance with missing entry pattern graph G. Provided
all specified subcovariances of ¥ artia1 are positive-definite:

> partial admits a positive-definite completion <= G is chordal

Jevery cycle of length 4 has a chord.

@ Remarkably, the proof is constructive: it manifests a completion.

@ It makes use of the fact that any chordal graph can be turned into a
complete graph by adding one edge at a time in such a way, that the
resulting graph remains chordal at each step.

@ Following this ordering of edge additions, the partial matrix is completed
entry by entry in such a way as to maximize the determinant of the largest
complete submatrix that contains the missing entry

@ Thus, the construction yields the maximum entropy completion, not just any
completion!

@ We will not prove the theorem in its full generality. But we will establish
feasibility of completion in a special class of chordal graphs: serrated partial
covariances, aka variable memory Markov chains(exercise)
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Estimating the Graph Structure from Data

Now let's consider the opposite direction:

Given Xy, ..., X, ~ N(u,X) with ¥ > 0, estimate the corresponding
Markov structure (equivalently the edge set of its graphical model).

In light of our results, the problem reduces to estimating the zero pattern of ©.
When n > p we have a natural approach based on thresholding:
@ We can test for the presence of each possible edge, by testing for the
corresponding partial correlation.
@ The test statistic has the same null distribution, with same parameters, in
each case.
@ Selecting a significance level is in 1-1 correspondence with selecting a
threshold for hard thresholding.
@ The former can be chosen according to FDR considerations, and the latter
via asymptotic considerations.
@ A weakness of this approach is that it’s unclear if the resulting matrix is > 0.

A different approach is to use a penalised loglikelihood, to promote graph sparsity:
Lpen(©) =log|O] — tr{OY} + 7 Ziq 1041

(requires tuning 7 > 0; we actually use partial correlation matrix instead of © to balance scales)
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