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Institut de Mathématiques – EPFL

victor.panaretos@epfl.ch

Victor Panaretos (EPFL) Multivariate Statistics 1 / 244



Course details

Lectures Thu 13.15–15.00

Exercices Thu 15.15–17.00

Main reference books (but we go beyond):

Anderson, T.W. An Introduction to Multivariate Statistical Analysis, Wiley
Muirhead, Aspects of Multivariate Statistical Theory, Wiley

Webpage: moodle

Bonus (non-compulsory) midterm test on 17 April, 13.15

Written final exam (cheat sheet allowed)

Final grade G will be calculated

G = 0:75� E + 0:25�maxfE ;Tg
E = exam, T = test
we round F to obtain G
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What is this course about?

In short: statistical analysis of random vectors

What does this mean in effect?

Understanding the probability distribution of a random vector

Most commonly the vector space is Rp , with p > 1.

(but similar principles can apply to more general vector spaces)

Random vectors have internal probabilistic structure – coordinate dependence

X =
�
X1 ; : : : ; Xp

�>
Dependence can be unconditional or conditional

Need to understand how to encapsulate, model, and infer this dependence
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Our typical setting: sample X1; :::;Xn of n > 1 i.i.d. realisations in Rp

X =

0B@ X11 : : : X1p

...
...

Xn1 : : : Xnp

1CA
We will focus on coordinates that are continuous random variables

Rows are observations (a.k.a. individuals) and columns are variables (a.k.a.
features)

Central objects (but not only ones): covariance Σ and its inverse Θ = Σ�1

Methods/theory depend on whether:

p � n , the so-called low dimensional case

p � n , the so-called high dimensional case

Will primarily focus on p � n but will also treat selected topics when p � n
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The usual context is when we record p variables (or features) on n individuals:

The gene expression levels for p genes for n subjects.

The curvature at p sites on n DNA strands.

The grades on p courses for n students.

The portfolio returns on p assets at n times.

The blood pressure at p times for n patients.

In these cases, we may be interested in:

Which genes are co-expressed?

What are the mechanical properties of DNA?

Are there interesting subgroups based on conditions on variables?

What is the best portfolio distribution?

Can we predict the grades in a group of courses from other courses?

Are there trends? Drivers of variation? Indirect associations?

Often, there are qualitative variables, either recorded or latent:

Treatment or disease status, subpopulation membership

DNA Base-pair composition, presence/absence of gold stain

Gender, race, season, educational background, risk factor ...
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Course Contents

Linear Algebra Recap

Random Vectors and Matrices

Gaussian Vectors

Sampling

Inference

Dimension Reduction

(Gaussian) Graphical Models
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Linear Algebra Recap
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Reminder: Subspaces, Partitions, Spectra, Projections.

If Q is an n � p real matrix, we define the

range (or column space) of Q to be the set spanned by its columns:

R(Q) = fQ� : � 2 Rpg � Rn :

the null space (or kernel) of Q is the subspace defined as

N(Q) = fx 2 Rp : Qx = 0g;

the orthogonal complement of R(Q) , is the subspace defined as

R?(Q) = fy 2 Rn : y>Qx = 0; 8x 2 Rpg
= fy 2 Rn : y>v = 0; 8v 2 R(Q)g:

The orthogonal complement may be defined for arbitrary subspaces by using the
second equality.
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Theorem (Singular Value Decomposition)

Any n � p real matrix Q can be factorised as

Q
n�p

= U
n�n Σ

n�p V
p�p

>;

where U and V> are orthogonal with columns called left singular vectors and right
singular vectors, respectively, and � is diagonal with non-negative real entries
called singular values.

Immediate consequence:
1 The left singular vectors corresponding to non-zero singular values form an

orthonormal basis for R(Q).
2 The left singular vectors corresponding to zero singular values form an

orthonormal basis for R?(Q).
3 Writing fuigni=1 for the left singular vectors and fvj gni=1 for the right singular

vectors, the SVD can also be expressed as

Q
n�p

=

rank(Q)X
j=1

�j uj|{z}
n�1

v>j|{z}
1�p

:
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Proof.

Since the statement is invariant to transposition, assume wlog that n � p. We
will prove the statement by induction on p. Assume that p = 1 so that Q is a
column vector. Then the statement holds true trivially, by taking

V> = V = 1; Σ =
�kQk;01�(n�1)

�>
U = (u1 : : :un); u1 = Q=kQk

and (u2; :::;un) an orthonormal basis for span?(u1). Thus the statement is true
for all n � p when p = 1. This is the base case for our induction. For the
inductive step, assume that the statement is true for some p > 1 and all n � p.
Let us prove that it is also true for p + 1 and all n � p + 1.

Let Sp+1 = fx 2 Rp+1 : kxk = 1g and q(x ) = kQxk. Since q(�) is continuous
and Sp+1 is compact, we have that q(x ) is bounded over Sp+1 and attains its
bounds. So there exists v1 2 Sp+1 such that

q(v1) = maxx2Sp+1 q(x ) = �1 <1:
and let v1 2 Sp+1 be maximiser of q(x ), i.e. such that q(v1) = maxx2Sp+1 q(x ).
Define u1 = ��11 Qv1 so ku1k = 1. Given any orthonormal bases fuj gnj=2 for

span?(u1) and fvj gpj=2 for span?(v1) define U and V to be orthogonal matrices

U = (u1 u2 : : : un) = (u1 U1) & V = (v1 v2 : : : vn) = (v1 V1):
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Using block matrix multiplication, we see that

U>
n�n Q

n�(p+1)
V

(p+1)�(p+1)
=
�

u>1
U>1

�
Q ( v1 V1 ) =

�
u>1 Qv1 u>1 QV1

U>
1 Qv1 U>1 QV1

�

=

 
�1
1�1

�>
1�p

0
(n�1)�1

Z
(n�1)�p

!
:

Now we claim that � = 0. To see this, first observe that

�1 = max
x2Sp+1

kQxk = max
x2Sp+1

kU>Qxk = max
x2Sp+1

kU>QVxk:

Next, let’s consider the norm of U>QV

�
�1
�

�
,





� �1 �>

0 Z

��
�1
�

�



 = 



� �21 + �>�
Z�

�



 =q(�21 + �>�)2 + kZ�k2

� �21 + �>� = (�21 + �>�)1=2




� �1

�

�



 :
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Dividing across by k(�1 �)>k, we see that we must necessarily have

(�21 + �>�)1=2 � max
x2Sp+1

kU>QVxk = �1 = (�21 + 0)1=2:

and so it must be that �>� = 0. We conclude that

U>QV =

�
�1 01�p

0(n�1)�1 Z

�
thus
=) Q = U

�
�1 01�p

0(n�1)�1 Z

�
V>:

But Z is an (n � 1)� p matrix, and since n � p + 1 it holds that n � 1 � p. So
by our inductive hypothesis

Z(n�1)�p = W(n�1)�(n�1)Ω(n�1)�pR>p�p :

where W ;R are orthogonal and Ω is diagonal. Thus

Qn�p = Un�n

�
�1 01�p

0(n�1)�1 WΩR>

�
V>p�p =

= U

�
1 01�(n�1)

0(n�1)�1 W(n�1)�(n�1)

�
| {z }

orthogonal

�
�1 01�p

0(n�1)�1 Ω(n�1)�p

�
| {z }

diagonal

�
1 01�p

0p�1 R>p�p

�
V>| {z }

orthogonal

�
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Theorem (Spectral Theorem)

A p � p matrix A is symmetric if and only if there exists a p � p orthogonal
matrix U and a real diagonal matrix Λ such that

A = UΛU>:

In particular:

1 the orthonormal columns of U = (u1 � � � up) are eigenvectors of A, i.e.

Auj = �juj ; j = 1; : : : ; p

where diag(�1; : : : ; �p) = Λ are the corresponding (real) eigenvalues of A.

2 the rank of A is the number of non-zero eigenvalues.

3 if the eigenvalues are distinct, the eigenvectors are unique (up to re-ordering
and sign flips).

4 The spectral representation can also be expressed as

A
p�p =

rank(A)X
j=1

�j uj|{z}
p�1

u>j|{z}
1�p

:
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Proof.

If A = 0, the statement holds trivially, so let A = A> 6= 0.

First note that the SVD of A guarantees the existence of a singular vector pair
(u ; v) with non-zero singular value �, so that

A(v + u) =Av + Au = Av + A>u = �u + �v = �(u + v):

hence w = (u + v)=ku + vk is a unit eigenvector of A with real eigenvalue �.
Now the theorem is obviously true for 1� 1 matrices (scalars). So use induction.
Assume any non-zero p � p symmetric matrix satisfies the theorem statement.
Let A = A> 6= 0 be (p + 1)� (p + 1). By the displayed equation, A has at least
one unit eigenvector w 2 Rp with real eigenvalue � 6= 0.
Let W = (w R) where R has p orthonormal columns spanning span?(w). Then

W>AW =

�
w>

R>

�
A
�
w R

�
=

�
w>Aw w>AR
R>Aw R>AR

�

=

�
� (Aw)>R

R>Aw R>AR

�
=

�
� 01�p

0p�1 R>AR

�
=

�
� 01�p

0p�1 B

�
where B = R>AR is a symmetric p � p matrix.
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Since B is symmetric, we have B = VΩV > for Vp�p orthogonal and Ωp�p
diagonal by our induction hypothesis. In summary

A = W

�
� 01�p

0p�1 B

�
W >

= W

�
1 01�p

0p�1 Vp�p

�
| {z }

orthogonal

�
� 01�p

0p�1 Ωp�p

�
| {z }

diagonal

�
1 01�p

0p�1 V>p�p

�
W>

p�p| {z }
orthogonal

= UΛU>

�

Combining the SVD and the spectral theorem, we notice that:

1 The left singular vectors of Q are eigenvectors of A = QQ>.

2 The right singular vectors of Q are eigenvectors of A = Q>Q.

3 The squared singular values of Q are eigenvalues of both QQ> and Q>Q.

Victor Panaretos (EPFL) Multivariate Statistics 15 / 244



A matrix Q is called idempotent if Q2 = Q.

An orthogonal projection (henceforth projection) onto a subspace V is a
symmetric idempotent matrix H such that R(H) = V.

Proposition

The only possible eigenvalues of a projection matrix are 0 and 1.

Proposition

Let V be a subspace and H be a projection onto V. Then I� H is the projection
matrix onto V?.

Proof.

(I� H)> = I� H> = I� H since H is symmetric and,
(I� H)2 = I2 � 2H + H2 = I� H. Thus I� H is a projection matrix.

It remains to identify the column space of I� H. Let H = UΛU> be the spectral
decomposition of H. Then I� H = UU> � UΛU> = U(I� Λ)U>.
Hence the column space of I� H is spanned by the eigenvectors of H
corresponding to zero eigenvalues of H, which coincides with R?(H) = V?.
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Proposition

Let V be a subspace and H be a projection onto V. Then Hy = y () y 2 V.

Proof.

If y 2 V � R(H), then y = Hu for some u , so Hy = HHu = Hu = y . Conversely,
if y = Hy then y 2 R(H) � V by default (being of the form Hu for u = y).

Proposition

If P and Q are projection matrices onto a subspace V, then P = Q.

Proposition

If x1; : : : ; xp are linearly independent and are such that span(x1; : : : ; xp) = V, then
the projection onto V can be represented as

H = X(X>X)�1X>

where X is a matrix with columns x1; : : : ; xp .
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Proposition

Let V be a subspace of Rn and H be a projection onto V. Then

kx � Hxk � kx � vk; 8v 2 V:

Proof

Let H = UΛU> be the spectral decomposition of H, U = (u1 � � � un) and
Λ = diag(�1; : : : ; �n). Letting p = dim(V),

1 �1 = � � � = �p = 1 and �p+1 = � � � = �n = 0,

2 u1; : : : ;un is an orthonormal basis of Rn ,

3 u1; : : : ;up is an an orthonormal basis of V.
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kx �Hxk2 =

nX
i=1

(x>ui � (Hx )>ui )2 [orthonormal basis]

=

nX
i=1

(x>ui � x>Hui )
2 [H is symmetric]

=

nX
i=1

(x>ui � �ix>ui )2 [u’s are eigenvectors of H]

= 0 +

nX
i=p+1

(x>ui )2 [eigenvalues 0 or 1]

�
pX

i=1

(x>ui � v>ui )2 +
nX

i=p+1

(x>ui )2 8v 2 V

=

nX
i=1

(x>ui � v>ui )2 8v 2 V

= kx � vk2 8v 2 V:

�
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Proposition

Let V1 � V � Rn be two nested linear subspaces. If H1 is the projection onto V1

and H is the projection onto V, then

HH1 = H1 = H1H:

Proof.
First we show that HH1 = H1, and then that H1H = HH1. For all y 2 Rn we
have H1y 2 V1. But then H1y 2 V, since V1 � V.
Therefore HH1y = H1y . We have shown that (HH1 �H1)y = 0 for all y 2 Rn ,
so that HH1 � H1 = 0, as its kernel is all Rn . Hence HH1 = H1.

(Or, take n linearly independent vectors y1; : : : ; yn 2 Rn , and use them as columns of the n � n

matrix Y . Now Y is invertible, and (HH1 � H1)Y = 0, so HH1 � H1 = 0, giving HH1 = H1.)

To prove that H1H = HH1, note that symmetry of projection matrices and the
first part of the proof give

H1H = H>
1 H> = (HH1)

> = (H1)
> = H1 = HH1:
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The (Moore-Penrose) Pseudoinverse

Definition (Pseudoinverse)

Let Q be an n � p real matrix with SVD

Q
n�p

= U
n�n Σ

n�p V
p�p

> = U

�
Ωr�r 0p�r
0n�r 0(n�r)�(p�r)

�
V>;

where we assume wlog that n � p so that r := rank(Q) � p and Ω is diagonal
with non-zero entries. The pseudoinverse of Q is the p � n matrix Qy defined as

Qy :=
�

U

�
Ω�1
r�r 0p�r

0n�r 0(n�r)�(p�r)

�
V>
�>

= V

�
Ω�1
r�r 0n�r

0p�r 0(p�r)�(n�r)

�
U>:

Intuitively: Qy acts as an inverse of Q on R(Q) � Rn . Its action on Rn is to first
project onto R(Q) and then acts as the inverse of Q on that range.

When Q is symmetric, then so is Qy and the expressions simplify considerably,

Q = U

�
Ωr�r 0
0 0

�
U> & Qy = U

�
Ω�1
r�r 0
0 0

�
U>
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The pseudoinverse satisfies the following two properties (exercise):

QyQ is the projection onto R(Q>)

QQy is the projection onto R(Q).

(so when Q is symmetric, QyQ = QQy by uniqueness of projections)

In fact, the pseudoinverse is the unique matrix satisfying these two properties.

Immediate corrolaries:

QQyQ = Q

QyQQy = Qy
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Positive-Definite Matrices

Definition (Non-Negative Matrix – Quadratic Form Definition)

A p � p real symmetric matrix Ω is called non-negative definite (written Ω � 0) if
and only if x>Ωx � 0 for all x 2 Rp . If x>Ωx > 0 for all x 2 Rp n f0g, then we
call Ω positive definite (written Ω � 0).

An equivalent definition is:

Definition (Non-Negative Matrix – Spectral Definition)

A p � p real symmetric matrix Ω is called non-negative definite (written Ω � 0) if
and only the eigenvalues of Ω are non-negative. If the eigenvalues of Ω are strictly
positive, then Ω is called positive definite (written Ω � 0).

Exercise: prove that the two definitions are equivalent.
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Some properties (exercise):

Q � 0 if and only if Q =
P

j qj q
>
j for some vectors qi .

Q � 0 if and only if there exists A � 0 such that Q = A2

We call such an A the square root of Q and write it as
p

Q or Q1=2

Any projection P satisfies P � 0.

When Q � 0, we have

v1; :::; vk 2 R(Q)() R
�Pk

i=1 vkv
>
k

�
� R(Q)

Let A;B � 0. Then we have:

B� A � 0 =) R(A) � R(B)
R(A) � R(B) =) cB� A � 0 for some c > 0.

When B� A � 0, we write B � A. Non-negative definite matrices are partially
ordered with respect to “�” (this is called the Loewner order).
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Vectors as Matrices and Matrices as Vectors

It’s clear that any p-vector can be seen as a p � 1 matrix

(why not 1� p? just a convention)

Can matrices be viewed as vectors? Yes they can.

The space Rn�p of n � p matrices forms a real vector space of dimension np.

Indeed, this space is isometrically isomorphic with Rnp

The isomorphism is given by the vec operation,

vec : Rn�p ! Rnp

whose (linear) action is to stack the matrix columns into a tall np-vector,

vec
��
v1 : : : vp

�	
=

0B@ v1
...
vp

1CA ; vi 2 Rn

Abstractly, Rn�p is a real vector space, whose elements are p-vectors with
coordinates that are themselves elements of Rn

(think of partitioned matrix notation).
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The canonical basis of Rn�p can directly be seen to be the collection

Eij := viu
>
j

for fvig the canonical basis of Rn and fuj g the canonical basis of Rp

Some algebra also shows that

hA;BiRn�p := hvec(A); vec(B)iRnp = vec(A)>vec(B) = trace(A>B)

A linear transformation on Rn�p ! Rn�p will be a matrix transformation
Rnp ! Rnp , hence an np � np matrix.
In the vectorised perspective, a rank-1 transformation is vec(U)vec(V)>,
which maps vec(A) to

vec(U)vec(V)>vec(A) = trace(V>A)vec(U)

which can now easily be re-expressed in matrix form as

A 7! trace(V>A)U:

So by the SVD a linear f : Rn�p ! Rn�p is represented as

f (A) =

rank(f )X
i=1

�i trace(V
>
i A)Ui ; vecff (A)g =

rank(f )X
i=1

�ivec(Ui )vec(Vi )
>vec(A);

for �i > 0 and fUig and fVj g orthonormal bases of Rn�p .
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Define the Kronecker matrix product as

A
 B =

0B@ a11B : : : a1pB
...

. . .
...

an1B : : : anpB

1CA
Then vec(U)vec(V)> � vec(U)
 vec(V)>

Thus, by the SVD, any linear map on Rnp can be written (non-uniquely) asPnp

i=1 Ai
np�1


 Bi
1�np

A useful identity (optional exercise) is

vec(AXB) = (B> 
 A)vec(X)

Let’s think of vectorization as turning Rn�p into a vector space whose
elements are p-vectors with coordinates that are elements Rn . Think of
np � np matrices as p � p block matrices with n � n blocks. Using the
previous identity, we can show (exercise) that any linear map acts on Rp�p as

X 7!Pnp

i=1 Ai
n�n

X
n�p Bi

p�p
:

for (non-unique) Ai and Bi .
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Random Vectors and Matrices
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Random Vectors and Joint Distributions

A random vector X = (X1; : : : ;Xp)
> is a finite collection of jointly distributed

real random variables arranged as the coordinates of a vector.

The point is that we may want to make probabilistic statements on the joint
behaviour of all these random variables.

The joint distribution function of a random vector X = (X1; : : : ;Xp)
> is

FX (x1; : : : ; xp) = P(X1 � x1; : : : ;Xp � xp):

Correspondingly, one defines the
- joint frequency function, if the fXigpi=1 are all discrete,

fX (x1; : : : ; xp) = P(X1 = x1; : : : ;Xp = xp):

- the joint density function, if there exists fX : Rp ! [0;+1) such that:

FX (x1; : : : ; xp) =

Z x1

�1
� � �
Z xp

�1
fX (u1; : : : ;up)du1 : : : dup

In this case, when fX is continuous at the point x,

fX (x1; : : : ; xp) =
@p

@x1 : : : @xp
FX (x1; : : : ; xp)
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Marginal Distributions

Given the joint distribution of the random vector X = (X1; : : : ;Xp)
>, we can

isolate the distribution of a single coordinate, say Xi .

discrete case, the marginal frequency function of Xi is given by

fXi
(xi ) = P(Xi = xi ) =

X
x1

� � �
X
xi�1

X
xi+1

� � �
X
xd

fX (x1; : : : ; xi�1; xi ; xi+1; : : : ; xp)

In the continuous case, the marginal density function of Xi is given by

fXi
(xi ) =

Z 1

�1
� � �
Z 1

�1
fX (y1; : : : ; yi�1; xi ; yi+1; : : : ; yp)dy1 : : : dyi�1dyi+1dyp :

More generally, we can define the joint frequency/density of a random vector
formed by a subset of the coordinates of X = (X1; : : : ;Xp)

>, say the first k
Discrete case:
fX1;:::;Xk (x1; :::; xk ) =

P
xk+1

� � �P
xd
fX (x1; : : : ; xk ; xk+1; : : : ; xp).

Continuous case
fX1;:::;Xk (x1; :::; xk ) =

R +1
�1 � � �

R +1
�1 fX (x1; : : : ; xk ; xk+1; : : : ; xp)dxk+1 : : : dxd :

I.e. to marginalise we integrate/sum out the remaining random variables
from the overall joint density/frequency.

Marginals do not uniquely determine the joint distribution.
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Conditional Distributions

We may wish to make probabilistic statements about the potential outcomes of
one random variable, if we already know the outcome of another.

For this we need the notion of a conditional density/frequency function.

If (X1; :::;Xp) is a continuous/discrete random vector, we define the conditional
probability density/frequency function of (X1; :::;Xk ) given
fXk+1 = xk+1; :::;Xp = xdg as

fX1;:::;Xk jXk+1;:::;Xp
(x1; :::; xk jxk+1; :::; xd ) =

fX1;:::;Xp
(x1; : : : ; xk ; xk+1; : : : ; xp)

fXk+1;:::;Xd
(xk+1; :::; xd )

provided that fXk+1;:::;Xd
(xk+1; :::; xd ) > 0.
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Independent Random Variables

The random variables X1; : : : ;Xp are called independent, denoted if and only if,
for all x1; : : : ; xp 2 R

FX1;:::;Xp
(x1; : : : ; xp) = FX1(x1)� : : :� FXp

(xp):

Equivalently, X1; : : : ;Xp are independent if and only if, for all x1; : : : ; xp 2 R

fX1;:::;Xp
(x1; : : : ; xp) = fX1(x1)� : : :� fXp

(xp):

Note that when random variables are independent, conditional distributions reduce
to the corresponding marginal distributions.

Knowing the value of one of the random variables gives us no information about
the distribution of the rest.
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Conditionally Independent Random Variables

The random vector X in Rp is called conditionally independent of the random
vector Y given the random vector Z , written

X ?? ZY or X ?? Y jZ ;

if and only if, for all x1; : : : ; xp 2 R

FX1;:::;Xp jY ;Z (x1; : : : ; xp) = FX1;:::;Xp jZ (x1; : : : ; xp):

Equivalently, if and only if, for all x1; : : : ; xp 2 R

fX1;:::;Xp jY ;Z (x1; : : : ; xp) = fX1;:::;Xp jZ (x1; : : : ; xp):

Knowing Y in addition to knowing Z gives us no more information about X .

Consequence: if X is conditionally independent of Y given Z , then

FX ;Y jZ = FX jY ;ZFY jZ = FX jZFY jZ

Consequence: X ?? ZY () Y ?? ZX
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Expectations of Random Vectors

Let X = (X1; : : : ;Xp)
> be a random vector in Rp with joint density function

fX (x1; : : : ; xp). For any g : Rp ! R, we define

E fg(X1; : : : ;Xp)g =
Z +1

�1
: : :

Z +1

�1
g(x1; : : : ; xp)fX (x1; : : : ; xp)dx1 : : : dxp :

Similarly, in the discrete case,

E fg(X1; : : : ;Xp)g =
X
x12X1

: : :
X
xp2Xp

g(x1; : : : ; xp)fX (x1; : : : ; xp):

Consequence E[X1 + �X2] = E[X1] + �E[X2]:

The mean vector or a random vector X = (X1; : : : ;Xp) is defined as

E[X ] =

0B@ E[X1]
...

E[Xp ]

1CA
i.e. it is the vector of means.
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Random Matrices and their Expectations

A random n � p matrix

X =

0B@ X11 : : : X1p

...
...

Xn1 : : : Xnp

1CA
is simply a matrix whose n rows are random vectors in Rp . Equivalently, it is a
finite collection of np random variables arranged as the entries of an n � p matrix.

Notions of joint densities/frequencies follow immediately.

Notion of expectation follows suit, as matrix of expectations.

Consequently,

Lemma
Given a random matrix Xn�p and deterministic matrices Am�n and Bp�q ,

E[X>] =
�
E[X]

�>
when n = p, E[trfXg] = trfE[X]g
E[AXB] = AE[X]B
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Covariance Matrices

The covariance of a random variable X1 with another random variable X2

expresses the degree of linear dependency between the two.

cov(X1;X2) = E [(X1 � E(X1))(X2 � E(X2))] (if E[X 2
i ] <1):

The covariance matrix or a random vector X = (X1; : : : ;Xp)
>, say Σ = fΣij g, is

a p � p symmetric matrix with entries

Σij = cov(Xi ;Xj ) = E[(Xi � E[Xi ])(Xj � E[Xj ])]; 1 � i � j � p:

That is, the covariance matrix encodes the variances (on the diagonal) and the
pairwise covariances (off the diagonal) of the coordinates of X .

Ofteh the following notation is employed:

Σii = �2i & Σij = �ij ; i 6= j :

where �i =
p
var(Xi ) is the standard deviation of Xi .

It can be easily checked that

Σ = E[(X � E[X ])(X � E[X ])>] = E[XX>]� E[X ]E[X ]>:
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Example (cov(X ;Y ) = 0 6) Independence)

Let X � Unif[��; �] and define

Y = cos(X ):

Clearly X and Y are not independent.

To the contrary, they are perfectly dependent.

Their covariance is, nevertheless, zero!

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

x

x*
co
s(
x)

The function x cos(x)

Concretely, we calculate

P[Y > 0] = 1=2 but P[Y > 0jX 2 (��;�2)] = 1:

Despite this, we have

cov(X ;Y ) = E[XY ]� E[X ]E[Y ] =

Z +�

��
x cos(x )

1

2�
dx � 0 = 0:

Why: Because some non-linear dependencies cannot be detected by covariance...
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Example (cov(X ;Y ) = 0 6) Independence)

Let X and Y have joint density

fXY (x ; y) =

(
1=� si x 2 + y2 � 1;

0 otherwise:

Note that E[X ] = E[Y ] = 0 by symmetry. Hence, covfX ;Y g = E[XY ]. But

E[XY ] =

ZZ
x2+y2�1

xy
1

�
dxdy =

ZZ
x2+y2�1;y�0

xy
1

�
dxdy +

ZZ
x2+y2�1;y<0

xy
1

�
dxdy

The two terms are equal, by symmetry. Moreover,

ZZ
x2+y2�1;y�0

xy
1

�
dxdy =

1

�

Z 1

�1
x

Z 1�x2

0

ydydx =
1

�

Z 1

�1
x
(1� x 2)2

2
dx = 0

and so the covariance is zero. But X and Y are clearly dependent, since knowing
X restricts the possible values of Y .
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Covariance Matrices and Linear Transformations

Lemma

Let X be a random p � 1 vector such that EkX k2 <1 and with covariance Σ.
Given a A a q � p real matrix, the covariance of the q � 1 random vector AX is
AΣA>.

Corollary (Covariance of Projections)

Let Y be a random d � 1 vector such that EkY k2 <1. Let �; 
 2 Rd be fixed
vectors. If Ω denotes the covariance matrix of Y ,

the variance of �>Y is �>Ω�;

the covariance of �>Y with 
>Y is 
>Ω�.
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Non-negative Matrices � Covariance Matrices

Proposition (Non-Negative and Covariance Matrices)

Let Ω be a real symmetric matrix. Then Ω is non-negative definite if and only if Ω
is the covariance matrix of some random variable Y .

Proof.
Exercise.
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Cross Covariance Matrices

Let X and Y be centred random vectors in Rn and Rm , respectively. The
cross-covariance between X and Y is the n �m matrix

covfX ;Y g := ΣXY := E[(X � E[X ])(Y � E[Y ])>] = E[XY >]� E[X ]E[Y ]>:

Note that this is not symmetric (and so, in general, will not be non-negative
definite)

covfX ;Y g = covfY ;X g>:

If we concatenate into an (n +m)-dimensional random vector Z = (X>Y >)>,
and use block notation, we see that

ΣZ =

�
ΣX ΣXY

Σ>
XY ΣY

�
:

i.e. an n �m matrix is a cross covariance if and only if it can be represented as
the off-diagonal block of some (n +m)� (n +m)covariance matrix.
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Support, Covariance, and Cross-Covariance

The support of a random vector X in Rp , is defined as

suppfX g := fx 2 Rp : P[kX � xk < �] > 0; 8� > 0g

Intuitively, the support is the region of Rp that X can reach. It can be shown
(exercise) that suppfX g is a closed set, indeed the smallest closed set F such
that P[X 2 F ] = 1.

The covariance provides some information on the support:

Lemma (Support and Covariance)

Let X be a random vector in Rp with mean �X and covariance ΣX . Then,

1 suppfX g � R(ΣX ) + �X :

2 (ΣXΣy
X )(X � �X ) = X � �X almost surely.

3 (ΣXΣy
X )ΣXY = ΣXY for any random vector Y with finite second moment

where we recall that ΣXΣy
X = HX is the projection onto R(ΣX ).
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Proof.

We first remark that (1) () (2). To see this, recall that HXu = u if and only if
u 2 R(HX ). Thus (2) is equivalent to stating that PfX � �X 2 R(HX )g = 1.
Since R(HX ) = R(ΣX ), and observing that R(HX ) + �X is closed, the last
statement is equivalent to (1).

To establish (2), write X � �X = HX (X � �X ) + (I � HX )(X � �X ) and note
that

covf(I�HX )(X��X )g = (I�HX )ΣX (I�HX ) = (ΣX�ΣXΣy
XΣX )(I�HX ) = 0:

Consequently (I � HX )(X � �X ) = E[(I � HX )(X � �X )] almost surely. But
E[(I � HX )(X � �X )] = (I � HX )E[X � �X ] = 0. In summary,
X � �X = HX (X � �X ) almost surely, establishing (2).
For (3), it suffices to observe that

HXΣXY = HXE[(X � �X )(Y � �Y )>] = E[HX (X � �X )(Y � �Y )>]
(2)
= E[(X � �X )(Y � �Y )>] = ΣXY :
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Whitening

Lemma
Let Y be a random vector in Rp with covariance ΣY . Then,

covf(Σy
Y )

1=2Y g = HY , where HY is the projection onto R(ΣY ).

consequently, when Σ�1
Y exists, we have covfΣ

�1=2
Y Y g = Ip�p

Proof.
We calculate

covf(Σy
Y )

1=2Y g = (Σy
Y )

1=2ΣY (Σ
y
Y )

1=2 = (Σy
Y )

1=2Σ
1=2
Y Σ

1=2
Y (Σy

Y )
1=2:

By the definition of pseudoinverse and the fact that ΣY � 0,

(Σy
Y )

1=2Σ
1=2
Y = (Σ

1=2
Y )yΣ1=2

Y

and the RHS is the projection onto R(Σ
1=2
Y ). Finally, R(ΣY ) = R(Σ

1=2
Y ), again

due to the spectral theorem, and the proof is complete.
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Lemma (Matrix Correlation Inequality)

Let Z = (X>Y >)> be be comprised of two centred random vectors in Rn and
Rm , respectively, with covariance

ΣZ =

�
ΣX ΣXY

Σ>
XY ΣY

�
:

Then
ΣX � ΣXY Σy

Y Σ>
XY � 0:

If ΣZ is non-singular, then ΣY is necessarily so too and

ΣX � ΣXY Σ�1
Y Σ>

XY � 0:

The matrix ΣX � ΣXY Σ�1
Y Σ>

XY is called the Schur complement of ΣY in ΣZ

When ΣZ � 0, the last inequality can be re-written as

Σ�1
X ΣXY Σ�1

Y Σ>
XY � I

which explains the term “correlation inequality”
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Proof.

Define the zero-mean random vector " = X � ΣXY Σy
YY , and notice that

0 � Σ" = E["">] = E[XX>] + ΣXY Σ
y
Y E[YY>]ΣyY| {z }

=Σ
y
Y

ΣY Σ
y
Y
=Σ

y
Y

Σ>XY

�E[XY>]| {z }
=ΣXY

Σ
y
Y Σ>XY � ΣXY Σ

y
Y E[YX>]| {z }

=Σ>
XY

= ΣX � ΣXY Σ
y
Y Σ>XY

For the second part, we will argue by contradiction. Assume that
ΣX � ΣXY Σ�1

Y Σ>
XY is singular. This means that there exists an x 2 Rn n f0g

such that x>ΣX x � x>ΣXY Σ�1
Y Σ>

XY x = 0. Now define the (n +m)� 1 vector

u =

�
x

�Σ�1
Y Σ>

XY x

�
:

Since x 6= 0, it also holds that u 6= 0. Now observe that

u>ΣZu =
�
x> �x>ΣXY Σ�1Y

�� ΣX ΣXY

Σ>XY ΣY

��
x

�Σ�1Y Σ>XY x

�
= x>ΣX x � x>ΣXY Σ�1Y Σ>XY x = 0:

Since u 6= 0, this contradicts the assumption that ΣZ is non-singular.
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Precision Matrices

Let X be a random vector in Rp with non-singular covariance ΣX . The precision
matrix of X is defined as

ΘX := Σ�1
X :

For now we just need the following (a direct consequence of previous lemma)

Lemma (2� 2 Block Precision Matrix)

Let Σ be an (n +m)� (n +m) non-singular covariance

Σ =

�
ΣX ΣXY

Σ>XY ΣY

�
:

Then ΣX � ΣXY Σ�1
Y Σ>

XY and ΣY � Σ>
XY Σ�1

Y ΣXY are strictly positive-definite
and we have the following expression for the precision matrix

Θ = Σ�1 =

�
(ΣX � ΣXY Σ�1Y Σ>XY )

�1 �(ΣX � ΣXY Σ�1Y Σ>XY )
�1ΣXY Σ�1Y

�Σ�1Y ΣXY> (ΣX � ΣXY Σ�1Y Σ>XY )
�1 (ΣY � Σ>XY Σ�1X ΣXY )�1

�

Proof is immediate once the inverses are well defined (just multiply to verify).

Notice how there are Schur complements and their inverses appearing
everywhere.
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Correlation Matrices

The correlation between X1 and X2 is defined as

corr(X1;X2) =
cov(X1;X2)p
var(X1)var(X2)

:

Conveys equivalent dependence information to covariance. Advantages: (1) it is
invariant to changes of scale, (2) can be be understood in absolute terms (ranges
in [�1; 1]), as a result of the correlation inequality1 (Cauchy-Schwarz):

jcorr(X1;X2)j �
p
var(X1)var(X2):

The correlation matrix R = f�ij g of a random vector X = (X1; : : : ;Xp)
>, is a

p � p symmetric matrix with entries

�ij = corr(Xi ;Xj ); 1 � i � j � p:

Note that the correlation matrix is well-defined whenever var(Xi ) > 0 for all
1 � i � n , i.e. none of the coordinates are degenerate random variables.

1compare now to the matrix correlation inequality
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Equivalently, the correlation matrix is the covariance matrix of the standardised
vector

X = (X1=�1; : : : ;Xp=�p)
>
;

where �2i = var(Xi ). Thus, recalling that cov(AX ) = AΣA>, we have

R =

0B@ var(X1) 0
. . . 0

0 var(Xp)

1CA
� 1

2

Σ

0B@ var(X1) 0
. . . 0

0 var(Xp)

1CA
� 1

2

= diagf��11 ; : : : ; ��1p g Σ diagf��11 ; : : : ; ��1p g

Thus correlation matrices are non-negative definite.

Victor Panaretos (EPFL) Multivariate Statistics 49 / 244



Cross Correlation Matrices

Let X and Y be centred random vectors in Rn and Rm , respectively. The
cross-correlation matrix of X and Y is the n �m matrix RXY with entries

cov(Xi ;Yj )p
var(Xi )var(Yj )

; i = 1; :::;n ; j = 1; :::;m :

Again, if we concatenate into an (n +m)-dimensional random vector
Z = (X>Y >)>, and use block notation, we may write

ΣZ =

�
ΣX ΣXY

Σ>
XY ΣY

�
& RZ =

�
RX RXY

R>XY RY

�
We now easily check that:

RXY = (diag(ΣX ))
�1=2ΣXY (diag(ΣY ))

�1=2:
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Moment Generating Functions

The moment generating function (MGF) MX (t) : R! R [ f1g of a scalar
random variable X is defined as

MX (t) = E
h
e tX
i
; t 2 R:

It need not be finite for t 6= 0. But when it is finite zero, magic happens:

Theorem

Let X and Y be scalar random variable, and assume that MX (t) <1 and
MY (t) <1 for all t 2 I = (��; �) for some � > 0. Then, it holds that

1 MX is infinitely differentiable on I

2 E[jX jk ] <1 and E[X k ] = dkMX

dtk
(0), for all k � 1.

3 FX = FY on R () MY =MX on I .

4 if X ?? Y , then MX+Y is finite and equal to MXMY on I .
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The moment generating function (MGF) of a random vector W in Rd is defined
as

MW (�) = E[e�
>W ]; � 2 Rd ;

and need not be finite for � 6= 0.

When the MGF exists on an open ball at the origin:

it characterises the distribution of the corresponding random vector, as in the
scalar case.

consequently, it factorizes into two marginal MGFs if and only if the
corresponding random vectors are independent:

Xn�1 independent of Ym�1

()
E[e�

>X+
>Y ] = E[e�
>X ]� E[e


>Y ]; 8� 2 Rn & 
 2 Rm
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Gaussian Vectors
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Gaussian Random Variables

If for some � 2 R and some � 2 (0;+1) a random variable X has density

fX (x ) =
1

�
p
2�

exp

(
�1

2

�
x � �
�

�2
)
; x 2 R;

then X is called a Gaussian (or Normal) random variable), and we write

X � N (�; �2):

This is indeed a valid probability density, by a simple change-of-variables,
establishing existence:�Z

R
fX (x )dx

�2
=

Z
R

Z
R
f (x )f (y)dxdx =

1

2��2

Z
R

Z
R
exp

�
� (x � �)2 + (y � �)2

2�2

�
dxdy

=
1

2��2

Z 2�

0

�d�

Z +1

0

r exp

�
� r2

2�2

�
dr = 1:

By convention, a constant � 2 R is considered to be a N (�; 0) random variable
Hence Gaussian random variables need not have density unless � > 0.

Victor Panaretos (EPFL) Multivariate Statistics 54 / 244



A random variable Z � N (0; 1) is called a standard Gaussian random variable.
We write � for its PDF and � for its CDF.

Lemma

Given � 2 R and � 2 (0;+1), one has X � N (�; �2) if and only X = �Z + �
for some Gaussian random variable Z � N (0; 1).

Proof.

Changing variables to z = (x � �)=�, one has

FX (y) =

Z y

�1

1

�
p
2�

exp

�
�1

2

�
x � �
�

�2�
dy

=

Z y��
�

�1

1p
2�

expf�z 2=2gdz = �

�
y � �
�

�
and so if one defines Z = ��1=2(X � �) then the ‘if’ part is proven. Starting with
Z � N(0; 1), and following the same steps in reverse gives the ‘only if’ part, with
X = �Z + �.
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Lemma (Moment Generating Function)

Given � 2 R and � 2 [0;+1), the moment generating function MX (t) = E[e tX ]
of X � N(�; �2) satisfies

MX (t) = expft�+ t2�2=2g:

This being finite for all t 2 R implies that all moments of X exist, and its central
moments are

E
�
(X � E[X ])k

�
= E

�
(X � �)k � = E

�
�kZ k

�
=

(
0 for k odd;

�k (k � 1)!! for k even:

Consequently � = E[X ] is the mean and �2 = var[X ] is the variance.
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Proof.

By definition, and the change of variables y = x � �� �2t we find that

MX (t) = E[e tX ] =
1

�
p
2�

Z
R
expftx � (x � �)2=(2�2)gdx

=
1

�
p
2�

Z
R
exp
�
�[(x � �� �2t)2 � 2��2t � �4t2]=2�2

	
dx

= expft�+ t2�2=2g 1

�
p
2�

Z
R
exp
�
�y2=(2�2)

	
dy| {z }

=1

:

With the MGF in hand, we can now calculate the moments of a Z � N (0; 1),

E[Z k ] =
dMX

du

���
u=0

=

�
0 for k odd;

(k � 1)!! for k even:

With a change of variables, this yields the central moments of X � N(�; �2) as

E
�
(X � E[X ])k

�
= E

�
(X � �)k � = E

�
�kZ k

�
=

(
0 for k odd;

�k (k � 1)!! for k even:
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Gaussian Vectors and Affine Transformations

Definition (Multivariate Gaussian Distribution)

A random vector Y in Rd is Gaussian if and only if �>Y is a Gaussian random
variable for all deterministic vectors � 2 Rd .

Observation: From the definition if follows that Y must have some well-defined
mean vector � and some well defined covariance matrix Σ.

To see this note that since Ef(�>Y )2g <1 for all �, then we can successively
pick � to be equal to each canonical basis vector and conclude that each
coordinate has finite variance and thus EkY k2 <1.

So all the means, variances and covariances of its coordinates are well defined.

Then, the mean vector � and covariance matrix Σ can be (uniquely) determined
entrywise by equating

�i = E[e>i Y ] & Σij = covfe>i Y ; e>j Y g:
where ej is the j th canonical basis vector

ej = (0 ; 0 ; : : : ; 1|{z}
jth position

; : : : ; 0 ; 0)>
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Gaussian Factsheet

1 MGF of Y � N (�;Σ): MY (u) = exp

�
u>�+

1

2
u>Σu

�
.

2 Y � N (�p�1;Σp�p) and given Bn�p and �n�1, then

� +BY � N (� +B�;BΣB>).

3 Marginals are Gaussian (converse NOT true).

4 If Y � N (�p�1;Σp�p),
AY independent of BY () AΣB> = 0.

5 Immediate corollary of (4): if (X>Y >)> is a Gaussian vector,

Y ?? X () ΣXY = 0 () cov
n�

X

Y

�o
=

�
ΣX 0
0 ΣY

�
6 N (�;Σ) PDF, if Σ � 0 fY (y) =

1

(2�)p=2 jΣj1=2
exp

n
�1

2
(y � �)>Σ�1(y � �)

o
:

7 Y � N (�;Σp�p) () Y = �+
Pp

j=1 �
1=2
j Zjuj , for Zj

iid� N (0; 1), and

and f(�j ;uj )gpj=1 the eigenvalues/vectors of Σ

8 If Y � N (�;Σ), then suppfY g = R(Σ) + �
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Y = AX
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Proposition (Moment Generating Function)

The moment generating function of Y � N (�;Σ) is

MY (u) = exp
�
u>�+ 1

2u
>Σu

�
Proof.
Let v 2 Rd be arbitrary. Then v>Y is scalar Gaussian with mean v>� and variance v>Σv .
Hence it has moment generating function:

Mv>Y (t) = E
�
e tv

>Y

�
= exp

�
t(v>�) +

t2

2
(v>Σv)

�
:

Now take t = 1 and observe that

Mv>Y (1) = E
�
ev
>Y

�
= MY (v):

Combining the two, we conclude that

MY (v) = exp

�
v>�+

1

2
v>Σv

�
; v 2 Rd :
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Proposition (Closure Under Affine Transformation)

For Y � N (�p�1;Σp�p) and given Bn�p and �n�1, we have

� +BY � N (� +B�;BΣB>)

Proof.

M�+BY (u) = E
�
expfu>(� + BY )g

�
= exp

�
u>�
	
E
�
expf(B>u)>Y g

�
= exp

�
u>�
	
MY (B

>u)

= exp
�
u>�
	
exp

n
(B>u)>�+

1

2
u>BΣB>u

o
= exp

n
u>� + u>(B�) +

1

2
u>BΣB>u

o
= exp

n
u>(� + B�) +

1

2
u>BΣB>u

o
And this last expression is the MGF of a N (� + B�;BΣB>) distribution.
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Proposition (AY ;BY indep () AΣB> = 0)

If Y � N (�p�1;Σp�p), and Am�p , Bd�p be real matrices. Then,

AY independent of BY () AΣB> = 0.

Proof

It suffices to prove the result assuming � = 0 (and it simplifies the algebra).
First assume AΣB> = 0. Let W(m+d)�1 =

�
AY

BY

�
and �(m+d)�1 =

�
um�1
vd�1

�
.

MW (�) = E[expfW >�g] = E
�
exp

�
Y >A>u +Y >B>v

	�
= E

�
exp

�
Y >(A>u +B>v)

	�
=MY (A

>u +B>v)

= exp

�
1

2
(A>u +B>v)>Σ(A>u +B>v)

�

= exp

8<:1

2

0@u>AΣA>u + v>BΣB>v + u>AΣB>| {z }
=0

v + v>BΣA>| {z }
=0

u

1A9=;
= MAY (u)MBY (v);

i.e., the joint MGF is the product of the marginal MGFs, proving independence.
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For the converse, assume that AY and BY are independent. Then, 8u ; v ,

MW (�) =MAY (u)MBY (v); 8u ; v ;

=) exp

�
1

2

�
u>AΣA>u + v>BΣB>v + u>AΣB>v + v>BΣA>u

��
= exp

�
1

2
u>AΣA>u

�
exp

�
1

2
v>BΣB>v

�
=) exp

�
1

2
� 2u>AΣB>v

�
= 1

=) u>AΣB>v = 0; 8 u 2 Rd ; v 2 Rm ;

=) the orthocomplementa of the column space of AΣB> is the whole of Rm :

=) AΣB> = 0:

arecall that for Qm�d we have M?(Q) = fy 2 Rm : y>Qx = 0; 8x 2 Rdg
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Proposition (Density Function)

Let Σp�p be nonsingular. The density of N (�p�1;Σp�p) is

fY (y) =
1

(2�)p=2jΣj1=2 exp
�� 1

2 (y � �)>Σ�1(y � �)	
Proof.

Let Z = (Z1; : : : ;Zp)
> be a vector of iid N (0; 1) random variables. Then,

because of independence,

(a) the density of Z is

fZ (z ) =

pY
i=1

fZi (zi ) =

pY
i=1

1p
2�

exp

�
�1

2
z 2i

�
=

1

(2�)
p=2

exp

�
�1

2
z>z

�
:

(b) The MGF of Z is

MZ (u) = E

(
exp

 
pX

i=1

uiZi

!)
=

pY
i=1

Efexp(uiZi )g = exp(u>u=2);

which is the MGF of a p-variate N (0; I ) distribution.
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proof continued
(a)+(b)
=) the N (0; I ) density is fZ (z ) =

1
(2�)p=2

exp
�� 1

2z
>z
�
.

By the spectral theorem, Σ admits a square root, Σ1=2. Furthermore, since Σ is
non-singular, so is Σ1=2.

Now observe that from our Property 2, we have Y
d
= Σ1=2Z + � � N (�;Σ).

By the change of variables formula,

fY (y) = fΣ1=2Z+�(y)

= jΣ�1=2jfZ fΣ�1=2(y � �)g
=

1

(2�)
p=2 jΣj1=2

exp

�
�1

2
(y � �)>Σ�1(y � �)

�
:

[Recall that to obtain the density of W = g(X ) at w , we need to evaluate fX at
g�1(w) but also multiply by the Jacobian determinant of g�1 at w .]

�
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Karhunen-Loève Expansion

Theorem (Karhunen-Loève)

Let � 2 Rp and Σ 2 Rp�p be covariance with spectral decomposition

Σ = UΛU> =
�
u1 : : : up

�0B@�1 . . .

�p

1CA
0B@u

>
1
...
u>p

1CA =

pX
j=1

�juju
>
j ;

where fuj gpj=1 are the eigenvectors and f�j gpj=1 the eigenvalues. Then,

Y � N (�;Σ) () Y = �+

pX
j=1

�
1=2
j Zjuj =

pX
j=1

(�
1=2
j Zj+u

>
j �)uj ; Zj

iid� N (0; 1):

In words: if we do a change of basis and express Y � N (�;Σ) in the basis of
eigenvectors of Σ, the new coordinates become independent Gaussians with means
u>j � (the coordinates of � in the U basis) and variances �j .
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Proof.
Recall that

Y � N (�;Σ) () Y = �1=2W + � = UΛ1=2U>W + �; W � N (0; Ip�p)

and defining Z = U>W we get Z = U>W � N (0;U>U) � N (0; Ip�p). So,

�1=2W + � = UΛ1=2Z + � = (u1 : : : up)

0B@�
1=2
1

. . .

�
1=2
p

1CA
0@Z1

...
Zp

1A+ �

= �+

pX
j=1

�
1=2
j Zjuj ; Zj

iid� N (0; 1):

Finally, note that

� = U>U� =
�
u1 : : : up

�0@u>1
...
u>p

1A� =

nX
j=1

(u>j �)uj :
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Proposition

If Y � N (�;Σ), then suppfY g = R(Σ) + �

Proof.

Assume � = 0 wlog. When Σ is of full rank, N (�;Σ) admits a density, whose
form shows that any open ball is assigned positive probability. For the possibly
reduced rank case, let r = rank(Σ), let y 2 R(Σ) and � > 0 and observe that

PfkY � yk < �g (1)
= PfkHYY � HY yk < �g (2)

= P

8><>:








0B@�

1=2
1 Z1

...

�
1=2
r Zr

1CA�

0@y>u1
...

y>ur

1A







 < �

9>=>;
(3)
= PfkW � wk < �g > 0:

(1) is because y 2 R(Σ) and we already know (support and covariance lemma) that
suppfY g � R(Σ), so HYY = Y almost surely and HY y = y .

(2) is by the Karhunen-Loève expansion.

(3) uses the fact that W = (�
1=2
1 Z1; : : : ; �

1=2
r Zr )> � N (0;diagf�1; :::; �rg) is a Gaussian on

Rr with non-singular covariance

So we have y 2 R(Σ) =) y 2 supp(Y ), so R(Σ) � supp(Y ).
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Singular Gaussian Density

When Σp�p is singular, the N (�;Σ) distribution does not admit a density
with respect to Lebesgue measure on Rp .

The support of N (�;Σ) is R(Σ) + �. This is an affine set of dimension
r = rank(Σ). So it admits an r -dimensional Lebesgue volume measure.

Can we define a density w.r.t. this Lebesgue measure on the support?

Proposition

Let X � N(�p�1;Σp�p). Then, X admits a probability density with respect to
Lebesgue measure on �+ R(Σ1=2) given by

fX (x ) =
1Qr

j=1(2��j )
1=2

exp

�
�1

2
(x � �)>Σy(x � �)

�
; x 2 R(Σ) + �;

where r = rank(Σ) � p and f�1; : : : ; �rg are the non-zero eigenvalues of Σ.
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Proof.

The full rank case is already established, so we take rank(Σ) = r < p. We start
with the case � = 0 and

Σ = diagf�1; :::; �r ; 0; :::; 0g

for �j > 0, j = 1; :::; r . Given y 2 R(Σ) let N�(y) =
Qp

i=1(yi � �; yi + �) be the
open rectangle of sidelength 2� > 0 centred at y . Then PfX 2 N�(y)g equals

P
�
\p
i=1fXi 2 (yi � �; yi + �)g

�
=

rY
i=1

Z yi+�

yi��

e�x
2
i
=(2�i )

p
2��i

dxi| {z }
A(�)

�
pY

j=r+1

PfjYj � yj j < �g| {z }
B(�)

:

But for j > r we have yj = 0 and Yj = 0 almost surely, so B(�) = 1. This
establishes the form of the density in the mean zero and diagonal covariance case.
For the general case � 6= 0 and Σ = UΛU>, note that

PfY 2 Ag = PfU>(Y � �) 2 U>(A� �)g and
U>(Y � �) � N (0;U>ΣU) � N (0;diagf�1; :::; �r ; 0; :::; 0g):

So the density is obtained by the change of variables x 7! U>(x � �) and
observing that the term Udiagf��11 ; :::; ��1r ; 0; :::; 0gU> that will appear in the
exponential’s quadratic form equals Σy by definition of the pseudoinverse.
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Regression Representation

Since linear dependence is the only kind of dependence between two jointly
Gaussian random vectors X and Y , we may ask the question:

If we extract from X the part that is a perfect linear function of Y , is the
“remainder” independent of Y ?

Theorem (Regression Representation)

Let � 2 Rn+m and Σ be a covariance on Rn+m , expressed in block form as

� =

�
�X
�Y

�
Σ =

�
ΣX ΣXY

Σ>
XY ΣY

�
:

If X and Y are random vectors in Rn and Rm , respectively, then the following
two statements are equivalent:�

X

Y

�
� N (�;Σ)

X=�X + ΣXY Σy
Y (Y � �Y ) + ", with

Y � N (�Y ;ΣY ), " � N (0;ΣX � ΣXY Σy
Y Σ>

XY ), and " ?? Y
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The theorem provides intuition as to how the pair (X ;Y )> arises:

First, we affinely transform a realisation of Y � N (�Y ;ΣY ) by a
deterministic affine transformation.

Then, we add an independent (of Y ) zero mean Gaussian random variable ".

Consider the simplest case where X and Y are scalar, and var(Y ) > 0. Then the
representation in the theorem reduces to the familiar expression

X=�0 + �Y + "; Y � N (�Y ; var(Y )) independent of " � N (0; var("))

where:

�0 = �X � covfX ;Y g
var(Y ) �Y is called the intercept

� = covfX ;Y g=var(Y ) is called the regression coefficient

" is called the error or innovation that is homoskedastic in that
var(") = var(X )� cov2fX ;Y g=var(Y ) does not vary with Y .

This explains why we call it the “regression representation”.
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Proof when � = 0 and Σ � 0.

Since Σ � 0, we have Σy
Y = Σ�1

Y . We begin by proving the “(” direction. Note
that if X is defined as stipulated by the representation, then,�

X

Y

�
=

�
ΣXY Σ�1

Y Y + "
Y

�
=

�
In�n ΣXY Σ�1

Y

0 Im�m

��
"
Y

�
;

where the conditions on " and Y imply that�
"
Y

�
� N

�
0;

�
ΣX � ΣXY Σ�1

Y Σ>
XY 0

0 ΣY

��
:

This implies that (X>;Y >)> is jointly normally distributed with mean zero and
covariance�

In�n ΣXY Σ�1
Y

0 Im�m

��
ΣX � ΣXY Σ�1

Y Σ>
XY 0

0 ΣY

��
In�n 0

Σ�1
Y Σ>

XY Im�m

�
=

�
In�n ΣXY Σ�1

Y

0 Im�m

��
ΣX � ΣXY Σ�1

Y Σ>
XY 0

Σ>
XY ΣY

�
= Σ:
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To prove the “)” direction we show that if W = (X>;Y >)> � N (0;Σ), then:

1 X � ΣXY Σ�1
Y Y ?? Y .

2 X � ΣXY Σ�1
Y Y � N (0;ΣX � ΣXY Σ�1

Y Σ>
XY )

To this aim we note that

X�ΣXY Σ�1Y Y =
�

In�n �ΣXY Σ�1Y

�� X

Y

�
= QW & Y =

�
0 Im�m

�
W = PW :

Therefore:

X �ΣXY Σ�1
Y Y ?? Y iff PΣQ> = 0, which is verified because PΣQ> equals�

0 Im�m
�| {z }

P

�
ΣX ΣXY

Σ>
XY ΣY

�
| {z }

Σ

�
In�n

�Σ�1
Y Σ>

XY

�
| {z }

Q>

=
�
0 Im�m

��ΣX � ΣXY Σ�1
Y Σ>

XY

0

�
| {z }

=0

QW � N (0;QΣQ>) and importing our previous calculation of ΣQ>

QΣQ> =
�
In�n �ΣXY Σ�1

Y

��ΣX � ΣXY Σ�1
Y Σ>

XY

0

�
= ΣX�ΣXY Σ�1

Y Σ>
XY :

�

Exercise: Use the “support and covariance” lemma to establish the general case.
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Gaussian Conditionals

Corollary (Gaussian Conditional Distributions)

Let (X>Y >)> be a jointly Gaussian, comprised of concatenated random vectors
in Rn and Rm , respectively, with mean and covariance

� =

�
�X
�Y

�
Σ =

�
ΣX ΣXY

Σ>XY ΣY

�
:

Then,

X jfY = yg � N
�
�X + ΣXY Σy

Y (y � �Y ) ; ΣX � ΣXY Σy
Y Σ>

XY

�
:

Consequently, when ΣY is non-singular,

X jfY = yg � N ��X + ΣXY Σ�1
Y (y � �Y ) ; Θ�1

X

�
: (∗)

We highlight that when ΣY is non-singular, the conditional covariance of X jY is

ΣX � ΣXY Σ�1Y Σ>XY = Θ�1
X where ΘX is the top-left n � n block of the precision matrix

Θ = Σ�1. This follows from our block inverse covariance Lemma. This observation will come in
very handy in our next two Theorems. Call it (�). In other words,

the covariance sub-block ΣX of Σ is the covariance matrix of the marginal law of X .
the precision sub-block ΘX of Θ is the precision matrix of the conditional law of X jY
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Gaussian Conditional Independence

Theorem (Gaussian Conditional Independence)

Let (X>;Y >;Z>)> be an (n +m + p)-dimensional Gaussian vector with
non-singular covariance matrix Σ � 0 and precision matrix Θ = Σ�1, expressed in
block format as

Σ =

0@ ΣX ΣXY ΣXZ

Σ>
XY ΣY ΣYZ

Σ>
XZ Σ>

YZ ΣZ

1A & Σ�1 = Θ =

0@ ΘX ΘXY ΘXZ

Θ>
XY ΘY ΘYZ

Θ>
XZ Θ>

YZ ΘZ

1A
Then,

fX ?? Y g ��Z () ΘXY = 0:
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Proof.

Set W = (X>;Y >)>. Since (X>;Y >;Z>)> is Gaussian with non-singular
covariance, we conclude that FX ;Y jZ � FW jZ is Gaussian, with non-singular

covariance � = Θ�1
W (by (∗)). In turn, this equals

� = Θ�1
W =

�
�X �XY

�>
XY �Y

��1
i.e. the inverse of the top left (n +m)� (n +m) submatrix of Θ. Observe that:

If ΘXY = 0, then

� =

�
�X 0
0 �Y

��1
=

�
��1
X 0

0 ��1
Y

�
which implies that FX ;Y jZ factorizes as FX jZFY jZ by Property (5) of
Gaussians, and the form of Gaussian conditionals.

If FX ;Y jZ = FX jZFY jZ , then Property (5) of Gaussians implies that � is
block-diagonal, and so its inverse is also block diagonal, implying that
ΘXY = 0.
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Regression Interpretation of Gaussian Conditional Independence

In the setting of our last theorem, using the Gaussian regression representation
twice, we have:

X=�X + ΣXZΣy
Z (Z � �Z ) + "X ,

Y=�Y + ΣYZΣy
Z (Z � �Z ) + "Y ,

where

Z � N (�Z ;ΣZ )
"X � N (0;ΣX � ΣXZΣ�1

Z Σ>
XZ ) with "X ?? Z

"Y � N (0;ΣY � ΣYZΣ�1
Z Σ>

YZ ) with "Y ?? Z

Notice that "X 6?? "Y in general. When are they independent?

Proposition (Regression and Gaussian Conditional Independence)

In the same context as above, we have�
"X
"Y

�
� N

 
0;

�
�X �XY

�>
XY �Y

��1!

Therefore,
"X ?? "Y () ΘXY = 0 () fX ?? Y g ��Z
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Proof.
Assume wlog that the mean is zero. By the regression representation,�

"X
"Y

�
=

�
X � ΣXZΣ�1

Z Z

Y � ΣYZΣ�1
Z Z

�
=

�
In�n 0 �ΣXZΣ�1

Z

0 Im�m �ΣYZΣ�1
Z

�0@ X

Y

Z

1A :

Thus (">X ; "
>
Y )

> is jointly Gaussian. The form of covf"X g, covf"Y g, has already
been established. The cross-covariance, is covf"X ; "Y g = E["X ">Y ] which equals

E[(X � ΣXZΣ�1Z Z )(Y � ΣYZΣ�1Z ZZ )
>]

= E[XY>]� E[X (ΣYZΣ�1Z Z )>]� E[ΣXZΣ�1Z ZY>] + E[ΣXZΣ�1Z Z (ΣYZΣ�1Z Z )>]

= E[XY>]� E[XZ>]Σ�1Z Σ>YZ � ΣXZΣ�1Z E[ZY>] + ΣXZΣ�1Z E[ZZ>]Σ�1Z Σ>YZ
= ΣXY � ΣXZΣ�1Z Σ>YZ � ΣXZΣ�1Z Σ>YZ + ΣXZΣ�1Z ΣZΣ�1Z Σ>YZ
= ΣXY � ΣXZΣ�1Z Σ>YZ

In summary,

cov

n�"X
"Y

�o
=

�
ΣX � ΣXZΣ�1Z Σ>XZ ΣXY � ΣXZΣ�1Z Σ>YZ

Σ>XY � ΣYZΣ�1Z Σ>XZΣ>XZ ΣY � ΣYZΣ�1Z Σ>YZ

�
(?)
=

�
�X �XY

�>XY �Y

��1
It remains to ascertain whether “

(?)
= ” is true.
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Fortunately, we may recall (∗) to notice that the RHS equals Θ�1
W , i.e. the

covariance of W = (X>;Y >)> given Z . And can use (∗) to calculate it
explicitly. Namely, we can write

W jfZ = zg � N (ΣWZΣZ z ;Θ
�1
W ) � N (ΣWZΣZ z ;ΣW � ΣWZΣ�1

Z Σ>
WZ )

We can now write out

ΣW � ΣWZΣ�1
Z Σ>

WZ =

�
ΣX ΣXY

Σ>
XY ΣY

�
� E

��
XZ>

YZ>

��
Σ�1
Z E

�
(ZX> ZY >)

�
=

�
ΣX ΣXY

Σ>
XY ΣY

�
�
�

ΣXZ

ΣYZ

�
Σ�1
Z (Σ>

XZ Σ>
YZ )

=

�
ΣX ΣXY

Σ>
XY ΣY

�
�
�

ΣXZΣ�1
Z Σ>

XZ ΣXZΣ�1
Z Σ>

YZ

ΣYZΣ�1
Z Σ>

XZ ΣYZΣ�1
Z Σ>

YZ

�
=

�
ΣX � ΣXZΣ�1

Z Σ>
XZ ΣXY � ΣXZΣ�1

Z Σ>
YZ

Σ>
XY � ΣYZΣ�1

Z Σ>
XZ ΣY � ΣYZΣ�1

Z Σ>
YZ

�

which establishes that “
(?)
= ” is true indeed.

The second part of the Proposition follows from the fact that "X ?? "Y if and only
if the covariance of (">X ; "

>
Y )

> is block-diagonal (Property 5 of Gaussians). �
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Beyond Gaussian Regression: Best Linear Prediction

Let X and Y be random vectors in Rn and Rm , respectively and write

covfX ;Y g =
�

ΣX ΣXY

Σ>XY ΣY

�
:

How can we best predict Y using an affine function of X ?

Formally, we seek an affine map Rn 3 x 7! B�x + �� 2 Rm , such that

EkY � �� � B�X k2 � EkY � � � BX k2
is minimal over all choices of � 2 Rm and B 2 Rm�n . Such a map is called a best
linear predictor.

When X and Y are jointly Gaussian, we saw that the conditional expectation
of Y jX is an affine transformation of X – hence it is the de facto best linear
predictor, seeing as it is the best predictor (linear or otherwise):

�� = �Y � ΣYXΣy
X�X & B� = ΣYXΣy

X

What can we say beyond jointly Gaussian vectors?

Theorem (Best Linear Prediction)

Regardless of the joint law of X and Y , the best linear predictor of Y jX is the
same as in the jointly Gaussian case.
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Proof.

Writing EkY � � � BX k2 =Pm

i=1 E
�
(Yi � �i � BiX )2

�
for Bi 2 R1�n the ith

row of B, we see that it suffices to consider a scalar Y and B 2 R1�n .

The key step is to show that X and " := Y � �� �B�X are uncorrelated. But we
have done this already in the proof of Gaussian regression representationa!

Now E(Y � � � BX )2 can be written as

varfY � � � BX g+ [E(Y � � � BX )]2 = varfY � BX g+ [�Y � � � B�X ]
2

We can immediately check that (�;B) = (��;B�) minimises the second term
(yielding zero). Let’s also check that this choice also minimizes the first term.

varfY � BXg = varfY � �� � B�X + �� + B�X � BXg = varf"+ �� + (B� � B)Xg
= varf"+ (B� � B)Xg = varf"g+ varf(B� � B)Xg
= varf"g+ (B� � B)ΣX (B� � B)>

The first term does not depend on (�;B) and the second is clearly minimised at
B = B� since (B� � B)ΣX (B� � B)> � 0 for all B.

abecause to establish independence in the Gaussian context, we established
uncorrelatedness
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Partial Correlation

Let X = (X1; : : : ;Xp)
> be random p-vector, with covariance Σ � 0 and precision

matrix Θ = f�ij g = Σ�1. The partial correlation of Xi and Xj given fXkgk 6=i ;j is
defined as

�ij jk 6=i ;j := � �ijp
�ii�jj

It expresses the correlation between Xi and Xj when controlling for the linear
effects of the remaining variables fXkgk 6=i ;j on Xi and Xj .

When the partial correlation vanishes, the corresponding variables are called
partially uncorrelated2.

when X = (X>
1 ;X

>
2 ;X

>
3 )> is a partitioned Gaussian, X1 and X2 are

partially uncorrelated given X3 if and only if X1 ?? X2jX3

when X = (X>
1 ;X

>
2 ;X

>
3 )> is possibly non-Gaussian, X1 and X2 are

partially uncorrelated given X3 if and only if X1 �X �
1j3 and X2 �X �

2j3 are
uncorrelated, where X �

k j3 is the best linear predictor of Xk given X3, k = 1; 2.

The last sentence could be given the heading “regression and conditional
uncorrelatedness” (compare to the “regression and Gaussian conditional
independence” theorem)

2Notice that this is always in reference to another set of variables!
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Gaussian Quadratic Forms and
Concentration
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The �2 Distribution

If Z is standard Gaussian, what is the law of Z>Z ?

Starting with Z � N (0; 1). Note that FZ2(y) = 0 if y < 0, and for y � 0 the
CDF is

FZ2 (y) = P[Z 2 � y ] = P[jZ j � p
y ] = P[�py � Z � p

y ]

= �(
p
y)� �(�py) = �(

p
y)� (1� �(

p
y)) = 2�(

p
y)� 1:

Differentiating yields the PDF

fZ2 (y) = 2
d

dy
�(
p
y) = 2

d

d
p
y
�(
p
y)

d

dy

p
y = [:::] =

1p
2
p
�
e�y=2y�1=2:

The MGF is

MZ2 (t) =
1p
2�

Z 1

0

e tyy�1=2e�y=2dy =
1p
2�

Z 1

0

y�1=2e�(1�2t)y=2dy ;

and, provided that 1� 2t > 0, the integral is finite and we can substitute u = (1� 2t)y to get

MZ2 (t) = (1� 2t)�1=2
Z 1

0

1p
2�

u�1=2e�u=2du = (1� 2t)�1=2; t <
1

2
:

The corresponding distribution is called the �21 distribution.
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Proposition (Gaussian Sum of Squares and Chi-Square Distribution)

If Z � N (0; Ik�k ), then the moment generating function of the random variable
Z>Z is given by

MZ>Z (t) = (1� 2t)�k=2; t <
1

2
:

The proof is an easy exercise. The corresponding distribution is called the �2k
distribution. This law is completely specified by the parameter k , called the
degrees of freedom.

Can easily establish establish the PDF, but it’s not of much use to us.

Can easily verify Z � N (0; Ik�k ) satisfies E[Z>Z ] = k and varfZ>Zg = 2k .
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Exercise:

X � N (0;Σp�p) and Σ invertible, then X>Σ�1X � �2p .

X � N (0; Ip) and H a projection, then X>HX � �2rank(H).

X � N (0;Σp�p), then X>ΣyX � �2rank(Σ).
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The Concentration of Measure Phenomenon

Lemma (Chernoff Bound for �2
k )

Given Q � �2p , one has

P
�����Q � p

p

���� > u

�
� 2e�pu

2=8; 8u 2 (0; 1):

The proof is left as an exercise.

The plat principal is the following:

Theorem (Gaussian Concentration of Measure)

Let Z � N(0; Ip�p) and X = Σ1=2Z + � with Σ non-singular. Then, 8� 2 (0; 1),

P
�
k��1=2(X � �)k2 =2 [(1� �)p; (1 + �) p]

	
= P

n
kZk2 =2 [(1� �)p; (1 + �) p]

o
� 2e��

2p=8
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Proof of the lemma.
A Chernoff bound combinines the MGF with Markov’s inequality:

P[Q � p > pu ] = P[e�(Q�p) > e�pu ] � e��puE[e�(Q�p)] = e��pue��pMQ (�)

= e��pu
�

e��p
1� 2�

�p

� exp
�
� �pu + 2�2p

	
for all j�j < 1=4 (in the last step we have used the inequality e��p

1�2� � e2�
2

which is valid for

j�j < 1=4). Now we optimise the upper bound with respect to �. It can be checked that

exp
�
� �pu + 2�2p

	
has a global minimum at the value �� = u=4. Since u 2 (0; 1), we have

j��j < 1=4, and we can plug �� into our inequality to obtain P[Q � p > pu ] � e�pu
2=8.

Now we go in the other direction, and consider

P[Q � p < �pu ] = P[��(Q � p) > �pu ] = P[e��(Q�p) > e�pu ]

� e��puE[e��(Q�p)] = e��pue��pMQ (��)
Provided j�j < 1=4 we may define � = �� and repeat the exact same steps as before to obtain

P[Q � p < �pu ] � e�pu
2=8. To complete the proof, we put the two inequalities together to

observe that

P
n���Q � p

p

��� > u

o
= P
n
Q � p

p
> u

o
+ P
n
Q � p

p
< �u

o
� 2e�pu

2=8:
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Upon closer inspection, the result is striking:

given � 2 (0; 1), the bound 2e��
2p=8 rapidly approaches 0 as p grows

morally this says that:

in “high dimensions” (p large), the realisations of Z � N (0; Ip�p)
highly concentrate near the surface of the sphere of radius

p
p.

In other words, the standard normal distribution in high dimension p is close
to the uniform distribution on the sphere of radius

p
p:

N (0; Ip)
p large� Uniform(

p
pSp�1)

This may seem surprising given that the mode of the pdf is always at zero.
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In the case X � N (�;Σp�p) with Σ = U diagf�; : : : ; �pgU> invertible, we have a
similar concentration, but this time around an ellipsoid:

centred at �

with the eigenvectors ui of Σ as principle axes

with principle axis lengths 2�
�1=2
i

p
p.
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Proof of the theorem.
Using the Chernoff bound for the �2

k
distribution, we get

2e�pu
2=8 � P

�����kZk2 � p

p

���� > u

�
= P

n
fkZk2 � p > pug [ fkZk2 � p < �pug

o
= 1� P

n
fkZk2 � p � pug \ fkZk2 � p � �pug

o
= 1� P

n
fkZk2 � (1 + u)pg \ fkZk2 � (1� u)pg

o
= 1� P

n
(1� u)p � kZk2 � (1 + u)p

o
and the result follows taking � = u 2 (0; 1).
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Spherical and Elliptical Distributions
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From Gaussian to Elliptical vectors

A key feature of a Gaussian vector X � N (�;Σ) is that the representation

X
d
= �+ Σ1=2Z ; Z � N (0; I):

What if we replace Z � N (0; I) by some other “spherical” random vector W

Spherical means that

UW
d
=W for all orthogonal U.

Equivalently (exercise) that W = �U where U � Uniffx : kxk = 1g, � > 0 is
a random scalar (called the radial part), and U ?? �

Equivalently (exercise) v>W
d
= kvkW1, for all v (where

W = (W1; : : : ;Wp)
>)

If a spherical law has density f , then necessarily f (x ) = f (Ux ) for all
orthogonal U. Hence f (x ) = g(kxk2) for some g : [0;1)! [0;1).
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Elliptical Distributions

Definition (Elliptical Distributions)

An random vector X = (X1; : : : ;Xp)
> is called elliptical with location � and

dispersion AA> = Σ if and only if

X
d
= �+ AW ;

for W a spherical random vector, and Ap�d with p � d .

Elliptical distributions are affine transformations of spherical distributions,
just like Gaussians are affine transformations of standard Gaussians.

Since any spherical random vector is represented as �U where � ?? U ,

X is elliptical () X
d
= �+ �AU ; U � Uniffx : kxk = 1g:

Notice that in the elliptical case (contrary to the spherical case) the radial part �
is unique up to rescaling, since �A = (�=c)(cA) for any c 6= 0.
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Elliptical Densities

Let X = �+ AW for a spherical random vector W in Rd . If A is nonsingular,

W = A�1(X � �)
which implies that if W has density  (u) = g (kuk2), then X has density

fX (x ) =
1

jΣj1=2  
�
Σ�1=2(x � �)� = 1

jΣj1=2 g 
�
(x � �)>Σ�1(x � �)�;

where � = AA>. Call  the generating density of fX .

Comments

The density depends on x only via (x � �)>Σ�1(x � �)
Hence it is constant on ellipsoids, i.e. has elliptical contours (hence the name)

Since X = �+ cAc
�1

W for any c 6= 0, the dispersion matrix Σ is not
unique (it is unique only up to rescaling).

We have not assumed existence of second (or even first) moments.

If a first moment exists, then � is the expectation.
If second moments exist, then some rescaled version of Σ is the covariance.
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Examples of Elliptical Distributions

Evidently, all spherical distributions, and all Gaussians are also elliptical.

Gaussian variance mixtures, Y = �+
p
�AZ , where 0 < � ?? Z � N (0; I)

(exercise: show that cov(Y ) = E[�]cov(AZ ) and corr(Y ) = corrfAZg.)

A special case of Gaussian variance mixture (with �=� � �2� is the
multivariate t distribution t(�; �;Σ), with density

f (x ) =
�((� + p)=2)

�(�=2)(��)p=2jΣj1=2
�
1 +

(x � �)>Σ�1(x � �)
�

�� �+p

2

; x 2 Rp ;

where � 2 Rp , Σp�p � 0, and � 2 N are the degrees of freedom. Note that
� > 1 is required for first moments to exist, and � > 3 for second moments.
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Properties of Elliptical Distributions

Elliptical distributions are important because:

1 they retain some of the nice properties of Gaussians

while
2 they allow for greater generality, heavier tails, and extremal dependence – the

Gaussian does not:

if (X1;X2)
> � N (0;Σ) with corr(X1;X2) = � and var(X1) = var(X2) = 1,

then X2jX1 � N (�x ; 1� �2) and so

P[X2 > x jX1 = x ] = 1� �

�
x

r
1� �
1 + �

�
x!1! 0:

Which properties do they retain?

Closure under marginalisation (exercise)

Ellipticity is preserved under

affine transformations (exercise)

conditioning (possibly with a different generating density)
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“Gaussian-Like” Properties of Elliptical Laws

Closure Under Marginalization

If W = (X>;Y >)> is jointly elliptical with location/dispersion,

�W =

�
�X
�Y

�
& ΣW =

�
ΣX ΣXY

Σ>
XY ΣY

�
then:

1 X (resp. Y ) is also elliptical with location �X (resp. �Y ) and dispersion ΣX

(resp. ΣY ). Furthermore, if W has generating density  , so do X and Y .

2 Q = BW + � is also elliptical, with location B�+ � and dispersion BΣB>.
When they exist, the generating densities of W and Q coincide.

3 X jfY = yg is also elliptical, with location �X � ΣXY Σy
Y (y � �Y ) and

dispersion ΣX � ΣXY Σy
Y Σ>

XY : Should they exist, the generating densities of
W and X jY need not coincide.
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Sampling Theory: Gaussian and
Approximate
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(Gaussian) Data Matrices

An i.i.d. Gaussian sample is a collection X1; :::;Xn
iid� N (�p�1;Σp�p) in Rp . We

can stack then row-wise to build what is known as a (Gaussian) data matrix:

X =

0BBB@
X11 : : : X1p

X21 : : : X2p

...
...

Xn1 : : : Xnp

1CCCA =

0BBB@
X>
1

X>
2
...

X>
n

1CCCA = (X1 X2 : : : Xn)
>:

In a data matrix:

The n rows represent observations/cases.
The p columns represent variables/features.
Think of an n � p design matrix in linear models.

When sampling a Gaussian data matrix X, we wish to know sampling laws of:

Linear transformations of X, i.e. matrices of the form

AXB; A 2 Rm�n ; B 2 Rp�q :

Quadratic forms of X, i.e. matrices of the form

X>CX; C = C> 2 Rn�n
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Linear & Quadratic Forms

Why?

Sample mean �X is a linear form

�X> =
1

n
1>n X = AXB;

with A = 1
n
1>n and B = Ip�p .

Sample covariance is a quadratic form

bΣ =
1

n
X>HX

where the centring matrix Hn of dimension n is defined as

Hn = In�n � 1

n
1n1

>
n :

Note that 1
n
1n1

>
n = 1n(1

>
n 1n)

�11>n is the projection onto spanf1ng.Hence
Hn is the projection onto span?f1ng.

The sample mean/covariance are sufficient3 for their population counterparts.
3under some conditions
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Sampling Gaussian Vectors

Theorem (Gaussian Sampling)

Let X1; :::;Xn
iid� N (�;Σ) be an random sample of size n of Gaussian d-vectors.

Then,

The sample mean is a Gaussian vector: �X = 1
n

X>1n � N (�;n�1Σ)

The sample covariance is a Wishart matrix: n bΣ = X>HX �Wp(Σ;n � 1):

The sample mean and sample covariance are independent �X ?? bΣ
The results could follow from the behaviour of Gaussians under linear/quadratic
transformaton4

But it might be cleaner/simpler to restate such theorems in terms of data
matrices:

Properties of linear forms involving Gaussian data matrices

Properties of quadratic forms involving Gaussian data matrices

4vectorising row-wise and using Kronecker products
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Linear Forms

As a first question when is a linear form AXB of a Gaussian data matrix X also a
Gaussian data matrix?

Clearly AXB is always a Gaussian matrix (entries jointly Gaussian)

But to call it a Gaussian data matrix it must have i.i.d. rows.

Theorem (Linear Forms of Gaussian Data Matrices)

If X is a Gaussian n � p data matrix from N (�;Σ), then Am�nXBp�q is an
m � q Gaussian data matrix if and only if the following two conditions hold true:

1 A1n = �1m for some � 2 R OR B>� = 0 .

2 AA> = �Im�m for some � 2 R OR B>ΣB = 0 .

Clearly, when AXB is a Gaussian data matrix, it is from a N (�B>�; �B>ΣB).

Proof.
Exercise. Note that post-multiplication of X involves adding weighted variables. Hence the rows
of XB remain independent. Thus rows of AXB) will be independent unless premultiplication by A
introduces some interdependence (premultiplication of X adds weighted observations).
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Then we can ask when are two different linear forms AXB and CXD of a Gaussian
data matrix independent?

Theorem (Independence Between Linear Forms of Gaussian Data Matrices)

Let X be a Gaussian data matrix from N (�;Σ). Then

AXB ?? CXD () AC> = 0 or B>ΣD = 0:

Exercise. Prove the theorem.
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Wishart Random Matrices

Now let’s consider what happens if we “square” a Gaussian data matrix X:

Definition (Wishart Matrix)

Let Xn�p be a Gaussian data matrix from a N (0;Σ) distribution. The p � p

random matrix X>X is said to follow a p-dimensional Wishart distribution with
scale Σ and n degrees of freedom,

X>X �Wp(Σp�p ;n):

When Σ = Ip�p we speak of the standard p-Wishart distribution with n d.f.

Let’s try to get our head around this definition:

When n = 1 and Σ = Ip�p then we are looking at the distribution of ZZ> for
Z � N (0; Ip�p) — the outer product of a standard Gaussian w/ itself.

Compare this with the inner product of a standard Gaussian Z>Z w/ itself.

Some properties are as follows (exercise):

W �Wp(Σp�p ;n) () W
d
=
Pn

i=1
Wi ; Wi

iid� Wp(Σp�p ; 1)
W �Wp(Σp�p ;n) =) E[W] = nΣ.

The lower triangular part of W �Wp(Σp�p ;n) has density if and only if n � p.

W �Wp(Σp�p ;n) =) �>W�=�>Σ� � �2n , 8� =2 ker(Σ).
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Proposition (Closure under conjugation)

W �Wp(Σ;n) =) B>WB �Wp(B
>ΣB;n)

Proof.

Writing W = X>X for an n � p data matrix from N (0;Σ), we have

B>W = B>X>XB = Y>Y

where Y = Ip�pXB is also a Gaussian data matrix, from a N (0;B>ΣB), by the
data matrix linear form theorem (evidently, Ip�p1p = 1p & I>p�p Ip�p = Ip�p).

Corollary (Standardisation)

The random matrix W has a Wp(Σ;n) distribution if and only if Σy=2WΣy=2 has
a Wq(H;n) distribution, where H = ΣyΣ is the projection onto the range of Σ.

To see why this is standardisation, just assume Σ is non-singular.
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Wishart Matrices from Projections

Recall that when Z � N (0; Ip), and H is a projection, then Z>HZ � �2rank(H).

What is the analogue for Wisharts? Note that Z>HZ = kHZk2, so the
corresponding Wishart quantity would be

Z>HZ

where Zn�p = (Z>
1 ; :::;Z

>
n )>.

Theorem (Cochran’s Theorem)

Let Xn�p be a Gaussian data matrix from a N (0;Σ) and H be symmetric. Then,

X>HX is a Wishart matrix of mean Σ () H is a projection:

When H is indeed a projection, X>HX �Wp(Σ; rank(H)).
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Proof.

Let H = UΛU> be the spectral decomposition of H. Then X>HX = X>UΛU>X
and Y = U>XI is a N (0;Σ) Gaussian data matrix, because U>U = I and I0 = 0.

Thus, X>HX = Y>ΛY =
Pn

i=1 �iYiY
>
i , where Yi

iid� N (0;Σ). Now:

if H is a projection, then �i is either 0 or 1. HencePn

i=1 �iYiY
>
i =

Prank(H)
j=1 YiY

>
i �Wp(Σ; rank(H)):

Now let rank(H) = q � n . Then only its first q eigenvalues �i are non-zero.
Assume now, as in the statement, that for some (yet unspecified) d ,Pq

i=1 �iYiY
>
i �Wp(Σ; d). Multiplying both sides from left by e>1 (the first

canonical vector) and from right by e1, then dividing both sides by e>1 Σe1
and finally using the last exercise in slide 114 we arrive at equality in
distribution of:

1 On the LHS a weighted sum of q independent �2
1, with �i as weights.

2 On the RHS, a single �2
d

Equating the corresponding MGFs, yields for all t sufficiently smallQq

i=1(1� 2�i t)
�1=2 = (1� 2t)�d=2 =) Qq

i=1(1� 2�i t) = (1� 2t)d

and the last equality can only happen over an interval of t ’s if both
polynomials have same degree and same roots. Hence d = q and �i = 1.
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We are now ready to prove the sampling theorem.

Proof (Sampling from a Gaussian)

The distribution of the sample mean vector follows directly from the theorem on
linear forms of Gaussian data matrices, because

�X> = n�11>n| {z }
A

X

with A1n = n�11>n 1n = 1 and AA> = n�11>n n
�11n = n�1. The distribution of

the sample covariance follows directly from Cochran’s theorem.

Independence of the sample mean and sample covariance follow from the theorem
on independence of Gaussian data matrix linear forms, by considering CX := HX
and AX := n�11>n X and noting that AC> = H1n = 0 since H projects onto
span?f1ng.
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Hotelling’s T 2

A small parenthesis.

When doing testing, we will be interested in constructing statistics of the form

( �X � �)>Σ�1( �X � �):

But, more often than not, Σ will be unknown (nuiscance parameter). So we will
replace it by the sample version,

( �X � �)>bΣ�1( �X � �):

Obviously, this will yield a different sampling distribution for the statistic than
when using Σ itself.

Definition (Hotelling T 2 distribution)

For n � p, let � 2 = nY >W�1Y where Yp�1 and Wp�p are independently
distributed as N (0; I) and Wp(I;n), respectively. Then � 2 is said to follow the
Hotelling T 2 distribution with parameters p and n , written � 2 � T 2(p;n).
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Studentising (Hotelising?) in the Multivariate Case

Lemma

If X � N (�;Σp�p) independently of W �Wp(Σ;n) with Σ non-singular and
n � p, then

n(X � �)>W�1(X � �) � T 2(p;m):

Corollary

Let �X and bΣ be the sample mean and covariance of a N (�;Σ) iid sample. If
n � p and Σ is non-singular, then

(n � 1)( �X � �)>bΣ�1( �X � �) � T 2(p;n � 1)

Exercise: prove the lemma and the corollary.

Recall that the square of a Student tm distribution yields a F1;m distribution
Hence T 2(1;m) � F1;m � (tm)

2

More generally, we have

T 2(p;m) � mp

m � p + 1
Fp;m�p+1:
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Asymptotic Approximations

It may happen that X is a data matrix, albeit non-Gaussian.

What can we say about �X and bΣ then?

In general answer depends on row distribution.

We are instead looking for universality.

For this we need to consider an approximate/asymptotic law.

Essentially two parameters we can play with: n and p
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Weak Convergence of Random Vectors and Matrices

Definition (Weak Convergence)

Let fXng be a sequence of random vectors of Rd , and X a random vector of Rd .
Let Fn ;F : Rd ! [0; 1] be the corresponding joint CDFs. We say that Xn

converges in distribution to X as n !1 (and write Xn
d! X ) if

FXn
(x )

n!1�! FX (x )

for every continuity point x 2 Rd of FX .

There is a link between univariate and multivariate weak convergence:

Theorem (Cramér-Wold Device)

Let fXng be a sequence of random vectors of Rd , and X a random vector of Rd .
Then,

Xn
d! X , �>Xn

d! �>X ; 8� 2 Rd :

Exercise: show by counterexample that separate weak convergence of each
coordinate does not imply weak convergence of the random vector.
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When it comes to matrices,

the definition is essentially the same

the Cramér-Wold device for n � p matrices reads

Mn
d! M () tracefA>Mg d! tracefA>Mg; 8A 2 Rn�p :

Exercise: verify that the latter is the right formulation indeed.
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Recalling two basic Theorems

Theorem (Strong Law of Large Numbers)

Let fXng be pairwise iid random vectors with EXk = � and EkXkk <1, for all
k � 1. Then,

1

n

nX
k=1

Xk
a:s:�! �

“Strong” is as opposed to the “weak” law which requires EX 2
k <1 instead

of EjXk j <1 and gives “
p!” instead of “

a:s:�!”

Theorem (Central Limit Theorem)

Let fXmg be an iid sequence of random vectors in Rd with mean � and covariance
Σ with tracefΣg <1. Let �Xn :=

Pn

i=1Xi=n be their sample mean. Then,

p
n( �X � �) d! N (0;Σ):

Exercise: prove this CLT using the 1D CLT and the Cramér-Wold device
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Convergence Rates and High Dimensions

Law of Large Numbers: assuming finite variance, rate of n�1=2

What about the CLT? What is the quality of the approximation?

Theorem (Berry-Essen-Benktus)

Let X1; :::;Xn be iid random p-vectors with mean 0 and covariance Ip�p . Define,

Sn =
1p
n
(X1 + : : :+Xn):

If Ap denotes the class of convex subsets of Rp , then for Z � Np(0; Ip),

sup
A2Ap

jP[Sn 2 A]� P[Z 2 A]j � c � p1=4EkXik3p
n

for some universal constant c � 400

Notice the dependence on dimension.

Can we let p grow too?
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By Jensen’s inequality, when E[XX>] = Ip�p , we have

EfkX k3g � EfkX k2g3=2 = p3=2

So to make the upper bound shrink to 0, it is necessary that p = o(n2=7), i.e.

pn

n2=7

n!1�! 0:

here’s what (for example) p � n2=8 � n1=4 looks like

0 20 40 60 80 100

1.
0

1.
5

2.
0

2.
5

3.
0

n

p
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High Dimensional CLT

What about cases when p is of same order or larger than n?
In the context of the last theorem, assume that

E[X 2
ij ] � b for all j = 1; :::; p.

E[jXij j2+k ] � B for k = 1; 2 and all j = 1; :::; p.

E[expfjXij j=Bg] � 2 for all i � n and j � p.

Then, if we focus only on rectangles Rp of Rp , we have

Theorem (Chernozhukov, Chetverikov & Kato, 2017)

sup
R2Rp

jP[Sn 2 R]� P[Z 2 R]j � C �
�
log7(pn)

n

�1=6

where Z � N (0; Ip�p) the constant C depends only on b and B .

CCK simply requires log pn
n1=7

n!1�! 0, i.e. log p = o(n1=7), allowing for p � n

Compare to BEB necesary condition p = o(n2=7)
Improvement comes at cost of smaller class of sets Rd � Ad

Not a CLT in a traditional sense of “
d!” (given approximation of probabilities

without convergence to some fixed random vector – “moving target”)
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Weak Convergence of Empirical Covariances

And what about the empirical covariance?

Observe that the empirical covariance is a sample average of the random matrices

X1X
>
1 ; : : : ;XnX

>
n

These are iid with mean Σ and some covariance. In the Gaussian (and
elliptical) case this depends only on second moments but in general it will
depend on 4th moments (see next two slides).

They are elements of a real vector space of dimension p(p + 1)=2.

Therefore, the usual law of large numbers holds and the usual CLT hold

And, provided we can standardise, the high dimensional CLT holds
unchanged (i.e. with log[p(p + 1)] � log p2 = 2 log p = o(n1=7))
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Second Moments of Wishart Matrices (� Empirical Covariances of Gaussian Vectors)

Let’s specify, for the record, the covariance structure of W = XX>, X � N (0;Σ).

Covariance of Wishart matrix (a.k.a. Isserlis’ Formula)

If W �W (Σ; 1), its covariance is, element-wise,

covfwij ;wklg = covfXiXj ;XkXlg = E[XiXjXkXl ]� E[XiXj ]E[XkXl ]

= (�ik�jl + �il�jk + �ij�kl )� �ij�kl = �ik�jl + �il�jk

The blue part is obtained by taking the mixed partial derivative of order 4 the
MGF of a 4-dimensional Gaussian (a tedious but elementary calculation).

This can be arranged (exercise) in vectorised form as

covfvec(W)g = (Σ
 Σ)(Ip2�p2 + Kpp)

where Kpp =
Pp

i=1

Pp

i=1 Hij 
 H>
ij is the commutation matrix, with Hij = eie

>
j .

The commutation matrix “transposes vecs”, i.e. Kppvec(W) = vec(W>).

Exercise: Σ diagonal =) Wishart entries uncorrelated, ij element has variance

(1 + 1fi = j g)�ii�jj (recall notation �ii � Σii = �2i )

Exercise: Σ � 0 =) cov[fwij gi�j ] � 0 (lower triangular part of W).
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Second Moments of Empirical Covariance of Elliptical Vectors

Warning: in non-Gaussian case, 2nd moments do not determine 4th moments:

E[XiXj ; XkXl ] = m4(i ; j ; k ; l) 6= �ik�jl + �il�jk + �ij�kl

So we can’t use covariance structure of a Wishart matrix in the CLT limit.
Instead, we need essentially all (mixed) 4th moments (which, are also very
difficult to estimate)

A notable exception is for centred X with elliptical law of dispersion Ψ / Σ. The
proportionality constant can be deduced to be E[X>Ψ�1X ]=p.

Here, fourth moments enter only through a simple scalar parameter

� =
p

(p + 2)

Ef[X>Ψ�1X ]2g
E2[X>Ψ�1X ]

� 1

Indeed, one can calculate

covfvec(XX>)g = (�+ 1)(Σ
 Σ)(Ip2�p2 + Kpp) + �vec(Σ)vec(Σ)>:

or elementwise,

E[XiXjXkXl ] = (�+ 1)�ik�jl + (�+ 1)�il�jk + ��ij�lk :

So if Σ diagonal, entries of XX> are uncorrelated, as in Gaussian case.
In the Gaussian case, we can calculate � = 0.
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New Limit Theorems from Old

Occasionally we need to studentise by an unknown but consistently
estimatble quantity.

Other times, we have a CLT for a quantity, but we are interested in some
functional thereof.

For such cases, statisticians rely on two essential tools:

Lemma (Slutsky)

Let X be a random vector in Rp , � 2 Rq , and g : Rp �Rq ! R be continuous on

suppfX g � f�g. If Xn
d! X in Rp and Yn

d! �, then g(Xn ;Yn)
d! g(X ; c).

Theorem (Delta Method)

Let Zn := an(Xn � �) d! Z where 0 < an " 1 and � 2 Rp . Let g(�) : Rp ! Rq

be differentiable at �. Then, an(g(Xn)� g(�))
d! [(rg)(�)]Z :
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Some Comments on Low vs High Dimensions

There is a fundamental difference between the low/high dimensional cases.

To see this,

Consider the n iid p-vectors fXig with mean 0 and covariance Ip .

Whether in low/high dimension, when it holds, the CLT heuristically says

p
n �X

d� N (0; Ip); for large n :

=) In the low dimensional case, �X collapses to the true mean as n !1
=) In the high dimensional case, �X concentrates on the sphere of radius

r
p

n
.

(recall the concentration of measure phenomenon)

So depending on the ratio p=n we might very well not have a LLN.

This fundamental difference has immediate consequences when doing statistics at
low vs high dimensions – they are two distinct and very different regimes.
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Inference
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Gaussian Mean and Covariance Estimation

Proposition (Gaussian Likelihood)

Let X1; :::;Xn
iid� N (�;Σ) be a sample of Gaussian p-vectors. The likelihood

L(�;Σ) of (�;Σ) is given by

1fR
�

Σ̂ + (�x � �)(�x � �)>
�
� R(Σ)g�Qr

j=1
(2��j (Σ))1=2

�n exp

n
�n
2
(�x � �)>Σy(�x � �)

o
�exp

n
�n
2
trace

�
ΣyΣ̂

	o
where r = rank(Σ) � p and f�1(Σ); : : : ; �r (Σ)g are the positive eigenvalues of

Σ. Consequently, the likelihood depends on the data only through ( �X ; bΣ).
Some comments

If/when they exist, the maximum likelihood estimators of (�;Σ) will be

functions of ( �X ; bΣ).
When Σ � 0, we immediately conclude that ( �X ; bΣ) is sufficient for (�;Σ), by
the Fisher-Neyman factorisation theorem.

Without restrictions on the support of the Gaussian law, the model is
non-regular (no common dominating measure).
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Proof.

We will make use of the following identity (exercise)Pn

i=1(xi � �)(xi � �)>
?
=
Pn

i=1(xi � �x )(xi � �x )> + n(�x � �)(�x � �)>.

Recall that when X � N(�p�1;Σp�p), X admits a density on �+ R(Σ) given by

fX (x ) =
1Qr

j=1
(2��j (Σ))1=2

exp

n
�1

2
(x � �)>Σy(x � �)

o
1fx 2 R(Σ) + �g;

where r = rank(Σ) � p and f�1(Σ); : : : ; �r (Σ)g are the positive eigenvalues.
Therefore, we obtain the joint density w.r.t. Lebesgue measure on �+R(Σ) as

fX1;:::;Xn
(x1; :::; xn) =

Qn

i=1 1fxi 2 R(Σ) + �g�Qr

j=1(2��j (Σ))
1=2
�n exp

(
�1

2

nX
i=1

(xi � �)>Σy(xi � �)
)

Let’s first focus on the “red” factor, and then the “green” factor. The “blue”
factor needs no more work.
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Re-writing the quadratic form as a trace, and using the identity ?, get red factor=

= exp

(
�1

2

nX
i=1

tr
�

Σy(xi � �)(xi � �)>
�)

= exp

(
�1

2
tr

 
Σy

nX
i=1

(xi � �)(xi � �)>
!)

= exp

n
�n
2
tr
�

Σy(�x � �)(�x � �)>
�o

� exp

(
�1

2
trace

(
Σy

nX
i=1

(xi � �x )(xi � �x )>

))
= exp

n
�n
2
(�x � �)>Σy(�x � �)

o
� exp

n
�n
2
trace

�
ΣyΣ̂

	o
which is exactly the form sought.

As for the green factor, we need to to show that
Qn

i=1 1fxi 2 R(Σ) + �g, or
equivalently

Qn

i=1 1fxi � � 2 R(Σ)g, is as stipulated. To do this we will use the
identity ? again, combined with the claim (old exercise, reminder after the proof)
that for any Q � 0,

v1; :::; vk 2 R(Q)
~() R

 
kX

i=1

vkv
>
k

!
� R(Q)
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Assuming the claim ~ to be true, we immediately have

x1 � �; :::; xn � � 2 R(Σ)
~() R

 
nX

i=1

(xi � �)(xi � �)>
!
� R(Σ)

?() R
�
nΣ̂ + n(�x � �)(�x � �)>

�
� R(Σ)

Since the factor n has no bearing on the inclusion, the proof will be complete as
soon as we establish our claim. This we do separately below.

Lemma (Ranges and Spans)

v1; :::; vk 2 R(Q)
~() R

 
kX

i=1

vkv
>
k

!
� R(Q)

(we have seen this early in the course)
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The log-likelihood (up to constants) for � and Σ based on a Gaussian data matrix

Xn�p , n > 1, equals �1 when R
�
nΣ̂ + n(�x � �)(�x � �)>

�
* R(Σ), and

otherwise equals

`(�;Σ) = �n
2

rank(Σ)X
j=1

log �j (Σ)� n

2
(�x � �)>Σy(�x � �)� n

2
trace

n
ΣyΣ̂

o
which is finite for all �x � � 2 R(Σ). When Σ � 0 the log-likelihood is positive for
all �x � � and equals

`(�;Σ) = �n
2
log jΣj � n

2
(�x � �)>Σ�1(�x � �)� n

2
trace

n
Σ�1Σ̂

o
:

Imposing an assumption on the range of Σ (equivalently the support of the
random vector) represents imposing a restriction on the model
Np = fN (�;Σ) : � 2 Rp ;Σp�p � 0g.

Because the model Np is non-regular, maximum likelihood estimation
depends heavily on such restrictions.
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Theorem (Gaussian Mean/Covariance MLE)

Let X1; :::;Xn
iid� N (�;Σ) be a sample of Gaussian p-vectors. Then,

1 the unique MLE of � is always �X = 1
n

Pn

i=1Xi .

2 Under the restriction R(Σ) = R(Σ̂), the unique MLE of (�;Σ) is ( �X ; Σ̂).

3 Without any range restriction,

if Σ̂ is non-singular, the unique MLE of (�;Σ) is ( �X ; Σ̂).
if Σ̂ is singular, the MLE of � is �X but the MLE of Σ does not exist.

Corollary (The non-singular and low-dimensional case.)

If X1; :::;Xn
iid� N (�;Σ) with n > p and Σ � 0, then the unique MLE of � and Σ

are �X and Σ̂, respectively. Furthermore, �X and nΣ̂=(n � 1) are minimum
variance unbiased estimators of � and Σ.

Exercise: Prove the corollary (use projections for the second part).

Victor Panaretos (EPFL) Multivariate Statistics 139 / 244



Proof.
Notice that, unless Σ � 0, we need to be careful about the support of the joint
density. The joint density vanishes unless

R
�
nΣ̂ + n(�x � �)(�x � �)>

�
� R(Σ);

or equivalently
xi � � 2 R(Σ) 8 i � n :

When considering the joint density this is seen as a condition on the observations.
But when considering the likelihood, this is seen as a condition on Σ and �. When
(�;Σ) fail to satisfy it, the likelihood becomes zero (and the loglikelihood
negatively infinite). Call this the “support condition”.

Now consider estimation of � first. The support condition compels us to only
consider � that satisfy �x � � 2 R(Σ). Now, regardless of the choice of Σ, the
middle term in the log-likelihood (the only term depending on �)

�n
2
(�x � �)>Σy(�x � �)

attains its maximum of 0 when � = �x . This choice of � trivially satisfies the
support condition �x � � 2 R(Σ), regardless of choice of Σ. So �X is an MLE of �.
For uniqueness, let y be a candidate estimator satisfying the support condition, i.e.
�x � y 2 R(Σ). Since Σy � 0 on R(Σ), we have (�x � y)>Σy(�x � y) = 0 =) y = �x .
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To prove (2), note that wlog we can take R(Σ̂) = Rp (otherwise we rotate the
space). Equivalently, we take Σ non-singular. Therefore any candidate Σ is also
non-singular, so our search space is that of strictly positive definite matrices.
When we plug in the MLE of �, the loglikelihood reduces to

�n
2
log jΣj � n

2
trace

n
Σ�1Σ̂

o
=
n

2
log jΘj � n

2
trace

n
ΘΣ̂
o

where Θ = Σ�1. Now let V̂ = Σ̂1=2 � 0. Define Ψ = V̂ΘV̂, and note that

log jΨj = log
n
jV̂j jΘj jV̂j

o
= logfjV̂ j jV̂ jg+ log jΘj = constant + log jΘj

while
tracefΘΣ̂g = tracefV̂�1ΨV̂�1V̂V̂g = tracefΨg:

Hence, up to constants, the loglikelihood can be expressed as

log jΨj � tracefΨg =
pX

i=1

log �i (Ψ)�
pX

i=1

�i (Ψ) =

pX
i=1

(log �i (Ψ)� �i (Ψ))

which can be optimised for each �i separately. Noting that 1 is the unique
maximum of log x � x over x > 0 (check by differentiating), we get the unique
MLE for �i (Ψ) = 1 for all i , i.e. Ψ = Ip�p , i.e. at � = Σ̂�1 i.e. at Σ = Σ̂.
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To prove (3), plug in the MLE for the mean in the general form of the
loglikelihood to get (up to constants)

`(�x ;Σ) =

�
�
Prank(Σ)

j=1
log �j (Σ)� trace

�
ΣyΣ̂

	
when R(Σ) � R(Σ̂);

�1 otherwise:

consider the sets

C1 = fΣ : R(Σ) � R(Σ̂)gc ; C2 = fR(Σ̂) = R(Σ)g; C3 = fR(Σ) � R(Σ̂)g:

Plugging in the MLE for the mean, we see that:

Over C1, the likelihood is zero.

Over C2; the maximal loglikelihood is finite and is attained uniquely at Σ̂.

Finally, over C3, we can obtain a sequence with loglikelihood diverging to 1
as follows. Take Σm = Σ̂ + �nvv

>, where v 2 R?(Σ̂) is a unit vector (think
of it as the “(r̂ + 1)th eigenvector of Σ̂”) and 0 < �m < �r̂ (Σ̂) with �m # 0.
For all �m , the trace term yields the same value �r̂ . The “logdet” term on

the other hand, equals �
�Pr̂

j=1 log �j (Σ̂)
�
� log(�m) which diverges.

Exercise: If � is known, the MLE of Σ̂ (if it exists) becomes 1
n

P
(Xi � �)(Xi � �)>:
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Estimation of Correlation and Precision

Recall that the MLE is parametrisation equivariant: for any transformation g

�̂ is MLE of � ) g
�
�̂
�

is MLE of g(�)

If g is additionally 1-1, then uniqueness is also inherited when present.

Exercise: Show this. Note that we can find the MLE of � = g(�) by maximising
� 7! sup�2g�1(�) L(�) where L(�) is the likelihood for �.

Thus, whenever Σ � 0 and n > p, we obtain the immediate corollaries:

The MLE of the precision matrix Θ = Σ�1 is given by5 Θ̂ := Σ̂�1.

The MLE of the correlation matrix R is given by

R̂ = diagf�̂�11 ; : : : ; �̂�1p g Σ̂ diagf�̂�11 ; : : : ; �̂�1p g

where �̂j is the j th diagonal element of Σ̂.

5actually, our method of proof first showed Σ̂�1 to be the MLE of Σ̂�1, but anyway.
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Gaussian Hypothesis Testing

Unless we have very special hypothesis structure (e.g. simple vs simple, or
one-sided concerning a single coordinate of the mean), there will generally be
no unequivocal choice of test (no optimal test).

In special cases related to the mean, e.g. when Σ is known to be diagonal,
one can do separate univariate tests, and combine them with a careful
correction.

A general (and usually sensible) general method is based on the likelihood
ratio.

(not the only approach, and other approaches can occasionally have
advantages)

Often we have a one-sample or a two-sample (or multi-sample) setting:

One sample: X1; :::;Xn
iid� N (�;Σ)

Two sample: X1; :::;Xn
iid� N (�X ;ΣX ) and Y1; :::;Ym

iid� N (�Y ;ΣY )
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Natural one-sample hypothesis pairs:

fH0 : � = �0g vs fH1 : � 6= �0g (either when Σ known or Σ unknown)

fH0 : Σ = Σ0g vs fH1 : Σ 6= Σ0g.

fH0 : Σ / Ig vs fH1 : Σ 6/ Ig (sphericity test)

fH0 : �ij = 0g vs fH1 : �ij 6= 0g
fH0 : �ij jrest = 0g vs fH1 : �ij jrest 6= 0g
(must be interpreted w/ care, partial corr is always wrt to a set of variables)

Natural two-sample hypothesis pairs (can be generalised to multi-sample case)

fH0 : �X = �Y g vs fH1 : �X 6= �Y g with ΣX = ΣY (known or unknown)

fH0 : ΣX = ΣY g vs fH1 : ΣX 6= ΣY g
fH0 : �X = �Y g vs fH1 : �X 6= �Y g with ΣX 6= ΣY (Behrens-Fisher problem)

Let’s work out some cases to get the hang of it.
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The Likelihood Ratio Framework – Test Statistic

All the hypotheses previously formulated fall in the following general framework:

X = (X>
1 ; :::;X

>
n )> random vectors, w/ likelihood L(#) = f#(X1; :::;Xn)

# 2 � � Rd where � = �0 [�1 and �0 \�1 = ;

Definition (Likelihood Ratio Test Statistic)

The likelihood ratio statistic for H0 : # 2 �0 vs H1 : # 2 �1 is

� = sup
#2�

L(#)= sup
#2�0

L(#)

Intuition: how much better do we do if we do if we do not restrict the
maximisation of the likelihood to be over the subset �0?

We reject H0 for large � or of some monotone increasing cts function of �.

Which precise function depends on convenience (ease of calibration)

Often the following increasing function is easy to calibrate (perhaps
asymptotically)

2 log � = 2

�
sup
#2�

logL(#)� sup
#2�0

logL(#)

�
= 2(`� � `�0)
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The Likelihood Ratio Framework – Calibration

Implementing a likelihood ratio test requires two steps:

1 Determining the test statistic

2 Calibrating the test statistic (or a monotone transformation � (�) theoref).

Calibration refers to finding the distribution of � (�) under H0, so that we can
choose an appropriate quantile to define the critical region for rejection:

� (�)
H0� F =) reject H0 at level � whenever � (�) > q1��(F )

Often, especially in exponential families (like the Gaussian) we can find the
exact sampling law under H0.

But more often it is not tractable, and we need an asymptotic approximation.

A general such result for � (�) = 2 log � is given by Wilks’ theorem.
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Theorem (Wilk’s theorem)

Let X1; :::;Xn be iid random vectors with density (frequency) depending on
# 2 Rp and satisfying the “usual regularity conditions” (see next slide). If the
MLE sequence #̂n is consistent for #, then the likelihood ratio statistic �n for

H0 : f#j = #j ;0gsj=1, s � p, satisfies 2 log �n
d! V � �2s when H0 is true.

Note that Wilks’ theorem applies for a simple null (not composite), though this
does not need to fix all the parameters (s < p is allowed).

Hypotheses of the form H0 : fgj (#) = aj gsj=1, for gj differentiable real functions,
can also be handled by Wilks’ theorem:

Define (�1; :::; �p) = g(#) = (g1(#); :::; gp(#))

gs+1; :::; gp defined so that # 7! g(#) is 1-1

Apply theorem with parameter �

Victor Panaretos (EPFL) Multivariate Statistics 148 / 244



The “usual regularity conditions” are as follows:

(A1) The parameter space � 2 Rp is open.

(A2) The support of f# is invariant w.r.t. #

(A3) All mixed partial derivatives of ` w.r.t. # up to degree 3 exist and are
continuous.

(A4) E[r#`(Xi ;#)] = 0 8# and cov[r#`(Xi ;#)] =: I (#) � 0 8#.

(A5) �E[r2
#`(Xi ;#)] =: J (#) � 0 8#.

(A6) 9 � > 0 s.t. 8# 2 � and for all 1 � j ; k ; l � p,���� @

@#j@#k@#l
`(x ;u)

���� �Mjkl (x )

for k#� uk � � with Mjkl such that E[Mjkl (Xi )] <1.

For a proof, see the “Statistical Inference” course, or Serfling, “Approximation Theorems of
Mathematical Statistics” (Sec. 4.4.4.)
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One sample, fH0 : � = �0g vs fH1 : � 6= �0g (Σ known)

Let X1; : : : ;Xn , be a random sample from N (�;Σp�p) with Σ � 0 known. As Σ
is known, H0 is simple, and hence the maximal log-likelihood under H0 is

`�0 = `(�0;Σ) = �n
2
log det(2�Σ)� n

2
tr
�

Σ�1Σ̂
�
� n

2
( �X � �0)>Σ�1( �X � �0):

The unrestricted maximal loglikelihood occurs at the unrestricted MLE,

`� = `( �X ;Σ) = �1

2
n log det(2�Σ)� 1

2
ntr

�
Σ�1Σ̂

�
:

Hence
2 log � = 2(`� � `�0) = n( �X � �0)>Σ�1( �X � �0);

which, under H0, follows the �2p distribution. Thus we reject H0 at the level � iff

2 log � = n( �X � �0)>Σ�1( �X � �0)>q1��(�2p):

Note that we can invert this test to get a 95% confidence region for � in the form

f�0 2 Rp : n( �X � �0)>Σ�1( �X � �0)�q1��(�2p)g
i.e. all the possible �0 for which H0 isn’t rejected.
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One sample, fH0 : � = �0g vs fH1 : � 6= �0g (Σ unknown)

Let X1; : : : ;Xn be a random sample from N (�;Σp�p) with Σ � 0 unknown and
n > p. Σ must be estimated under H0 and also under H1. Therefore both
hypotheses are composite. Based on our results,

Under H0 the MLE for � and Σ are

�0 and Σ̂0 = n�1
Xn

i=1
(Xi � �0)(Xi � �0)> = Σ̂ + ��>;

where � = �X � �0.
Under H1 the MLE for � and Σ are

�X and Σ̂1 = Σ̂:

Plugging into the loglikelihood expression, we obtain `�0 = `(�0; Σ̂ + ��>) =

= �n
2

h
p log(2�) + log jΣ̂ + ��>j+ �>Σ̂�1� + trf(Σ̂ + ��>)�1Σ̂)g

i
:

As Σ̂ � 0 a.s. when n > p, its rank 1 perturbed determinant is (exercise)

jΣ̂ + ��>j = jΣ̂j(1 + �>Σ̂�1�);

which yields (via the Sherman-Morrison formula, exercise, and some algebra)

`�0 = �n
2

h
p log(2�) + log jΣ̂j+ log(1 + �>Σ̂�1�) + p

i
:
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In the unrestricted case, we calculate

`� = `( �X ; Σ̂) = �n
2

h
p log(2�) + log jΣ̂j+ p

i
;

and thus

2 log � = 2(`� � `�0) = n log(1 + �>Σ̂�1�) = n log

�
1 +

1

n � 1
(n � 1)�>Σ̂�1�

�

So this statistic depends upon (n � 1)�>Σ̂�1�, which follows the T 2(p;n � 1)
distribution (hence often referred to as the Hotelling one-sample T 2 statistic).

As 2 log � is a strictly increasing function of the Hotelling statistic, we reject H0

at the level � iff
(n � 1)�>Σ̂�1�>q1��(T 2(p;n � 1)):

Exercise: Establish the matrix determinant and Sherman-Morrison formulas:

If Σ � 0, then jΣ + uu>j = jΣj(1 + u>Σ�1u)

If Σ � 0, then (Σ + uu>)�1 = Σ�1 � 1
1+u>Σ�1u

Σ�1uu>Σ�1
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Two sample, fH0 : �X = �Y g vs fH1 : �X 6= �Y g with ΣX = ΣY = Σ known

Suppose that for Σp�p � 0 known we have independent samples,

X1; :::;Xn
iid� N (�X ;Σ) & Y1; :::;Ym

iid� N (�Y ;Σ)

and we wish to discern whether they share the same mean or not.

The two samples are not identically distributed under both hypotheses.

Still a global likelihood w.r.t. (�>X ; �
>
Y )

> 2 R2p is obtained by multiplication.

`(�X ; �Y ) = �n +m

2
log jΣj�n

2
(�x � �X )>Σ�1(�x � �X )� m

2
(�y � �Y )>Σ�1(�y � �Y )

�n
2
trace

�
Σ�1Σ̂X

	
� m

2
trace

�
Σ�1Σ̂Y

	
:

The null fH0 : �X = �Y g corresponds to a restriction on the parameter space
The corresponding restricted loglikelihood is

`(�X ) = �n +m

2
log jΣj�n

2
(�x � �X )>Σ�1(�x � �X )� m

2
(�y � �X )>Σ�1(�y � �X )

�n
2
trace

�
Σ�1Σ̂X

	
� m

2
trace

�
Σ�1Σ̂Y

	
:

The two loglikelihoods differ only through the quadratic forms in blue.
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The restricted likelihood corresponds to that of the parameter �X in a
N (�X ;Σ) model, based on an i.i.d. sample of size n +m . This is maximised
w.r.t. �X at the pooled sample mean,

M =
1

n +m

0@ nX
i=1

Xi +

mX
j=1

Yj

1A =
n

n +m
�X +

m

n +m
�Y

The unrestricted likelihood is maximised at (�̂X ; �̂Y ) = ( �X ; �Y ), at which the
blue term vanishes.
Thus, the difference 2(`� � `�0) can be seen to be equal to

2(`� � `�0) = n( �X �M )>Σ�1( �X �M ) +m( �Y �M )>Σ�1( �Y �M )

= n
m

n +m
( �X � �Y )>Σ�1

m

n +m
( �X � �Y )

+m
n

n +m
( �Y � �X )>Σ�1

n

n +m
( �Y � �X )

=
nm

n +m
( �X � �Y )>

�
n

n +m
Σ�1 +

m

n +m
Σ�1

�
( �X � �Y )

=
nm

n +m
( �X � �Y )>Σ�1( �X � �Y )

Under H0,
q

nm
n+m ( �X � �Y ) � N (0;Σ), thus we reject H0 at the level � iff

2 log � =
nm

n +m
( �X � �Y )>Σ�1( �X � �Y )>q1��(�2p):
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Two sample, fH0 : �X = �Y g vs fH1 : �X 6= �Y g with ΣX = ΣY = Σ unknown

Suppose that Σp�p � 0 unknown, n +m > p, and we have independent samples,

X1; :::;Xn
iid� N (�X ;Σ) & Y1; :::;Ym

iid� N (�Y ;Σ)

and we wish to discern whether they share the same mean or not.

In this setting, one has an a.s. invertible pooled empirical covariance,

Σ̂ =
1

n +m

 
nX

i=1

XiX
>
i +

mX
j=1

YjY
>
j

!
�MM> exercise

=
n

n +m
Σ̂X +

m

n +m
Σ̂Y

So the loglikelihood of the pooled sample is

`(�X ; �Y ;Σ) = �n +m

2
log jΣj�n

2
(�x � �X )>Σ�1(�x � �X )� m

2
(�y � �Y )>Σ�1(�y � �Y )

�n
2
trace

�
Σ�1Σ̂X

	
� m

2
trace

�
Σ�1Σ̂Y

	
:

= �n +m

2
log jΣj�n

2
(�x � �X )>Σ�1(�x � �X )� m

2
(�y � �Y )>Σ�1(�y � �Y )

�n +m

2
trace

8>><>>:Σ�1
�

n

n +m
Σ̂X +

m

n +m
Σ̂Y

�
| {z }

=Σ̂

9>>=>>; :
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With this form in mind, we can now easily verify that:

In the unconstrained case, the MLEs are the pooled mean and pooled
covariance.

In the constrained case, the MLEs are the two separate sample means and
the pooled covariance.

Repeating similar calculations as when Σ was known, we arrive at:

2(`� � `�0) =
nm

n +m
( �X � �Y )>Σ̂�1( �X � �Y ) = nm( �X � �Y )>(nΣ̂X +mΣ̂Y )

�1( �X � �Y )| {z }
:=Q

Which (when suitably rescaled) is known as the Hotelling’s two-sample T 2.

Proposition

For m + n > p > 1, let Xn�p and Ym�p be independent data matrices from
N (�X ;ΣX ) and N (�Y ;ΣY ), respectively. If �X = �Y and ΣX = ΣY , then�

1� 2

n +m

�
Q � T 2(p;n +m � 2)

This, under H0,we reject H0 at the level � iff�
1� 2

n +m

�
Q>q1��(T 2(p;n +m � 2)):
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Proof of the proposition.

From the Gaussian Sampling theorem and independence of X and Y, we have

� =

q
nm

n +m
( �X � �Y ) � Np

�
�X � �Y ; nmΣX

n(n +m)
+

nmΣY

m(n +m)

�
H0� N (0;Σ) :

nΣ̂X �Wp(ΣX ;n � 1)
H0� Wp(Σ;n � 1)

mΣ̂Y �Wp(ΣY ;m � 1)
H0� Wp(Σ;m � 1)

where fH0 : �X = �Y &ΣX = ΣX = Σg. By independence, and the additivity
property of the Wishart, we thus have under H0 that

nΣ̂X +mΣ̂Y �Wp(Σ;n � 1 +m � 1) �Wp(Σ;n +m � 2):

Moreover, the Gaussian sampling theorem states that Σ̂X ?? �X and Σ̂Y ?? �Y .
Moreover, as X ?? Y so ( �X � �Y ) ?? (nΣ̂X +mΣ̂Y ).

Thus, by the “Hotelling Lemma” (slide 120)

n +m � 2

n +m
nm( �X � �Y )>(nΣ̂X +mΣ̂Y )

�1( �X � �Y )| {z }
Q

� T 2(p;n +m � 2)
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Correlation test fH0 : �ij = 0g vs fH1 : �ij 6= 0g

For n > 2 and Σ � 0, it suffices to consider the setting�
X1
Y1

�
; :::;

�
Xn

Yn

� iid� N

��
�X
�Y

�
;

�
�2X �X�Y �

�Y �X � �2Y

��
Where varfX1g = �2X , varfY1g = �2Y , j�j < 1

fH0 : � = 0g vs fH1 : � 6= 0g
The unrestricted loglikelihood occurs at the unrestricted MLE,

`� = `( �X ; Σ̂) = �1

2
n log det(2�Σ̂)� n

2
tr
�

Σ̂�1Σ̂
�
= �n

2
log[2�]� n

2
log(�̂2X �̂

2
Y ��̂2�̂2X �̂2Y )�n :

The loglikelihood is always maximised w.r.t. the mean at the sample mean. So for
the restricted log-likelihood (under H0) it suffices to consider the function

`( �X ; �2X ; �
2
Y ) = �n

2
log[2��2X�

2
Y ]�

n

2
tr
�
diagf��2X ; ��2Y gΣ̂

�
= �n

2
log[2�]� n

2
log[�2X ]�

n

2
log[�2Y ]�

n

2

�̂2X
�2X

� n

2

�̂2Y
�2Y

:

with unique maximum6 at �2X = �̂2X and �2Y = �̂2Y , equalling

`�0 = �n
2
log[2�]� n

2
log[�̂2X ]�

n

2
log[�̂2Y ]� n

6recall that 1 is the unique maximum of log x � x over x > 0
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It follows that the likelihood ratio

2 log � = 2(`� � `�0) = �n
2
log(1� �̂2)

is a monotone function of the squared sample correlation �̂2. This is in turn a
monotone function of

� =
�̂2

1� �̂2

Thus we reject when � is large. In fact, (n � 2)�
H0� T 2(1;n � 2), so we reject

H0 at level � iff

(n � 2)
�̂2

1� �̂2>q1��(T
2(1;n � 2)):

Theorem (Empirical Correlation Under Independence )

In the context of slide 158, we have

(n � 2)
�̂2

1� �̂2
H0� T 2(1;n � 2):
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Proof.
Let X = (X1; :::;Xn )> � N (�X1n ; �2X In ), Y = (Y1; :::;Yn )> � N (�Y 1n ; �2Y In ), and

Hn = In�n � 1
n
1n1>n the centring matrix (projecting onto span?f1ng),

Hn = UΩU>; Ω = diagn�nf1; :::; 1; 0g & U>U = In�n :

Then ΩU>X � N (0; �2XΩ), ΩU>Y � N (0; �2Y Ω) and obviousy Ω2 = Ω, so

�̂ =
X>HnYp

X>HnXY >HnY
=

X>UΩΩU>Yp
X>UΩΩU>XY >UΩΩU>Y

d
=

W

kW k
> V

kV k

where W ;V
iid� N (0; I(n�1)�(n�1)) (independence comes from H0). Consequently

we have the following collection of facts:

W
kW k ;

V
kV k

iid� Unif(on the surface of the unit sphere in Rn�1).

V
kV k = Ve1 where V =

�
V
kV k ;V2; : : : ;Vn�1

�
is a random orthogonal matrix

obtained by randomly extending V
kV k to an orthonormal basis.

W
kW k

> V
kV k =

(V>W )
kW k

>
e1 =

(V>W )
kV>W k

>
e1

d
= W

kW k
>
e1 by independence
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Therefore �̂2
d
=
�
W>e1
kW k

�2
d
=

Z21
Z21+:::+Z

2
n�1

for Zi iid standard normal variables, so

�̂2

1� �̂2 =
Z 2
1

Z 2
2 + : : :+ Z 2

n�1

which is the ratio of two independent �2 random variables. When each is
renormalised by their respective degrees of freedom, we get

(n � 2)
�̂2

1� �̂2 � F1;n�2 � T2(1;n � 2):

(recall the definition of Fp;q are ratio of independent �2p=p by �2q=q)

Some comments:

The ratio �̂2

1��̂2 (and the test) can be arrived at using the regression

representation (and can thus be interpreted in the same vein).

Assuming Σ � 0 implies that j�ij j < 1

Thus, the derived test does not apply in the “boundary case”.

This is not an issue: if �ij = �1, we will see it immediately in the data

(the two coordinates will realise perfectly along a line)
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Partial correlation test fH0 : �ij jk = 0g vs fH1 : �ij jk 6= 0g

Say we have a sample of size n > 3, (Xi ;Yi ;Zi )
> iid� N (�;Σ3�3), with Σ � 0.

We wish to test whether X is partially correlated with Y given Z ,

fH0 : �XY jZ = 0g vs fH0 : �XY jZ 6= 0g
where we recall

�XY jZ = ��XY =
p
�XX �YY

Luckily, we don’t have to do likelihood calculations again.

To this aim, we will use the regression representation (slide 85):�
X

Y

Z

�
� N

�
�;

�
ΣX ΣXY ΣXZ

Σ>
XY

ΣY ΣYZ

Σ>
XZ

Σ>
YZ

ΣZ

��
()

�
�X
�Y
Z

�
� N

��
0
0
�Z

�
;

��
�X �XY
�>
XY

�Y

��1
0

0 ΣZ

��
with �X = X � ΣXZΣ

y
Z (Z � �Z ) and �Y = Y � ΣYZΣ

y
Z (Z � �Z )

In the 2� 2 case the inverse has the explicit formula�
�X �XY
�XY �Y

��1
= jΘj�1

�
�Y ��XY
��XY �X

�
So we have reduced the problem to testing whether the correlation is zero in a 2� 2
Gaussian setting!
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Therefore, the LRT will reject for large values of
�̂2�X ;�Y

1��̂2�X �Y

for �̂�X ;�Y the MLE

of the correlation of �X and �Y .

We don’t actually observe the sample of (�X ; �Y ;Z )
> but the induced

likelihood is equivalent to that induced by the observable sample

(i.e. it gives the same values at the same parameter choices)

Thus, using equivariance, since

��X ;�Y =
�jΘ�1j�XYpjΘ�1j�XX jΘ�1j�YY

= � �XYp
�XX �YY

we get that the MLE �̂�X ;�Y equals � �̂XYp
�̂XX �̂YY

It turns out that the distribution under the null is now T 2(1;n � 3), after
re-scaling by (n � 3), so we reject H0 iff

(n � 3)
�̂2XY =(�̂X �̂Y )

1� �̂2XY =(�̂X �̂Y )
>T 2(1;n � 3):

Exercise: Verify that �̂�X ;�Y is the sample correlation between the residuals obtained when

regressing X on Z and those when regressing Y on Z . Use this to establish the null

distribution, following the same steps when proving the theorem in slide 158, but using a

projection matrix other than the centring matrix.
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One sample, fH0 : Σ = Σ0g vs fH1 : Σ 6= Σ0g (with Σ0 � 0)

Let X1; : : : ;Xn be a random sample from N (�;Σp�p) with Σ � 0. The restricted
(under H0) and unrestricted MLEs are, respectively:

�X and Σ0.
�X and Σ̂.

Thus,
`�0 = `( �X ;Σ0) = �n

2
log j2�Σ0j � n

2
tr
�

Σ�10 Σ̂
�

`� = `( �X ; Σ̂) = �n
2
log j2�Σ̂j � n

2
tr
�

Σ̂�1Σ̂
�
= �n

2
log j2�Σ̂j � np

2
;

which yield

2 log � = 2(`�� `�0) = �n log

�
jΣ0j
jΣ̂j

�
+ntr

�
Σ�10 Σ̂

�
�np = n log jΣ�10 Σ̂j+ntr

�
Σ�10 Σ̂

�
�np:

If � and 
 are the arithmetic and geometric means of the eigenvalues of Σ�1
0 Σ̂,

respectively, then tr(Σ�1
0 Σ̂) = p� and jΣ�1

0 Σ̂j = 
p . Thus,

2 log � = np(�� log 
 � 1):

The exact distribution of this statistic is non-trivial to obtain, but Wilks’ theorem
applies so we can use the asymptotic approximation �2m , where m = p(p + 1)=2.
Thus, if n is large enough, we reject H0 at level � iff

2 log �>q1��(�2p(p+1)=2):
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Two Sample, fH0 : ΣX = ΣY g vs fH1 : ΣX 6= ΣY g, with ΣX ;ΣY � 0

Suppose that ΣX ;ΣY � 0 unknown and that we have two independent samples,

X1; :::;Xn
iid� N (�X ;ΣX ) & Y1; :::;Ym

iid� N (�Y ;ΣY ); n ;m > p

and wish to discern whether they share the same covariance or not.

The loglikelihood of the pooled sample is

`(�X ; �Y ;ΣX ;ΣY ) = �n
2
log jΣX j � m

2
log jΣY j�n

2
(�x � �X )>Σ�1X (�x � �X )

�m
2
(�y � �Y )>Σ�1(�y � �Y )� n

2
trace

�
Σ�1X Σ̂X

	
� m

2
trace

�
Σ�1Y Σ̂Y

	
:

In the unconstrained case, this seprates into the sum of the two separate
likelihoods corresponding to each sample

`(�X ; �Y ;ΣX ;ΣY ) = `(�X ;ΣX ) + `(�Y ;ΣY )

which is maximised at the separate MLEs ( �X ; �Y ; Σ̂X ; Σ̂Y ) with maximum

`� = �n
2
log jΣ̂X j � m

2
log jΣ̂Y j � (n +m)p

2
:
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In the constrained case, the MLEs for the means are ( �X ; �Y ) regardless of the
choice of covariance.

Plugging these in, the loglikelihood for the common covariance Σ becomes

`( �X ; �Y ;Σ) = � (n +m)

2
log jΣj � n

2
trace

�
Σ�1Σ̂X

	
� m

2
trace

�
Σ�1Σ̂Y

	
= � (n +m)

2
log jΣj � (n +m)

2
trace

�
Σ�1Σ̂

	
where Σ̂ = n

n+m Σ̂X + m
n+m Σ̂Y is the weighted average of the two sample

covariances (notice this is no longer equal to the pooled covariance because
the two means are possibly different).

Therefore Σ̂ is the restricted MLE yielding `�0 = � (n+m)
2 log jΣ̂j � (n+m)p

2

We arrive at

2(`� � `�0) = �n log jΣ̂X j �m log jΣ̂Y j+ (n +m) log jΣ̂j
The exact distribution of this statistic is non-trivial to obtain, but Wilks’
theorem applies so we can use the asymptotic approximation �2m , where

m = f#parameters�#free parameters under H0g = 2p + p(p + 1)� 2p � p(p + 1)

2

Thus, if n is large enough, we reject H0 at level � iff

2 log �>q1��(�2p(p+1)=2):
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One Sample, Sphericity Test

Let X1; : : : ;Xn be a random sample from N (�;Σp�p) with Σ � 0 and n > p.
Consider the hypothesis pair,(

H0 : Σ = �I for some � > 0;

H1 : Σ 6= �I for all � > 0:

Both hypotheses are now composite. The LRT rejects H0 for large values of�

(Σ̂)=�(Σ̂)

�n
�(Σ̂) and 
(Σ̂) are the arithmetic and geometric means of the eigenvalues of Σ̂.

Exercise: verify this.

As in the case fH0 : Σ = Σ0g vs fH1 : Σ 6= Σ0g, the exact null sampling
distribution of the LRT is not available in closed form.

However Wilks’ theorem does not apply because the null is composite.

The asymptotic distribution can be obtained by different means, but is too
convoluted to state.
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Some general conclusions/remarks

Notice that the tests related to the covariances globally generally depend only
on the eigenvalues of the empirical covariance(s) and (when applicable) the
null covariance.

The Wilks �2 approximation will be valid only for simple null hypotheses, but
not for composite hypotheses like sphericity.

The LRT test statistics make sense more generally, when well defined,
regardless of Gaussianity. In these cases, we can resort to asymptotic
approximations e.g. Wilks (when applicable or by direct use of limit
theorems).
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Dimension Reduction
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Dimension Reduction

Dimension reduction is a means to introduce parsimony by way of projections or
low-rank techniques.

The key principle of dimension reduction is, roughly speaking that

most of the “statistical action” is happening in some latent hyperplane
of dimension far lower than the dimension p of the ambient space Rp .

The name of the game is looking for good linear functionals (projections) which:

capture most of the action, when all variables are treated equally

distill most of the dependence, when variables are treated as input/output

To this effect, we will see two types of analysis:

Principal Component Analysis

Canonical Correlation Analysis
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Here are two caricatures to keep in mind:

The “thin scatterplot” (for PCA)

The “picket fence” (for CCA)
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Principal Component Analysis

Let X be a random vector in Rp with covariance matrix Σ.

We seek v1 2 Sd�1 such that X ’s projection onto v1 has maximal variance.

And j > 1, we seek direction vj 2 span?fv1; : : : ; vj�1g such Y ’s projection
onto vj has maximal variance.

Solution: maximise var(v>1 X ) = v>1 Σv1 over kv1k = 1

v>1 Σv1 = v>1 UΛU>v1 = kΛ1=2U>v1k2 =
dX
i=1

�i (u
>
i v1)

2 [change of basis]

Now
Pd

i=1(u
>
i v1)

2 = kv1k2 = 1 so we have a convex combination of the f�j gdj=1,

dX
i=1

pi�i ;
X
i

pi = 1; pi � 0; i = 1; : : : ; d :

If �1 � �i � 0 so clearly this sum is maximised when p1 = 1 and pj = 0 8j 6= 1,
i.e. v1 = �u1.

Iteratively, we find vj = �uj , i.e. the eigenvectors of Σ.
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The eigenvectors of Σ are called the principal components (of variation)

The ratio �j =trfΣg gives the % of variance explained by the j th component.

The actual projection hu1;X i = u>1 X is called the score of X .

Scores along different components are uncorrelated:

covfu>i X ;u>j X g = u>i Σuj = �j1fi = j g:

When
Pk

j=1 �j =trfΣg for k � p, PCA is useful for dimension reduction7

PCA is always valid from a mathematical standpoint, but is most interesting
from a statistical standpoint when

It helps reduce dimension considerably, and/or
When the principal components have a good interpretation as new variables.

7see next slide
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Theorem (Optimal Linear Dimension Reduction Theorem)

Let X be a mean-zero random variable in Rp with p � p covariance Σ. Let Hk be
the projection matrix onto the span of the first k eigenvectors of Σ. Then

EkX � HkX k2 � EkX � QX k2

for any p � p projection matrix Q with rank(Q) � k .

Intuitively: if you want to approximate a mean-zero random variable taking values
Rp by a random variable that ranges over a subspace of dimension at most k < p,
the optimal choice is the projection of the random variable onto the space
spanned by its first k principal components.

“Optimal” is with respect to the mean squared error.

For the proof, recall that:

Q is a rank k projection if and only if Q =
Pk

j=1 vj v
>
j for orthonormal fvj gkj=1.
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Proof.

Write Q =
Pk

j=1 vj v
>
j for some orthonormal fvj gkj=1. Then,

EkX � QX k2 = E
�
X>(I� Q)>(I� Q)X

�
= E

�
trf(I� Q)XX>(I� Q)>g�

= trf(I� Q)E
�
XX>� (I� Q)>g = trf(I� Q)>(I� Q)Σg

= trf(I� Q)Σg = trfΣg � trfQΣg =
nX
i=1

�i � tr

8<:
kX

j=1

vj v
>
j Σ

9=;
=

nX
i=1

�i �
kX

j=1

tr
�
vj v

>
j Σ
	
=

nX
i=1

�i �
kX

j=1

v>j Σvj

=

nX
i=1

�i �
kX

j=1

Var[v>j X ]

If we can minimise this expression over all fvj gkj=1 with v>j vj 0 = 1fj = j 0g, then
we’re done. By PCA, this is done by choosing the top k eigenvectors of Σ.
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More generally, we can also show that:

Theorem (Eckhard-Young-Schmidt-Mirsky, Hilbert-Schmidt case)

Let Σp�p =
Pp

i=1 �iuiu
>
i � 0 and Σk =

Pk

i=1 �iuiu
>
i be its rank k spectral

truncation. Then,
kΣ� ΣkkRp�p � kΣ� ΓkRp�p

for any Γ of rank at most k (not necessarily non-negative definite). Here

kAk2Rp�p = tr(A>A) = kvec(A)k2Rp2 :

Note that Σk = HkΣHk where Hk =
Pk

i=1 uiu
>
i projects onto spanfu1; :::;ukg.

Shows that PCA can also be interpreted via the optimal low rank approximation
of the covariance matrix. The theorem relies on Von Neumann’s trace inequality

jtrfABgj �
P

i
�i (A)�i (B)

(recall convention that singular values are always taken to be � 0)
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Proof (of the trace inequality)

By the SVD, the statement is equivalent to showing that

jtracefΛUΩV>gj � tracefΛΩg
for orthogonal matrices fU;Vg and (say) p � p diagonal fΛ;Ωg. We express Λ

and Ω as weighted averages of the projectors Pk =
Pk

i=1 eie
>
i , with feig the

canonical basis of Rp :

Λ = (�1 � �2)P1 + (�2 � �3)P2 + : : :+ (�p�1 � �p)Pp�1 + �pPp =
Pp

i=1
�iPi

Ω = (!1 � !2)P1 + (!2 � !3)P2 + : : :+ (!p�1 � !p)Pp�1 + !pPp =
Pp

i=1
�iPi

With this representation, our sought inequality becomes���Pp

i ;j=1 �i�j tracefPiUPjV
>g
��� �Pp

i ;j=1 �i�j tracefPiPj g:

This will follow by the triangle inequality if we can bound each term as

j�i�j tracefPiUPjV
>gj � �i�j tracefPiPj g;

For i � j , PiUPj = (Piu1; :::;Piuj ; 0; :::; 0) so we must show
Pj

k=1hPiuk ; vk i � j

This follows from the Cauchy-Schwarz inequality since kPiukk � kukk = 1.
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Proof. (of the low rank approximation theorem).

Writing Γ = WΩV> in SVD form, we open the square and use the trace inequality:

kΣ� Γk2Rp�p = kΣk2Rp�p + kΓk2Rp�p � 2tr(ΣΓ)

�
pX

j=1

�2j +

pX
j=1

!2j � 2

pX
j=1

�j!j|{z}
�0

=

pX
j=1

(�j � !j )2

=) infΓ:rank(Γ)�k kΣ� Γk2Rp�p �
pX

j=k+1

�2j

Setting Γ = Σk = HkΣHk attains the lower bound on the RHS.

Note that positive definiteness does not play a role – using a truncated SVD
gives similar result for the best low rank approximation of any matrix

The result (with different proof) is valid for any unitarily invariant norm

The “green inequality” is useful more generally.
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PCA in the Gaussian Case

If X � N (�;Σp�p), it admits a Karhunen-Loève expansion:

X � � =

pX
i=1

�iui ; �i
iid� N (0; �i )

where Σui = �iui , 1 � i � p, gives the spectrum of Σ, and �i = hX ;ui i.
Notice that:

ui are precisely the principal components.

�i are precisely the scores.

scores along different components are independent (not just uncorrelated).

scores along different components are Gaussian.

therefore, distinct component scores can be analysed completely separately

So, in the Gaussian case, PCA � KL, so we get independence/Gaussianity.
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From the perspective of the covariance remember that when X � N (�;Σp�p),

suppfX � �g = R(Σ):

Thus, by our low rank approximation theorem, PCA is equivalent to successive
(and nested) dimension reductions of the support of X .

(in non-Gaussian case, we find the best fitting hyperplane of given dimension to
the true support)
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Interpretation

Why not just use principal components, no matter what?

PCA basically represents a change-of-basis

In the new basis, everything is mathematically simpler

But our intuition/interest is in terms of original basis,

Coordinates in original basis correspond to variables/features.
(age, weight, height,....)

Coordinates in PCA basis are linear combinations of variables/features: (e.g.
�0:3� age +0:275� weight �0:59�height +:::)

Ideally, we find combintaions that are interpretable and/or sparse

But there is no a priori guarantee that this may be the case.

Motivates `1 penalised PCA:

u� := arg max
kuk=1

n
u>Σu � �kuk1

o
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Sample PCA

If we only have an iid sample, X1; :::;Xn , we can define the sample principal
components and the sample scores in precisely the same way as before, but
replacing the mean/covariance (�;Σ) with their sample versions ( �X ; Σ̂).

Caution: the observed (realised) sample scores have zero empirical correlation
...but...
they are correlated as random variables, since they are based on empirical
principal components (which are approximations to the true ones).

In similar vein: in the Gaussian case, the sample scores will not be
independent

In the Gaussian case, MLE equivariance immediately establishes that:

Proposition

Let X1; :::;Xn � N (�;Σp�p), where Σ has spectrum f(�i ;ui )gpi=1, and assume

that the MLE of (�;Σ) exists (in which case it equals ( �X ; Σ̂)). Then, provided
�1 > ::: > �p , the MLE of f(�i ;ui )g is given by the spectrum f(�̂i ; ûi ; )g of Σ̂.

Strictly speaking, eigenvectors are unique up to sign, so we rather estimate
the “eigenprojections” uiu

>
i by their sample version ûi û

>
i
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In what sense does the optimal dimension reduction property of PCA hold at the
sample level?

Corollary

Let X1; :::;Xn be iid random vectors in Rp . The best approximating k -hyperplane
to the points fX1; :::;Xng is given by �X + R(Σ̂k ), where Σ̂k =

Pk

i=1 �̂i ûi û
>
i is

the rank-k spectral truncation of Σ̂. Equivalently, defining Ĥk =
Pk

i=1 ûi û
>
i ,

nX
j=1

k(Xj � �X )� Ĥk (Xj � �X )k2 �
nX
j=1

kXj � v � Q(Xj � v)k2

for any v 2 Rp and n � n projection operator Q of rank at most k .

Exercise: prove the corollary. Hint: notice that randomness doesn’t play a role,
and do so for deterministic vectors. You can define a new random variable for
which the (rescaled sums) correspond to expectations...
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Sample vs Population PCA

Viewing the spectrum f(�̂i ; ûi ; )g of Σ̂ as an estimator of the spectrum f(�i ;ui )g
of Σ, one naturally is led to the following questions:

1 (coarse) what performance guarantees (e.g. MSE) can we establish?

2 (refined) what is the (asymptotic) sampling distribution of f(�̂i ; ûi ; )g?

(1) is easier than (2), by way of what are known as perturbation bounds. Viewing
Σ̂ as a perturbation of Σ, we see how the spectrum is perturbed.

This is very easy to do at the level of eigenvalues:

Lemma (Eigenvalue Perturbation Bound)

max
j
j�̂j � �j j � kΣ̂� ΣkRp�p

Exercise: check this (we’ve essentially already proven it!).

Victor Panaretos (EPFL) Multivariate Statistics 184 / 244



Eigenvectors require a little more work:

Theorem (Eigenvector Perturbation Bound)

Let Σ � 0 and Σ̂ � 0 have spectra (�j ;uj ) and (�̂j ; ûj ), respectively, both with
distinct eigenvalues. Define u�j = signfhuj ; ûj iguj . Then,

kûj � u�j k � 2
p
2�j kΣ̂� ΣkRp�p ;

where �1 = (�1 � �2)�1 and �j = maxf(�j�1 � �j )�1; (�j � �j+1)
�1g, j � 2.

Distinct eigenvalues allow for individual eigendirections to be identifiable.
But eigenvectors are unique only up to a sign change, hence the use of u�j

Proof
We will prove this by “wedging” the quantity kΣûj � �j ûj k between the two terms in the sought
inequality. Note that

Σûj � �j ûj = (Σ� Σ̂ + Σ̂)ûj � (�j � �̂j + �̂j )ûj = (Σ� Σ̂)ûj + (�̂j � �j )ûj
Thus, the triangle inequality and the “green inequality” (slide 178) imply that

kΣûj � �j ûj k �k(Σ� Σ̂)ûj k+ k(�̂j � �j )ûj k � kΣ� Σ̂k1 + kΣ� Σ̂kRp�p

and since kΣ� Σ̂k1 � kΣ� Σ̂kRp�p the RHS is majorised by 2kΣ� Σ̂kRp�p .
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Now for all 1 � j � p we aim to lower bound kΣûj � �j ûj k2 below by (2�2
j
)�1jju�

j
� ûj jj2.

kΣûj � �j ûj k2 =
Xp

k=1
hΣûj � �j ûj ; uk i2 =

Xp

k=1
(hΣûj ; uk i � h�j ûj ; uk i)2

=
Xp

k=1
(�k � �j )2hûj ; uk i2 � min

k 6=j
(�k � �j )2

X
k 6=j

hûj ; uk i2� ��2
j

X
k 6=j

hûj ; uk i2

Recalling that u�
j
= signfhuj ; ûj iguj , observe that ku�

j
� ûj k2 can be written asXp

k=1
hu�j � ûj ; uk i2 = fsign(hu�j ; uj i)� hûj ; uj ig2 +

X
k 6=j

hu�j � ûj ; uk i2

= f1� jhûj ; uj ijg2 +
X

k 6=j
(hu�j ; uk i � hûj ; uk i)2 = f1� jhûj ; uj ijg2 +

X
k 6=j

hûj ; uk i2

Since
P

k=1
hûj ; uk i2 = 1,

f1� jhûj ; uj ijg2 =
X
k=1

hûj ; uk i2 � 2jhûj ; uj ij+ jhûj ; uj ij2

=
X
k 6=j

hûj ; uk i2 + 2fjhûj ; uj ij2 � jhûj ; uj ijg| {z }
�0

�
X
k 6=j

hûj ; uk i2

because hûj ; uj i � 1. Thus 2
P

k 6=j
hûj ; uk i2 � ku�

j
� ûj k2:

Combining the inequalities in blue, and re-arranging the constant factors, we arrive at

4kΣ̂� Σk2Rp�p � kΣûj � �j ûj k2 � ��2
j

P
k 6=j

hûj ; uk i2 � (2�2
j
)�1jju�

j
� ûj jj2
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Sampling Distribution of the Spectrum

Notice that one way to get rid of the use of u� is to always use the convention
that U (and Û) are taken so that their diagonal elements are non-negative. This
eradicates the sign ambiguity from all the eigenvectors. And will be useful in what
comes next. Call this sign consistency.

Now we move on to (2) from our earlier list: distributional results on f(�̂j ; ûj )g
Exact sampling distribution is unwieldy, even in Gaussian case.
(unless we have isotropy)

Asymptotic distribution (n !1, p fixed) easier to access
(and arguably more useful/informative)

We will develop the asymptotic law of the empirical eigenvalues, and that of the
empirical eigenvectors, and then see how they simplify when dealing with a
Gaussian data matrix.
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Sampling Distribution of Spectrum

Recall that, as n !1 with p fixed,
p
n(Σ̂� Σ)

d! Z, where Z is a mean zero
Gaussian random matrix. We can use this to obtain:

Theorem (CLT for Empirical Spectrum)

Let X1; :::;Xn be iid p-vectors whose covariance Σ has spectrum f(�i ;ui )gpi=1,

with �1 > ::: > �p > 0. Let f(�̂i ; ûi ; )g be the spectrum of Σ̂, and assume that
f(ûi ;ui )g are chosen sign-consistently. Then,

1 fpn(�̂j � �j )g1�j�p d�! N (0;Φ); where Φij = E [hZui ;ui ihZuj ;uj i].

2
p
n(U>Û� I)

d! W for W = fWij g a centred Gaussian matrix, such that

covfWii 0 ;Wjj 0g =
8<:0 if i = i 0 or j = j 0;

E
� hZui ;ui 0i
�i 0 � �i

hZuj ;uj 0i
�j 0 � �j

�
otherwise:

We can easily deduce from (2) that UWn =
p
n(Û� U)

d! UW which is also
a centred Gaussian limit.
In fact, the proof shows that the sequences in (1) and (2) are jointly
asymptotically Gaussian, for what it’s worth.
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Proof.

We will leverage the CLT for
p
n(Σ̂� Σ)

d! Z in order to obtain the sought CLT.
Assuming that U and Û are defined sign-consistently, define

Qn = U>
p
n(Σ̂� Σ)U =

p
n(U>Σ̂U| {z }

Tn

� U>ΣU) =
p
n(Tn � Λ)

Dn :=
p
n(Λ̂� Λ) & Wn =

p
n(U>Û� I)

and observe that we may write

Λ +
Qnp
n| {z }

Tn

=

�
I +

Wnp
n

�
| {z }

U>Û

�
Λ +

Dnp
n

�
| {z }

Λ̂

�
I +

Wnp
n

�>
| {z }

Û>U

or equivalently,

Qn
�
= WnΛ + ΛW>

n + Dn +
WnDn+WnΛW>

n +DnW>
np

n
+

WnDnW>
n

n
.

We also note the constraint that

U>Û is orthogonal =)
�

I + Wnp
n

�
is orthogonal =) Wn + W>

n +
WnW>

np
n

��
= 0.
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With all these definitions/relations in place, let us start to look at asymptotics:

1 Qn
d! Q = U>ZU where Z is the (centred Gaussian) weak limit ofp

n(Σ̂� Σ) and so Q is centred Gaussian itself.

2 All terms in (�) scaled by 1=
p
n or 1=n converge to zero in probability, by

submultiplicativity of the matrix norm k � k1 and our perturbation bounds:

kWnk1 � kpn(U>Û� I)kRp�p = kpn(Û�U)kRp�p � c1kpn(Σ̂�Σ)kRp�p
d! c1�

kDnk1 � kpn(Λ̂�Λ)kRp�p � pp sup1�j�p j�̂j ��j j � c2kpn(Σ̂�Σ)kRp�p
d! c2�

where c1; c2 2 (0;1) and � is a scalar random variable, so dividing by a negative
power of n kills off the last two terms of (�) in the limit.

3 So by (1) and (2) combined with (�), Slutsky’s theorem implies that

WnΛ + ΛW>
n + Dn

d! Q

4 Additionally, (2) combined with (��) implies Wn + W>
n

d! 0; which means
that the diagonal of Wn vanishes asymptotically, and consequently so does
the diagonal of WnΛ + ΛW>

n , seeing as Λ is a diagonal matrix.

5 On the other hand, Dn is – by definition– diagonal for all n � 1.
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Consequently, letting G : Rp�p ! Rp�p be the projection onto diagonal matrices,

Dn � GQn = GDn � GQn

= GDn+G(WnΛ + ΛW>
n )� GQn�G(WnΛ + ΛW>

n )

= G(WnΛ + ΛW>
n + Dn � Qn)� G(WnΛ + ΛW>

n )
d! 0:

This proves that Dn =
p
n(Λ̂� Λ)

d! GQ = limn!1flaw(GQn)g, and so
fpn(�̂j � �j )g1�j�p has a centred Gaussian limit in distribution.

As for the limiting covariance of fpn(�̂j � �j )g1�j�p , this is simply the
covariance of the diagonal elements of Q = U>ZU (which coincide with the
diagonal elements of GQ).

Noting that the latter is

covfe>i Qei ; e
>
j Qej g = covfe>i U>ZUei ; e

>
j U>ZUej g = covfu>i Zui ;u

>
j Zuj g

and since EfZg = 0 the latter is E [hZui ;ui ihZuj ;uj i], as claimed.

This settles the eigenvalues, and now we turn our attention to the eigenvectors.
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Letting G? be the projection onto matrices with zeros on the diagonal,

WnΛ� ΛWn � WnW>
np

n

(��)� WnΛ + ΛW>
n = G?(WnΛ + ΛW>

n + Dn)
d! G?Q

is asymptotically mean zero Gaussian. But
WnW>

np
n

p! 0 and we notice that the

elements of WnΛ� ΛWn are simply wij (n)�j � �iwij (n) = (�j � �i )wij (n); so

(Wn)ij = 1
�j��i (WnΛ� ΛWn)ij :

Hence Wn itself has a centred Gaussian limit W, by Slutsky, with

Wij =
1fi 6= j g
�j � �i Qij :

And, we can get the covariance between pairs of entries W by suitably rescaling
the covariance of the corresponding pair of entries of Q = U>ZU:

covfWii 0 ;Wjj 0g =
(
0 if i = i 0 or j = j 0;

E
h
hZui ;ui0 i
�i0��i

hZuj ;uj 0 i
�j 0��j

i
otherwise:

Victor Panaretos (EPFL) Multivariate Statistics 192 / 244



Sampling Distribution of the Spectrum – Gaussian Case

Corollary (Asymptotic Law of Wishart Spectrum)

Let X1; :::;Xn � N (�;Σ) be iid p-vectors whose covariance Σ has spectrum
f(�i ;ui )gpi=1, with �1 > ::: > �p > 0. Let f(�̂i ; ûi ; )g be the spectrum of Σ̂.
Assume that f(ûi ;ui )g are chosen sign-consistently. Then,

1 fpn(�̂j � �j )g1�j�p d�! N (0;Φ); where Φ = diagf2�21; :::; 2�2pg.

2 Wn =
p
n(U>Û� I)

d! W for W a centred Gaussian random matrix.

3 W ?? D

4 Writing W = (W1; : : : ;Wp) columnwise, we have:

covfWi ;Wig =
X
k 6=i

�i�keke
>
k

(�i � �k )2 & covfWi ;Wj g = � �i�j ej e
>
i

(�i � �j )2 ; i < j :
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Salient features in the Gaussian case:

Eigenvalues asymptotically independent between them

Eigenvectors asymptotically independent of eigenvalues.

But eigenvectors not asymptotically independent between them (makes sense
as they are orthogonal).

Judging from the (Gaussian) asymptotic standard deviation of
p
2�j we see

that crossings will happen often even for well-spaced eigenvalues.

We can easily deduce that ∆n = UWn =
p
n(Û� U)

d! UW = ∆ with

covf�i ;�ig =
P

k 6=i
�i�kuku

>
k

(�i��k )2 & covf�i ;�j g = ��i�j uj u
>
i

(�i��j )2 ; i 6= j :
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Proof.

By our Gaussian assumption, we know that nΣ̂ �W (Σ;n � 1) and therefore
nU>Σ̂U � nTn �W (Λ;n � 1). Consequently,

Qn =
p
n(Tn � Λ)

d! Q � N (0;C) C � covariance of W (Λ; 1)

and so the entries of Q are uncorrelated (see slide 129 recalling that Λ is
diagonal), and hence independent (as they are jointly Gaussian).

It follows that GQ is independent of G?Q for any projection G : Rp�p ! Rp�p that
“zeroes elements” and its complementary projection G?, in particular for G being
the projection onto diagonal matrices. Recalling from our previous proof that

p
n(Λ̂� Λ)

d! GQ &
p
n(U>Û� I)

d! G?Q

we establish (3), and the centred Gaussian limits claimed. The covariance in part
(1) now follows by directly inspecting the corresponding entries of C from slide
129. As for the covariance in Part (4), recall from our last proof that

Wij =
1fi 6=jg
�j��i Qij

and thus scale the corresponding entries of C from slide 129 accordingly.
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Sampling Distribution of the Spectrum – Elliptical Case

We only used the Gaussian assumption to specify the asymptotic covariance.

In non-Gaussian settings, we can still specify the asymptotic covariance, but it
depends on comprehensive (mixed) fourth moment structure, which is unwieldy.

However, we saw (slide 130) that dependence on fourth moments is “minimal” in
ellpitical families. Indeed, we can straightforwardly deduce the extension below:

Theorem (Asymptotic Law of Elliptical Spectrum)

Let X1; :::;Xn be centred iid elliptical p-vectors whose covariance Σ has spectrum
f(�i ;ui )gpi=1, with �1 > ::: > �p > 0. Let f(�̂i ; ûi ; )g be the spectrum of Σ̂.
Assume that f(ûi ;ui )g are sign-consistent. Letting � be as in slide 130,

1 Dn =
p
n(Λ̂�Λ)

d! D for D a diagonal and centred Gaussian random matrix.

2 Wn =
p
n(U>Û� I)

d! W for W a centred Gaussian random matrix.

3 W ?? D

4 Writing W = (W1; : : : ;Wp) columnwise, we have:

covfWi ;Wig = (1 + �)
X
k 6=i

�i�k eke
>
k

(�i � �k )2
& covfWi ;Wj g = �(1 + �)

�i�j ej e
>
i

(�i � �j )2
; i < j :
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Sample vs Population PCA – “Executive Summary”

High level summary: assuming �1 > �2 > ::: > �p > 0 and sign-consistency.

No matter what,
Sample eigenvectors and eigenvalues are jointly asymptotically Gaussian
Sample eigenvectors of different index remain dependent, even asymptotically

In the Gaussian-case,
Covariance structure for sample eigenvalues/vectors is tractable and depends
only on second moments. This structure shows that:

Sample eigenvalues of different index are asymptotically mutually independent
Sample eigenvectors are asymptotically independent of sample eigenvalues

In the elliptical case,

Covariance structure for sample eigenvalues/vectors is tractable, depends on
second moments and the “4th-moment-parameter” �. Structure shows that:

Sample eigenvalues of different index are asymptotically mutually independent
Sample eigenvectors are asymptotically independent of sample eigenvalues

In the non-elliptical case,

Covariance structure for sample eigenvalues/eigenvectors is possibly
intractable, depends on comprehensive mixed fourth moments.
Evan asymptotically, sample eigenvalues may be dependent for different
indices, and may be dependent with sample eigenvectors.
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Selecting the # of Components

A priori, there is no unequivocal way to choose a truncation level k .

We can interpret k in various ways:

As a tuning parameter in an approximation problem (% of variance explained)

As a tuning parameter in an inverse problem (condition numbers, CV)

As a model parameter to be inferred (testing/estimation)

As a model index to be selected over (model selection)

Conversely, approaches to choosing k implicitly or explicitly represent a choice of
interpretation. Sometimes different approaches give essentially same criterion.
But not always. They often boil down to “eigenvalue decay” criteria.

No single approach is superior in all circumstances, and the choice of method is
often guided by the specific data and problem at hand.

Combinations of methods can be employed (with careful calibration of significance
levels if the testing approach is among them, to avoid data snooping bias).
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Selecting the # of Components – The Scree Plot

No matter which method one chooses, the scree plot often shows up:
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Represents “derivative” of approximation error function.

Leveling off suggests diminishing returns in terms of approximation.

Often seek “elbows” if such are present.

Rationale: past elbow, scree plot is essentially constant. No point in
truncating to dimension past elbow point, you might as well not reduce at all,
since all the remaining dimensions are virtually exchangeable.

Can also add approximate error bars (CI) in Gaussian case.
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“Scree is a collection of broken rock fragments at the base of a cliff or
other steep rocky mass that has accumulated through periodic rockfall”
(Wikipedia)

Scree slope at the bottom of Yamnuska, Alberta, Canada (Wikipedia)
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Selecting the # of Components – % of Variance Explained

% of variance explained is simple enough in principle:

k = minf1 � j � p : (�̂1 + : : :+ �̂k )=tr(Σ̂) � 1� �g
� can be chosen to some standard level, e.g. 0:15 or 0:1 (no gold standard)
More often � is chosen to depend on the empirical eigenvalues , e.g. via
simultaneous inspection of the scree plot and cumulative variance plot:
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(here line is drawn at � = 0:15, corresponding to 85% variance explained)

Doing so subconsciously corresponds to some form of penalized % of var
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Selecting the # of Components – Condition Numbers

Often, the sample covariance is used as a device for a downstream task, usually
through its (generalised) inverse, or that of its square root:

linear prediction, testing, classification

In this case, if the sample covariance is ill-conditioned,

CN := �̂1=�̂p � 1;

it can lead to wildly fluctuating outcomes even under small sampling variation.

Look at condition indices

CIj := �̂1=�̂j ; j = 2; ::::; p;

and truncate at first j where CIj > c� for some threshold c�.

Intuitively: you try to choose the maximal rank k truncation that still leads
to a well-conditioned (according to the threshold) matrix.

(notice that this relates bijectively to the scree plot)

In the case of prediction, one can also use Cross Validation (CV).
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Selecting the # of Components – Testing

Possible model for random vectors with “nearly rank k” covariance is

{lower dimensional signal} + {isotropic noise}

Specifically, we model X as
X = L+ �;

i.e. X is a noisy measurement of the latent vector of interest L, where:

L is a random vector in Rp with rank k < p covariance Φ =
Pk

j=1 �juiu
>
i .

� is a random vector in Rp with diagonal covariance �Ip�p , � > 0.

covfL; �g = 0 and
h
f�i distinct g OR f�k > �g

i
(for identifiability)

a.k.a. “spiked covariance model”. The covariance of X then becomes

covfX g = Φ + �I =
kX

i=1

(�i + �)uiu
>
i +

pX
i=k+1

�uiu
>
i

In this setting:

choosing k () inferring as of where population scree plot becomes flat
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This is a population scree plot under the previous model. The sample version will
not be as clear-cut!
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Given a candidate k 2 f0; :::; kmaxg = K , where kmax � p � 2 (think why),

we can test the last p � k principal components of X for sphericity,

equivalently, test the sphericity of ∆k = covfQkU>X g, with Qk being the
(p � k)� p matrix obtained when deleting the first k rows of Ip�p ,(

Hk ;0 : ∆k = �I(p�k)�(p�k) for some � > 0;

Hk ;1 : ∆k 6= �I(p�k)�(p�k) for all � > 0:

Whenever the hypothesised value k is chosen by scree plot inspection (data
snooping) over the set K , we will need to adjust for multiple testing:

Let pk be the p-value corresponding to Hk ;0

Let p(1) � p(2) � ::: be the ordered p-values, from smallest to largest.

Starting at j = 1 and going up,

If p(j ) � �
(jK j�j+1)

, reject the hypothesis corresponding to p(j ) and go to j +1.

If p(j ) >
�

(jK j�j+1)
, “accept” the hypothesis corresponding to p(j ) , and all

hypotheses corresponding to p(j 0) with j 0 � j , and terminate.
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This is the Bonferroni-Holm adjustment, ensuring that the probability of falsely
rejecting HK = [k2KH0;k is at most �. Note that,

[k2KH0;k = fH0 : rank(Φ) � kmaxg

The least j (if any) for which Hj ;0 is accepted is the de facto estimate of rank(Φ)

Some remarks on the testing perspective:

Likelihood ratio test for fH0;j vsH1;j g similar to the “full case”. Here, too,
asymptotic distribution is convoluted to state, but available.

Other test statistics are also possible, leading to approximately �2 sampling
laws under the null.

Criteria related to thresholds (% of variance, condition numbers) have a
confirmatory (as opposed to exploratory) version via tests (that the
population quantity satisfies the threshold). These are of limited interest in
practice.
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Selecting the # of Components – Model Selection

If we assume a specific distribution (e.g. Gaussian) we can employ model selection
in the context of the low rank plus noise model:

Then, the low rank plus noise covariance testing scheme can be seen as a sort
of analysis of deviance for covariance:

Each such model is a restricted version of the general (unrestricted model)
when k = p.

For k1 � k2 the corresponding models are nested.

Thus the test at step k can be seen as a likelihood ratio test for a submodel.

More generally (and for different models) small k yield parsimonious models

At the same time, smaller k will usually yield worse fit (lower max likelihood)

thus can use an information criterion (AIC/BIC)

Depending on the precise model, these will lead to threshold criteria.

Exercise: in the low rank plus noise models, they take the form
�̂k > threshold(n) which resemble a (sample-size dependent) condition
number criterion.
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PCA based on Covariance vs Correlation

PCA is neither invariant nor equivariant to re-scaling variables differentially:

Changing scale (or units) in one variable changes the PCs.
This change is not commensurate to the re-scaling (no equivariance).
Concretely: if we have a trivariate context with heigh in m , weight in kg and
age in years, we may want to switch to gr , cm , and months. But we get
different results if we

Multiply the data by 100, 1000 and 1/10 and then perform a PCA.
Perform a PCA and multiply the coefficients of the three variables in the
components by 100, 1000 and 1/10.

Ideally all the variables have similar scales. Otherwise, changing to a very
small scale in one variable will exaggerate its contribution to u1.

Two often employed (but not definitive) solutions:

Consider “natural” units. Hopefully the domain expert knows in precisely
what scale they wish to discover dependencies. This relates to the notion of
effect size: what changes are scientifically –as opposed to statistically–
significant in the context of the problem.
Standardize all variables (hence, the PCs are derived from the correlation
matrix rather than the covariance matrix). This might seem the best, but it
has problems of its own (scree plots, sphericity tests, testing for components
all become dubious in terms of interpretation).
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Canonical Correlation Analysis

The context:

Suppose that our variables can be naturally assigned into two groups:

“Inputs”. For example, lifestyle/exercise variables.
“Outputs”. For example, health indicators.

Seek to understand associations between “inputs” and “outputs”.

We investigate the pairwise correlations between all input/output pairs.

But such approach is arguably inefficient and ineffective :

If both groups have cardinality p there are p(p � 1)=2 such pairs.
Possibly no single pair is too correlated, but the groups are as a whole

Canonical Correlation Analysis seeks to approximate/summarize the associations
with relatively few statistical summaries.

Each summary the correlation between some linear combination or input
variables, and some other linear combination of output variables.

It is in this sense that CCA can be thought of as an extension of regression
(regression can be thought of as CCA with a singleton “output” group)

Another way of thinking about it: CCA is to cross-covariance matrices what
PCA is to covariance matrices (“between” vs “within” dependencies).
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Canonical Correlation Analysis – Problem Statement

Let X and Y be random vectors in Rp and Rq , respectively and write

Σ = covfX ;Y g =
�

ΣX ΣXY

Σ>XY ΣY

�
:

Assume wlog that p � q . We seek � 2 Rp and � 2 Rq to maximise

covf�>X ; �>Y g = �>ΣXY �:

Clearly, we need a constraint, or else the objective can grow without bound:

varf�>X g = �>ΣX� = 1 & varf�>Y g = �>ΣY � = 1:

Such a pair (�1; �1) is called the first pair of canonical variables, and its covariance

covf�>1 X ; �>1 Y g = corrf�>1 X ; �>1 Y g = !1

is called the first canonical correlation.

The second pair of canonical variables (�2; �2) and the second canonical
correlation is defined in similar way, but with the additional constraints:

covf�>1 X ; �>2 X g = �>1 ΣX�2 = 0 & covf�>1 Y ; �>2 Y g = �>1 ΣY �2 = 0:
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Canonical Correlation Analysis – Solution

Provided ΣX ;ΣY � 0, we will show that k = rank(ΣXY ) canonical pairs exist.

Moreover, we will show that the canonical pairs are given by

�j = Σ
�1=2
X uj & �j = Σ

�1=2
Y vj ; j � k ;

where (uj ; vj ) are the singular vectors of the canonical correlation matrix8

Φ = Σ
�1=2
X ΣXY Σ

�1=2
Y = UΩV>;

and canonical correlations given by the corresponding singular values of Φ.

Exercise: Check that the canonical pairs f(�j ; �j )gkj=1 satisfy the sought
constraints. To do this, write

Ap�p = Σ
�1=2
X U & Bq�q = Σ

�1=2
Y V

where U = (u1 : : :up) and V = (v1 : : : vq) and check that

cov

��
AX

BY

��
=

�
A 0
0 B

�
covfX ;Y g

�
A> 0
0 B>

�
=

�
Ip�p Ω
Ω> Iq�q

�
:

8as distinct from the cross-correlation matrix!
Victor Panaretos (EPFL) Multivariate Statistics 212 / 244



Theorem (Canonical Correlation Analysis)

Let X and Y be random vectors in Rp and Rq , with p � q , and let

Σ = covfX ;Y g =
�

ΣX ΣXY

Σ>XY ΣY

�
with ΣX ;ΣY � 0. Let k = rank(ΣXY ) and let UΩV> be the SVD of

Φ = Σ
�1=2
X ΣXY Σ

�1=2
Y :

where U = (u1 : : :up) and V = (v1 : : : vq). Then, for j = 1; :::; k ,

sup
(��)2Cj (X ;Y )

covf�>X ; �>Y g = corrf(Σ�1=2
X uj )

>X ; (Σ�1=2
Y vj )

>Y g = !j

where the constraint sets Cj (X ;Y ) � Rp+q are defined as

C1(X ;Y ) =
��

�
�

�
2 Rp+q : varf�>Xg = varf�>Y g = 1

	
,

Cj (X ;Y ) =
��

�
�

�
2 C1(X ;Y ) : covf�>X ; �>

i
Xg = covf�>Y ; �>

i
Y g = 0 8 i < j

	
; j � 2:
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Proof.

That �j = Σ
�1=2
X uj and �j = Σ

�1=2
Y vj are feasible (satisfy the constraints) has

already been established by our last exercise. To establish that the supremum is
equal to the two quantities as stated, we proceed in two steps. First we notice that

corrf(Σ�1=2X uj )
>X ; (Σ�1=2Y vj )

>Y g = u>
j

Σ
�1=2
X ΣXY Σ

�1=2
Y vj = u>

j
UΩV>vj = !j .

So the second equality is immediately true by the SVD. As for the first equality,

covf�>X ; �>Y g = �>ΣXY � = (Σ
1=2
X �)>Σ

�1=2
X ΣXY Σ

�1=2
Y (Σ

1=2
Y �) = 
>Φ�:

So we have the equivalences (with the analogous implications for �’s and �’s)

�>ΣX� = 1 () 
>
 = 1 and covf�>X ; �>i X g = 0 () (Σ
1=2
X �i| {z }
:=
i

)>
 = 0.

Hence, as (�; �) range over the constraint sets Cj (X ;Y ), (
; �) range over

C01 = f(�>; �>)> 2 Rp+q : 
>
 = �>� = 1g,

C0
j
=

n
(�>; �>)> 2 C01 : 
>
i = �>�i = 0 8 i < j

o
; j = 2; :::; k :

The result will now follow from Cauchy-Schwarz and the SVD of Φ.
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By the Cauchy-Schwarz inequality, we have

j
>Φ�j � k
kkΦ�k = k
k
p
�>Φ>Φ�:

With this in mind, we now note:

The upper bound is attained when 
 is collinear with Φ�. So to maximise the
expression, we seek feasible 
 and � such that 
 is collinear with Φ�.

Φ>Φ � 0. So, by PCA, the second term of the upper bound is maximised
over the constraint sets C01 and C0j at the first k eigenvectors of Φ>Φ,
respectively. Equivalently, over the first k right singular vectors fvj gj�k of Φ.

Once this choice is made, we note the choice of unit vectors 
 in the
constraint sets do not affect the value of the objective, so long as they are

collinear to the corresponding Φvj
SVD
= !juj . This forces us to choose the 


from the constraint sets C01 and C0j as the left singular vectors fuj gj�k of Φ.

Backtransforming from 
’s and �’s to �’s and �’s now completes the proof.

Exercise: show that when p = 1, the only non-trivial canonical correlation vector
is the (standardised) leasts squares estimator of the regression coefficient vector.
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Invariance/Equivariance of Canonical Correlations/Pairs

Contrary to PCA, the nature of CCA constraints make it equivariant under
standardisation – and invertible affine transformation more generally:

Theorem (Invariance/Equivariance of Canonical Correlations/Pairs)

In the same context as the previous theorem, let

f (x ) = Fx + � and g(y) = Gy + 


be invertible affine transformations on Rp and Rq , respectively. Then,

1 the canonical correlations of ff (X ); g(Y )g are the same as those of fX ;Y g.

2 the canonical pairs of ff (X ); g(Y )g are the the inversely transformed
canonical pairs of fX ;Y g, via f �1 and g�1, respectively.

Proof.
Covariance is invariant to translations, so we may assume � = 
 = 0. Let

�X ;Y (�; �) = covf�>X ; �>Y g & �f ;g(�; �) = covf�>FX ; �>GY g

be the original and transformed objectives.
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Consider the (bijective) change of variables�
~�
~�

�
= D

�
�
�

�
=

�
F>�
G>�

�
; where D =

�
F> 0
0 G>

�
:

In these variables:

�f ;g (�; �) = covf�>FX ; �>GY g = covf~�>X ; ~�>Y g = �X ;Y (~�; ~�):

(�; �) 2 C1(f ; g), varf�>FX| {z }
~�>X

g = varf�>GY| {z }
~�>Y

g = 1, (~�; ~�) 2 C1(X ;Y )

And, given this equivalence, we have for j = 2; :::; k ,

(�; �) 2 Cj (f ; g), (�; �) 2 C1(f ; g)& covf�>FX ; �>
i

FXg = covf�>GY ; �>
i

GXg = 0 8 i < j

() (~�; ~�) 2 C1(X ;Y ) & covf~�>X ; ~�>
i
Xg = covf~�>Y ; ~�>

i
Xg = 0 8 i < j

() (~�; ~�) 2 Cj (X ;Y )

Letting (~��
j
; ~��

j
) be the maximiser of �X ;Y over Cj (X ;Y ), and

�
��
��
�
= D�1

�
~��
j
~��
j

�
,

�X ;Y (~�
�
j
; ~��

j
) � �X ;Y (~�j ; ~�j ); 8(~�j ; ~�j ) 2 Cj (X ;Y )

=) �f ;g (�
�
j
; ��

j
) � �f ;g (�j ; �j ); 8(�j ; �j ) 2 Cj (f ; g)
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From Population to Sample CCA: Executive Summary

At the level of sample, CCA can be carried out by replacing the covariance
matrix by the sample covariance matrix. Since (Σ̂Y ; Σ̂Y ) are consistent for
(ΣX ;ΣY ), we have PfΣ̂X ; Σ̂Y � 0g = 1 for all n sufficiently large (exercise)

So for n sufficiently large, when the singular values of the cross-covariance
ΣXY are distinct, the sample canonical pairs and canonical correlations are
the MLE of their population versions.

As for their asymptotic properties, notice that the sample canonical
pairs/correlations can be related to the eigenvectors/values of Φ̂Φ̂> and

Φ̂>Φ̂, where Φ̂ := Σ̂
�1=2
X Σ̂XY Σ̂

�1=2
Y

So we can use our perturbation bounds once we can control the deviations
kΦ̂Φ̂> � ΦΦ>kRq�q and kΦ̂>Φ̂� Φ>ΦkRp�p

In the presence of invertibilty, Σ 7! Φ and Σ̂ 7! Φ̂ are Lipschitz continuous,
and so we can obtain such bounds. Similar arguments involving the
differentiability of these maps can be used to obtain

p
n asymptotic Gaussian

limits (allowing inference) via the delta method. Exercise: Use the spectrum
to show that Σ 7! Σ2, Σ 7! Σ�1, Σ 7! Σ1=2 are C 1 at Σ � 0.
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(Gaussian) Graphical Models
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Warm-Up: Markov Chains

As an important special case consider a stationary Markov Chain:

A sequence of identically distributed random scalars �1; �2; �3; :::

Markov property: the past is independent of the future given the present:

f�igi<k ?? f�j gj>k j�k ; 8k :
by stationarity, the transition density f�k+1j�k = g is time-invariant.

Assuming that X = (�1; :::; �p)
> is jointly centred Gaussian, this implies that

�1 � N
�
0; �2=(1� �2)�; �k+1 = ��k + "k+1

� = corrf�k ; �k+1g; j�j < 1; "i ?? �i ; "i
iid� N (0; �2):

This is known as the Gaussian stationary AR(1) model (autoregressive of order 1)

Exercise: Show this via the regression representation of conditional independence.
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Loglikelihood and Precision Matrix for Stationary Gaussian AR(1)

The Markov property stipulates that the density factorises:

f (�1; :::; �n ;Θ) = f�1(�1;Θ)

p�1Y
j=1

f�j+1j�i (�j+1j�j ;Θ)

where the conditional densities f�j+1j�i (�jy ;Θ) are N (�y ; �2) pdf’s. For a single

realisation of the vector X = (�1; :::; �p)
>, this yields a loglikelihood (up to

constants)

`1(�; �
2) = �1

2
log

�
�2

1� �2
�
� (p � 1) log �2

2
� (1� �)2�21

2�2
�

p�1X
j=1

(�j+1 � ��j )2
2�2

:

When n independent realisations Xi = (�i ;1; :::; �i ;p)
> are available, we get

`1(�; �
2) = �n

2
log

�
�2

1� �2

�
�n(p � 1)

2
log �2� (1� �)2

2�2

nX
i=1

�2i;1�
nX

i=1

p�1X
j=1

(�i;j+1 � ��i;j )2
2�2

:

Notice the information gain: get order np observations for 2 parameters! (instead
of n observations to estimate order p2 parameters)
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What about the precision matrix?

The only pairs (�i ; �j ) that are not conditionally independent given
f�k : k =2 fi ; j gg are adjacent pairs, i.e. ji � j j = 1. Consequently:

the precision matrix Θ of a stationary Gaussian AR(1) model is tridiagonal.

Now notice that Σ is determined elementwise via

covf�i ; �i+kg =
p
varf�igvarf�i+kg � corrf�i ; �i+kg = �2

(1� �2)�
k

And so we can directly verify that Θ = Σ�1 = L>L where

L = ��1 �

0BBBBB@

p
1� �2 0 : : : : : : 0
�� 1 0 : : : 0

0 �� 1
. . . 0

...
...

. . .
. . . 0

0 : : : 0 �� 1

1CCCCCA
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With this decomposition, we can calculate the loglikelihood of L based on a single
realisation of X using the expression of the multivariate Gaussian density:

`1(L) =
1

2
log jL>Lj � 1

2
X>L>LX

Obviously, we’ll get the same expression via the Markov factorisation (exercise).

In summary, the Markov property

yields a factorisation of the joint density by suitable conditioning.

leads to a sparse precision matrix.

substantially increases statistical efficiency.

Is there a more general structure underlying all this?

After all, recall that for jointly Gaussian (X>;Z>;Y >)> with Σ � 0,

X ?? Y jZ () fXZY = fX jZ � fY jZ � fZ () ΘXY = 0
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Stationary Gaussian AR(1) as a Graphical Model

Recall that, in the AR(1) model, the only pairs (�i ; �j ) that are not conditionally
independent given all else are adjacent pairs, i.e. ji � j j = 1.

Define a graph G = (V ;E) with, vertex/edge set, respectively

V = [p] = f1; :::; pg & E = f(i ; j ) 2 [p]2 : ji � j j = 1g � V 2

We do not allow loops (i.e. self-edges). Then,

�i ?? �j jf�k : k 2 [p] n fi ; j gg () (i ; j ) =2 E
. In other words:

absence of edge (i ; j ) indicates conditional independence given all else.

absence of edge (i ; j ) indicates that dependence between �i and �j is indirect

presence edge (i ; j ) indicates direct dependence between �i and �j –
dependence that is not undone by any conditioning.

A graphical model generalises the chain-like dependence structure to more general
combinatorial dependence structures encoded by a more general graph.
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Gaussian Graphical Models: The Three Markov Properties

A Gaussian Graphical Model encodes the conditional independencies amongst the
coordinates V := f1; :::; pg of a Gaussian vector via the edges in a graph on V .

There are three ways a graph G = (E ;V ) could define a Markov property:

Pairwise, Local and Global Markov Property

1 Pairwise Markov. No edge between Xi and Xj implies their conditional
independence given remaining variables: (i ; j ) =2 E =) Xi ?? Xj jfXkgk 6=i ;j

2 Local Markov. Conditional on its graph neighbours, ith variable is
independent of all other variables: Xi ?? fXj : (i ; j ) =2 EgjfXk : (i ; k) 2 Eg

3 Global Markov. Two subvectors are conditionally independent given a
subvector that separatesa them in G:

S � V separates A � V from B � V in G =) XA ?? XB jXS

aS � V separates A;B � V in G if removing S from V disconnects A from B
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In full generality, regardless of Gaussianity, it’s not hard to see (exercise) that:

Global Markov =) Local Markov =) Pairwise Markov

To go the other way around, we need to exclude “perfect dependence”:

Theorem (Equivalence of Markov Properties – Gaussian case)

The three Markov properties are equivalent for N (�;Σ) on Rp with Σ � 0.

Remark: In the non-Gaussian case the theorem is valid provided we replace
non-singularity of the covariance, with everywhere positivity of the joint density.

Proof.

Write V = f1; :::; pg and Θ = Σ�1. Given the exercise above, it suffices to prove
that when Σ � 0, the pairwise Markov property with respect to some graph
G = (E ;V ) implies the global Markov property with respect to G . Assume that
G encodes the pairwise Markov property. In the Gaussian case, this happens iff

E = fi 6= j : �ij 6= 0g
by the Gaussian conditional independence theorem (slide 83).
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Now we need to show that this graph structure also yields the global Markov
property. To this aim, assume that S � V separates A;B � V in the graph G.
If (A;B ;S) partition V , i.e. A [B [ S = V , then we are done. To see this:

Since A and B are separated, there is no edge from i 2 A to j 2 B . It
follows that Θij = 0 for all (i ; j ) 2 A�B . Blockwise, this says ΘAB = 0.

Hence, by the Gaussian conditional independence theorem (slide 83) we have
XA ?? XB given all other variables.

But “all other variables” coincides with XS , since V = A [B [ S .

Now consider the general case. Let R = V n [A [B [ S ] be the “remaining
vertices”. Partition R = RA [RB [R0 where:

RA contains all the vertices in R that are path-connected with A

RB contains all the vertices in R that are path-connected with B

R0 = R n [RA [RB ] are the remaining vertices in R.

We highlight that this is indeed a partition of R: it must be that RA \RB = ; or
else S would not separate A and B . For the same reason, S necessarily separates
RA from RB , RA from B , and RB from A (possibly trivially so). Finally, any
v 2 R0 is disconnected from both B and RB , or else v would be contained in RB

(similarly for A and RA, but we won’t need that). Now our trick will be to
augment the sets A and B , use the first part of the proof, and finally marginalise.
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Define ~A = A [RA [R0 and ~B = B [RB . Then, from our preceding discussion,
S separates ( ~A; ~B), and furthermore ( ~A;S ; ~B) is a partition V , so by the first
part of the proof

X~A ?? X~B jXS :

But since A � ~A and B � ~B , this implies that

XA ?? XB jXS :

This completes the proof.

Where did we specifically rely on Gaussianity in this proof?

In the first bullet of the last page, we were able to go from pairwise
conditional independence to blockwise conditional independence.

This is a remarkable feature of Gaussians: no interactions involve more than
pairs of variables. This can already be seen at the level of density:

log f (x ) = const� 1

2

X
v2V

Θvvx
2
v �

1

2

X
(v ;v 0)2E

Θvv 0xvxv 0 ; x = (x1; :::; xp)
> 2 Rp :
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Density Factorisation with respect to a Graph

Now that we’ve clarified how the Markov property with respect to a graph relates
to precision matrix sparsity, let’s turn to the factorisation of the density.

Let’s revisit the AR(1) example momentarily. The factorisation

f (u1; :::;un) = f�1(u1)

p�1Y
j=1

f�j+1j�i (uj+1juj )

used the fact that the graph was “well-ordered”, to arrive at a form

f (u1; :::;un) /
Qp�1

j=1  j (uj ;uj+1);  i : R2 ! (0;1)

To see the general picture, where there is usually no ordering, we need some
definitions related to a graph:

A clique of G = (V ;E) is a fully connected subset of V .
A maximal clique is a clique that is not a strict subset of another clique.

The AR(1) model joint density factorises over its maximal cliques.
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Let V = f1; :::; pg, G = (V ;E) a graph, and f (x1; :::; xp) > 0 be an everywhere
positive density on Rp . We say that f > 0 factorises with respect to G if

fX1;:::;Xp
(x1; :::; xp) =

Y
C�V  C (xC );

for 2p interaction functions  C > 0 such that  C = 1 unless C is a clique.

We use the shorthand notation xC = (xi1 ; :::; xik ) for C = fi1; :::; ikg � V .

Said differently, f > 0 factorises as product of positive functions  C with C

ranging over the collection C(G) of cliques of G .

The reason we give the definition the way we do, is to give a
“parsimony/reductive” intuition – removing terms from a larger product
corresponding to non-cliques.

This factorization implies that the global distribution can be understood in
terms of local interactions.

Conversely: provides a way to construct complex distributions from simpler
building blocks, modeling local interactions.
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In statistical physics terminology, one calls a density of the form

fX1;:::;Xp
(x1; :::; xp) / exp

8<: X
C2C(G)

�C (xC )

9=;
with real-valued and non-identically-vanishing valued potential functions
�C : RjC j ! R, a Gibbs distribution with respect to G.

(to see the relation consider potential �C = log C with interaction  C as above)

The fundamental result linking conditional independence and factorisation is:

Theorem (Hammersley-Clifford)

Let f : Rp ! (0;1) be an everywhere positive probability density function. Then,

f factorises w.r.t. G () f satisfies the local Markov property w.r.t. G

Proof.
Assume f > 0 factorises w.r.t. G . Consider the conditional of Xi given all else,

f (xi jxV nfig) =
Q

C�V  C (xC )R
R
Q

C�V  C (xC )dxi
=

Q
C 63i  C (xC )

Q
C3i  C (xC )Q

C 63i  C (xC )
R
R
Q

C3i  C (xC )dxi
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In summary,
f (xi jxV nfig) =

Q
C3i

 C (xC )=
R
R

Q
C3i

 C (xC )dxi :

Therefore, given any j 6= i , the RHS depends on xj only if (i ; j ) 2 E :

if C 3 i and C is not a clique, then  C = 1, so there is no dependence on xj .

if C 3 i and C is a clique, and then j 2 C if and only if (i ; j ) 2 E . So, in
turn,  C (and hence the RHS) depends on xj if and only if (i ; j ) 2 E .

In other words, f satisfies the local Markov property w.r.t. G.

In the other direction, assume f > 0 satisfies the local Markov property w.r.t. G .
Define  ; �  ;(x;) = f (�) for some fixed reference point � 2 Rp (e.g. take
� = 0). The argument x; simply corresponds to the function  ; being a constant
(does not depend on any coordinates). Define the remaining  ’s recursively, via

 C (xC ) =

8>><>>:
1 ifC is not a clique;

1 if xj = �j for some j 2 C
f (xC ;�VnC )Q
B�C

 B (xB )
otherwise:

Clearly the collection f C g has the form we seek. It only remains to show that f
factorises as

Q
C�V  C with these specific interaction functions.
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Given any x 2 Rp , let A = A(x ) be the set of all coordinates where x and �
disagree: A = fj 2 V : xj 6= �j g. Decompose

x = (xA; xV nA)> � (xA; �V nA)>:

Suppose A = ;. In this case x = � and we need to show that f (�) factorises as
stipulated. Checking the definition of  C (�C ), we notice that there is no C � V

for which  C (�C ) 6= 1 except C = ;, for which we defined  ;(x;) � f (�).
Therefore the factorisation holds in the formY

C�V
 C (�C ) =  ; = f (�):

Now suppose that A 6= ; and is a clique. Then,Y
C�V

 C (xC ) =  A(xA)
Y
C�A

 C (xC )
Y
C 6�A

 C (xC ) =
f (xA; �V nA)Q
C�A  C (xC )

Y
C�A

 C (xC )
Y
C 6�A

 C (xC )

and the terms in the last product equal 1 because C 6� A means that xj = �j for
some j 2 C , in which case our construction yields  C = 1. Noting that
f (xA; �V nA) = f (xA; xV nA), we once again get the sought factorisation.
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Finally, suppose that A 6= ; and is not a clique. In this case, we will establish the
factorisation by induction on the size of A. The base case is jAj = 0, where we
have already established the factorisation. For k � p, assume the factorisation
holds for jAj = k � 1, and let’s show it holds for jAj = k .

Since A is not a clique, there exist i ; j 2 A with (i ; j ) =2 E . We thus have

f (xA; xV nA) � f (xA; �V nA) = f (xi jxAnfig; �V nA)f (xAnfig; �V nA)

= f (xi jxAnfig; �V nA)
f (xAnfig; �V nA; �i )
f (�i jxAnfig; �V nA)

=
f (xi jxAnfi ;jg; �j ; �V nA)
f (�i jxAnfi ;jg; �j ; �V nA) f (xAnfig; �V nA; �i )

using the local Markov prop to go in the last step: the green terms don’t depend
on xj , because (i ; j ) =2 E , so we can fix xj to whichever value we wish without
changing the expression. So we fixed xj = �j . Using the inductive hypothesis,

=

f (xi ;xAnfi;jg;�j ;�VnA)

f (xAnfi;jg;�j ;�VnA)

f (�i ;xAnfi;jg;�j ;�VnA)

f (xAnfi;jg;�j ;�VnA)

f (xAnfig; �V nA; �i )=

Q
C�Anfjg  C (xC )Q
C�Anfi;jg  C (xC )

Y
C�Anfig

 C (xC ) =
Y
C�A

 C (xC )

=
Q

C�V  C (xC ) by definition of  C and fact that (A n fjg) n (A n fi ; jg) = fig.
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Gaussian Density Factorisation w.r.t. a Graph

Therefore, we get the immediate corollary:

Corollary (Hammersley-Clifford Theorem, Gaussian case)

Let V = f1; :::; pg, G = (V ;E) a graph, and X � N (0;Σ) on Rp with Σ � 0.
Then, the following statements are equivalent:

1 the density of X factorises with respect to G

2 X satisfies a Markov propertya with respect to G

3 given i 6= j , the (i ; j ) entry of Θ = Σ�1 is zero if and only if (i ; j ) =2 E .

awe say ’a’ Markov property, because all three Markov are equivalent when Σ � 0.

When the graph is geometric, then one can make use of factorisation cleverly
in order to carry out likelihood estimation conforming to a graphical model.

The key here is that the graph is quite sparse (correspondingly, the precision
matrix is very sparse, and one can see things through that lens).

But, in general, the “list of cliques” is difficult to obtain – in fact NP-hard.
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Statistical Inference for Gaussian Graphical Models

There are two (in a sense dual) problems that one might consider in this context,
given X1; :::;Xn � N (�;Σ):

Fitting a Gaussian distribution (estimating � and Σ) subject to the constraint
that N (�;Σ) factorises with respect to a given graph G. This is also known
as covariance selection.

Estimating the graph G with respect to which N (�;Σ) factorises when the
parameters are unknown. This is also known as structure estimation.

In light of the Hammersley-Clifford theorem, when Σ � 0, these two problems
reduce to:

Estimate the model parameters under the constraint that Θij = 0 for known
set E of pairs (i ; j ).

Estimate the location of zeroes of Θij amongst pairs (i ; j ).
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Taking a Step Back: Covariance Selection Models

Given a normal data matrix X, a (Gaussian) covariance selection model consists in
the family

fN (�;Σ) : � 2 Rp ;Σ 2 Sg
for some subset S of the cone of p � p non-negative definite matrices.

Depending on our choice of S an MLE may or may not exist.

A standard choice is S being the set of strictly positive definite matrices.

Even then, we saw the MLE does not exist when Σ̂ is singular.

So we expect that existence/uniqueness of the MLE is subtle for general S

What might be reasonable choices?

We may choose to impose linear constraints on Σ

We may choose to impose linear constraints on Σ�1 (and assume it exists)

Focussing on the special case where constraints fix some elements to be zero:

Imposing this on Σ leads to straightforward estimation: when MLE exists, we
can annhilate the corresponding entries by equivariance.

Imposing this on Σ�1 leads to estimation under a graphical model.
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MLE under a Gaussian Graphical Model

Since the constraints apply to the covariance we can take � = 0. Now consider a
graph G = (V ;E) on the index set V = f1; :::; pg. The model we wish to fit is

fN (0;Σ) : Σ � 0& e>i Σ�1ej = 0whenever (i ; j ) =2 Eg:

When Σ � 0, the loglikelihood is (up to constants)

`(Σ) = � log jΣj � tracefΣ�1Σ̂g

which can be equivalently expressed via Θ = Σ�1 as

`(Θ) = log jΘj � tracefΘΣ̂g:

The crucial observations now are that:

The objective `(Θ) is strictly concave over the set Θ � 0. (exercise)

The constraint set fΘ � 0 : e>i Θej = 0whenever (i ; j ) =2 Eg is convex.

In conclusion, maximising the loglikelihood under a graphical model constraint is
equivalent to a strictly convex optimisation problem – so provided a maximiser
exists, it will also be unique.

Victor Panaretos (EPFL) Multivariate Statistics 238 / 244



It turns out that loglikelihood maximisation under a graphical model constraint is
equivalent to the entropy maximisation under second moment constraints:

Theorem (Graphical Modeling as Matrix Completion)

Maximising the loglikelihood `(Σ) = � log jΣj � tracefΣ�1Σ̂g over the set

fΣ � 0 : e>i (Σ
�1)ej = 0 whenever (i ; j ) =2 Eg

is equivalent to maximising the entropy H (Σ) / log jΣj+ const over the set

fΣ � 0 : e>i Σej = e>i Σ̂ej whenever (i ; j ) 2 E or i = j g:

Intuitively: delete all non-adjacent (w.r.t. G) off-diagonal entries of Σ̂. Then
complete the missing entries to maximise the determinant.
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Proof.
The objective is negatively infinite at singular matrices, so we focus on interior
points of the of the non-negative definite cone. We then have a differentiable
strictly concave objective in Θ with equality constraints. We thus resort to the
method of Lagrange multipliers. Define the Lagrangian

L(Θ; ") = log jΘj � trfΘΣ̂g � trfΘ"g = log jΘj � trfΘ(Σ̂ + ")g
for a symmetric " = f"ij g with "ij = 0 when i = j or (i ; j ) 2 E ("ij are Lagrange
multipliers corresponding to the equality constraints). Constrained optima must
be saddlepoints of the Lagrangian. So if Θ� is a constrained maximum of `, then
Θ� is a critical point of ~̀(Θ) = log jΘj � trfΘ~Σg = log jΘj � trfΘ(Σ̂ + ")g:
This is just a Gaussian loglikelihood corresponding to an empirical covariance
~Σ = Σ̂ + " instead of Σ̂. When Θ � 0 this can only have a unique critical point
when ~Σ � 0, and that critical point is Θ� = ~Σ�1 = (Σ̂ + ")�1.
Now it remains to plug such a Θ� back into the Lagrangian, and minimise over "
with "ij = 0 when i = j or (i ; j ) 2 E . Equivalently, it remains to choose " to

minimize `
�
(Σ̂ + ")�1

�
= � log jΣ̂ + "j � p. Evidently, minimisation occurs at "

such that Σ̂ + " � 0, compatibly with the requirement of the critical point Θ�.
Finally, recall that entropy is minus the expected loglikelihood,

�E
�
� log jΣj � trfΣ�1Σ̂g+ const

�
= log jΣj+ p + const
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Matrix Completion: fitting vs extrapolating vs local modeling

If a feasible point exists, the graphically constrainted MLE exists uniquely.
Existence of a feasible point � existence of a valid matrix completion

Any completion must agree with the diagonal constraints – so the trace (and hence
Frobenius norm) is (bounded by a) constant on the feasible set.

Hence completion set is convex & compact, while objective is strictly concave.

Now notice a subtle distinction:

At the level of (complete) data: If we start out with observation of the
complete empirical matrix Σ̂ � 0, then it is clear that there exists at least one
feasible point – namely the completion to Σ̂ itself! So we can use gradient
ascent to find the maximum.
(Related to the last point) Small sample size or missing data if we have
limited sample size n < p (so Σ̂ is singular), but n � n submatrices are
non-singular, what graphs could we impose to get a graphically constrained
MLE? (recall the Markov chain model, where the effective # of parameters is
reduced). Similarly, if we have missing data (missing entries) what
missingness patterns can he handle by graphical modeling?
At the level of (local) modeling: What if we model some second moments
but not the full covariance vector. If we arrange the partial moments into a
matrix, can it admit a positive-definite completion?
(and hence a maximum entropy completion?)
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Partial (Local) Covariance Modeling

Suppose we are interested in a Gaussian random vector X = (X1;X2;X3;X4)
>...

...but we can only (or are only willing to) model the pairs (Xi ;Xj ), for

(i ; j ) 2 f(1; 2); (2; 3); (3; 4); (1; 4)g
E.g. we prescribe corresponding covariances as follows:0BB@

1 � ? ��
� 1 � ?
? � 1 �
�� ? � 1

1CCA
Of course we must take care that all specified marginal covariances of all
orders are positive definite (otherwise, it’s a no-go from the start).

This can be checked to be valid in our example.

However, there is no valid positive-definite completion in this case!

The missing entry pattern implicitly specifies a graph G : i 6= j are adjacent
if and only if their covariance is specified.

It turns out that so long as subcovariances � 0, the problem of completion is
entirely contingent on the structure of the graph (think Hammersley-Clifford)
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Theorem (Grone, Johnson, Sá & Wolkowicz)

Let Σpartial be a partial covariance with missing entry pattern graph G. Provided
all specified subcovariances of Σpartial are positive-definite:

Σpartial admits a positive-definite completion () G is chordala

aevery cycle of length 4 has a chord.

Remarkably, the proof is constructive: it manifests a completion.

It makes use of the fact that any chordal graph can be turned into a
complete graph by adding one edge at a time in such a way, that the
resulting graph remains chordal at each step.

Following this ordering of edge additions, the partial matrix is completed
entry by entry in such a way as to maximize the determinant of the largest
complete submatrix that contains the missing entry

Thus, the construction yields the maximum entropy completion, not just any
completion!

We will not prove the theorem in its full generality. But we will establish
feasibility of completion in a special class of chordal graphs: serrated partial
covariances, aka variable memory Markov chains(exercise)
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Estimating the Graph Structure from Data

Now let’s consider the opposite direction:

Given X1; :::;Xn � N (�;Σ) with Σ � 0, estimate the corresponding
Markov structure (equivalently the edge set of its graphical model).

In light of our results, the problem reduces to estimating the zero pattern of Θ.
When n > p we have a natural approach based on thresholding:

We can test for the presence of each possible edge, by testing for the
corresponding partial correlation.
The test statistic has the same null distribution, with same parameters, in
each case.
Selecting a significance level is in 1-1 correspondence with selecting a
threshold for hard thresholding.
The former can be chosen according to FDR considerations, and the latter
via asymptotic considerations.
A weakness of this approach is that it’s unclear if the resulting matrix is � 0.

A different approach is to use a penalised loglikelihood, to promote graph sparsity:

`pen (Θ) = log jΘj � trfΘΣ̂g+ �
X

i<j
jΘij j:

(requires tuning � > 0; we actually use partial correlation matrix instead of Θ to balance scales)
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