Statistical Theory MATH-442
Spring 2025 Ho Yun & Yoav Zemel

Exercise sheet 6

Exercise 1 Let Xi,...,X, be a sample from the uniform distribution on (0, 6) where 6 > 0
is unknown. Recall that the maximum likelihood estimator of 0 is X,) := max(Xy,...,X,).

Consider estimators of 6 of the form éb = bX(n), b > 0. Find the estimator of this form that has

the smallest risk R(6,0,) = E¢L(6,0,) for all values of # > 0 (if such an estimator exists). Do
this for the squared error loss function £9(0,a) = (a — 6)? and for the absolute error loss function

L1(0,a) =|a—0|.

Solution 1 For the squared error loss function the risk R(6,0,) = Eq(6, — 0)? is

2
varg(0y) + (biase(6y))? = %92 + (’nb—i-nl _ ) 6,

which is minimized at b* = (n +2)/(n +1). -
For the absolute error loss the risk R(6,6,) = Ey|0, — 0| equals

o/b n—1 0 ny" 1 n n

for b > 1, and

0 1 "
/0 (0 — by)™— dy = 9(1 - bn+1>

for b < 1.

Note that the risk function is therefore defined by parts, thus we have to find a minimizer for
each part, and then compare the values of the minima to find the global minimum of the function.
The minimizer for the equation b > 1 is b* = 2/(»*1) and the one for the equation b < 1 is b= 1.

Since both expressions are equal at b = 1, and that the value of the risk for b = b* is strictly
smaller than for b = 1, the minimum is attained at b*.

In both cases the optimal value of b is the same independently of the true value of 8, hence the
estimators are uniformly best.



Exercise 2 Let X, Xs,..., X, be a sample from a N(u,o?) distribution, where n > 1 and both
p and o? are unknown. The MLE of 6% can be shown to be

i=1

(you do not need to prove this, but if you never this result, you should prove it).

(a) Show that S? is inadmissible for o2 for the squared error loss function.

(b) Find the risk of the minimax estimator of o2 in the class of estimators of the form a,, 37, (X;—
X)? when ¢? € (0, M], M < cc.

(c) Why do we consider o% € (0, M] in the previous point? What fails if we consider o2 € (0, 00)?

Solution 2

(a) Developing the risk of a, > (X; — X,,)? as a function of a,, shows that it is minimised
uniquely when a = (n + 1) for all 62 > 0. But S? corresponds to a, = 1/n, and is thus
inadmissible.

(b) The best estimator in this class is T, = 2557 with risk % Therefore, among this class,

T is unique minimax with supremum risk 2M*/(n + 1).

(¢) If we consider the same setting but with 0% € (0, 00), then the supremum risk of 772 is infinite,
and therefore any decision rule in this class is minimax.



Exercise 3
1. Show that a unique minimax rule is admissible.
2. Show that a Bayes rule with constant risk is minimax.

3. Show that an admissible estimator with constant risk is minimax.

Exercise 4 Assume that © = {6;,...,6,} is a finite parameter space and the space of decision
rules D is such that it includes all randomised rules. Define the risk set to be a subset S of R? of
the form S = {(R(0,d),..., R(0;,d)) : d € D}.

Show that S is a convex set.

Solution 3

1. Let 6 be minimax. If ' dominates §, then ¢’ is also minimax, and therefore § is not unique
minimax.

2. If § is m-Bayes with constant risk A then for any ¢,
"N > / > _ — A
sup R(0.5') > /@ R(0,8)7(0)d0 > /@ R(0,6)7(6)do /@ Arn(8)df = A

Therefore ¢ is minimax.

3. If 0 has constant risk A and is not minimax, then there is a ¢’ with supremum risk smaller
than A. Thus R(0,¢") < A= R(0,9) for all #, and § is inadmissible.

Solution 4 Suppose 21 = R(61,dy),...,R(0;,dy)) and zo = R(01,ds),...,R(0;,dy)) are two
elements of S, and suppose A € (0,1). Form a new randomised decision d = Ad; + (1 — A)dz. Then
for every 6 € O, by definition of a randomised decision rule,

R(6,d) = AR(6,dy) + (1 — N)R(6, ds).

Then we see that Az; + (1 — A)xe corresponds to d, and hence is itself a member of S.



Exercise 5 Consider a parameter space with two values © = {6, 02}. In each plot in Figure 1,
coordinates are r; = R(01,d), ro = R(fs,d), the dots and/or thick curves correspond to the values
(r1,r2) of risk of some non-randomised decision rules, the filled ares are risk sets consisting of
points corresponding to all non-randomised and randomised decisions (all convex combinations of
the points corresponding to non-randomised decisions). For each risk set:

(a) Draw the set of admissible decisions.

(b) Draw curves corresponding to the decision rules with the same value of the maximal risk
max(R(01,d), R(02,d)) (i.e., for various values of ¢, draw “iso-max-risk” curves satisfying
max(ry,7r9) = ¢).

(c) Use these curves to find the minimax decision(s). Discuss whether it is (they are) unique,
randomised, admissible.

(d) Suppose we have prior probabilities m; = w(01) > 0, mp = 7(62) > 0, 7 +m9 = 1. Draw curves
corresponding to the decisions with the same value of the Bayes risk m R(61,d) + moR(0s, d)
(i.e., for various values of ¢, draw “iso-Bayes-risk” curves satisfying 717 + mory = ¢). Do this
and the next step for various prior probabilities, for example for 71 = 0.5,0.25,0.75,0, 1.

(e) Use these curves to find the Bayes decision(s). Discuss if it is (they are) unique, randomised,
admissible.

Solution 5 See Figures 2, 3, 4.
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Figure 1: Risk values for non-randomised (black) and randomised (grey) decision rules
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Figure 3: “Iso-max-risk” curves and minimax decisions
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Figure 4: “Iso-Bayes-risk” curves and Bayes decisions for m; = m5 = 0.5



